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Abstract: Anaplastic lymphoma-kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is prone
to developing heterogeneous, only partly known mechanisms of resistance to ALK-tyrosine-kinase-
inhibitors (ALK-TKIs). We present a case of a 38-year old male, who never smoked with disseminated
ALK-rearranged (EML4 (20) – ALK (20) fusion variant 2) lung adenocarcinoma, who received four
sequentially different ALK-TKIs and two lines of chemotherapy in-between. We observed significant
clinical benefit by the first three ALK-TKIs (Crizotinib, Ceritinib, Alectinib) and chemotherapy with
Pemetrexed, resulting in overall survival over 3 years. Longitudinal assessment of progressions by
rebiopsies from hepatic metastases showed different mechanisms of resistance to each ALK-TKI, including
secondary ALK-mutations and the downstream p.V600E BRAF-mutation that had not been linked to
second-generation ALK-TKIs before. Ultimately, in connection with terminal rapid progression and
resistance to Alectinib and Lorlatinib, we identified phenotypical epithelial-mesenchymal transition
(EMT) of newly occurred metastatic cells, a phenomenon not previously related to these two ALK-TKIs.
This resistance heterogeneity suggests a continuously changing disease state. Sequential use of different
generation’s ALK-TKIs and combination therapies may yield prolonged responses with satisfactory quality
of life in patients with advanced ALK-positive NSCLC. However, the development of EMT is a major
hurdle and may explain rapid disease progression and lack of response to continued ALK-inhibition.

Keywords: ALK-rearranged NSCLC; crizotinib; ceritinib; alectinib; lorlatinib; ALK-TKI resistance;
BRAF-mutation; EMT

1. Introduction

Oncogenic fusion of the anaplastic lymphoma-kinase (ALK) gene is detectable in approximately
2%–7% of patients with non-small cell lung cancer (NSCLC), who are typically non-smokers and
display adenocarcinoma histology. Most cases of NSCLC harboring ALK-rearrangements obtain clinical
benefit from ALK-tyrosine-kinase-inhibitors (ALK-TKIs). However, despite long-lasting remissions
with median overall survival (OS) of 81 months achieved by sequential ALK-TKIs, resistance inevitably
appears in alternative dominating forms [1]. The baseline biology of ALK-positive NSCLC defined by
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the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants, fusion partners (other
than EML4), and other possible co-existing driver-mutations can affect the response to ALK-TKIs [1–4].
Conversely, resistance mechanisms may also vary and become more intricate when using second-
or third-generation ALK-TKIs [2,5]. ALK-dependent resistance due to secondary mutations in the
ALK TK-domain or gene copy number gain occurs more frequently with variant 3 of EML4-ALK
rearrangement and upon treatment with next-generation ALK-TKIs [2–5]. There is also a correlation
between multiple-line treatment with ALK-TKIs (≥ 2) and higher incidence of multiple mutations
in the ALK gene as well as more frequent activation of bypass-signaling observed at rebiopsies [6].
Occasional cases of phenotypic transformation of ALK-positive NSCLC to neuroendocrine carcinoma
after Lorlatinib or epithelial-mesenchymal transition (EMT) after treatment with Ceritinib have been
reported [5,7]. Similarly, the EMT of ALK-positive NSCLC cell lines acquiring resistance to Crizotinib,
Ceritinib or Brigatinib in vitro has been described [5,8–10]. These observations suggest that these
phenotypic changes of tumor cells may represent additional mechanisms of resistance to ALK-TKIs.
However, type and timing of resistance to ALK-TKIs cannot be foreseen in vivo and whether different
mechanisms may subsequently/simultaneously occur during TKI-treatment in the same patient is still
not clear.

2. Results

The patient, a 38-year old, who never smoked, and was previously healthy, Caucasian male, was
diagnosed with ALK-rearranged NSCLC in stage IV after examining a formalin-fixed paraffin-embedded
(FFPE) biopsy taken from an enlarged cervical lymph node. This biopsy showed metastatic adenocarcinoma
with acinar, trabecular and solid growth pattern that when assessed by immunohistochemistry (IHC)
expressed Cytokeratin 7 (CK7), the thyroid/pulmonary biomarker Thyroid Transcription Factor 1 (TTF1),
and ALK, consistent with rearrangement of the ALK gene (Figure 1).
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structures. The tumor cells expressed the anaplastic lymphoma-kinase (ALK), consistent with ALK-
rearrangement, as well as the adenocarcinoma marker Cytokeratin 7 (CK7) and the pulmonary 
marker Thyroid Transcription Factor 1 (TTF1). Additional immunostainings on deeper serial sections 
showed that the tumor cells expressed the epithelial marker, adhesion molecule E-Cadherin (E-Cad) 
and lacked expression of the mesenchymal marker Vimentin (Vim). In contrast, lymphocytes and 
histiocytes of the lymph node, including those infiltrating the tumor tissue did not express E-Cadherin 
and were positive for Vimentin. (All images: original magnification 100×). 

Figure 1. Histological examination of diagnostic biopsy from NSCLC metastasis to cervical lymph
node. Tissue sections stained by hematoxylin and eosin (H&E) and the indicated immunostainings
showed metastatic adenocarcinoma with tumor cells arranged in acinar, trabecular and solid structures.
The tumor cells expressed the anaplastic lymphoma-kinase (ALK), consistent with ALK-rearrangement,
as well as the adenocarcinoma marker Cytokeratin 7 (CK7) and the pulmonary marker Thyroid
Transcription Factor 1 (TTF1). Additional immunostainings on deeper serial sections showed that
the tumor cells expressed the epithelial marker, adhesion molecule E-Cadherin (E-Cad) and lacked
expression of the mesenchymal marker Vimentin (Vim). In contrast, lymphocytes and histiocytes of
the lymph node, including those infiltrating the tumor tissue did not express E-Cadherin and were
positive for Vimentin. (All images: original magnification 100×).
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Analysis of the tumor tissue by fluorescence in situ hybridization (FISH) displayed EML4-ALK
rearrangement (70% of analyzed tumor cells), which was further confirmed by Archer® anchored
multiplex PCR (AMP™)/next-generation sequencing (NGS) assay performed on RNA isolated from
the biopsy, demonstrating the fusion variant 2 (“long fusion”) between EML4-exon 20 and ALK-exon
20. Targeted NGS of the corresponding genomic DNA revealed no relevant single nucleotide variants
(SNVs), indels or copy number variations (CNVs) across 52 genes analyzed by the utilized panel.

The primary tumor was localized in the upper lobe of the right lung and was accompanied by
multiple lymph nodal and vertebral metastases (Figure 2A). Because of a very poor clinical condition
(PS 3) caused by transverse spinal cord syndrome and vena cava superior syndrome, the patient
initially received salvage radiation against C7, Th3–Th5, Th12-L1 and the mediastinum. The patient
improved quite rapidly after irradiation and initiated first-line treatment with Crizotinib 250 mg b.i.d.
and Denosumab 120 mg s.c. every 4 weeks. After 10 months of good objective response to Crizotinib,
which allowed the patient to partially resume work, the NSCLC progressed with new metastatic spinal
cord compression and liver metastasis (Figure 2B). The first rebiopsy, taken from the new hepatic
metastasis showed the occurrence of the p.C1156Y Crizotinib-resistant ALK-mutation (allele frequency
(AF) = 15%). Because other ALK-TKIs were not available in Denmark at that time, the patient received
second-line Cisplatin/Vinorelbine (Cis/Vin) chemotherapy and spinal cord irradiation against L3–S2.
However, after two cycles of Cis/Vin chemotherapy, the cancer progressed further with multiple, very
small, widespread metastases in the brain, the largest measuring one centimeter (Figure 2B), as well as
a metastatic lesion in the right orbit causing abducens paresis and retinal detachment. After whole
brain irradiation, the patient received third line systemic therapy with the next-generation ALK-TKI
Ceritinib. After eight months with partial response and symptom-relief, the malignancy progressed
again with new metastases to vertebrae, resulting in epidural protrusion, and to the liver and pancreas,
while the patient’s general condition deteriorated to PS 3. As no additional irradiation could be
given the patient started steroids, improving to PS 2. The second rebiopsy was taken from a new
Ceritinib-resistant hepatic metastasis and displayed not only the persistence of the EML4-ALK fusion
with p.C1156Y mutation in the ALK TK-domain (AF = 6%), but also the newly emerged p.D1203N
ALK-mutation (AF = 9%) and p.V600E BRAF-mutation (AF = 12%). Each of the two ALK–mutations is
supposed to be sensitive to the second-generation, highly CNS-penetrant ALK-TKI, Alectinib [2,3,5,11],
while BRAF and MEK inhibitors were unavailable at our institution at the time. Therefore, given also
the wide dissemination in the CNS, the therapy was changed to fourth line Alectinib, which again
allowed the patient to clinically recover from PS 2 to PS 0 and return to work.

Following 3 months of Alectinib treatment a new CT scan revealed a mixed response with regression
of two liver metastases and the appearance of other hepatic and pancreatic lesions (Figure 2C). Moreover,
ophthalmological examination revealed a new choroidal metastasis in the right eye. The third rebiopsy
taken from a progressing hepatic lesion 4 months after Alectinib was started, revealed retained
EML4-ALK fusion without any ALK-mutations, but persistent p.V600E BRAF-mutation (AF = 7%).
The BRAF-mutation, but no ALK-mutations, were also detected in the corresponding circulating-free
DNA (cfDNA) from plasma (AF = 0,23%), further supporting a possible role in Alectinib-resistance.
There were no reports of standard chemotherapy + ALK-TKI combination at that time, hence Alectinib
was provisionally paused and the patient was started on fifth line Pemetrexed 500 mg/m2 IV every three
weeks. Following six cycles of Pemetrexed with an initial partial response of some hepatic metastases,
we observed stable disease in the bones and CNS, but progression of the primary tumor in the right
lung. The latter was assumed to be caused by lack of ALK-inhibition. Thus, re-challenge with Alectinib
was initiated together with Pemetrexed continuation. However, after 2 months of this combination
treatment, creatinine and ALT/AST raised to grade 2–3 according to common terminology criteria for
adverse events (CTCAE, v5.0), suggesting toxicity of the combined regime. Pemetrexed was stopped
and the patient continued Alectinib only. After 3 months of re-challenge with Alectinib the PET/CT scan
showed further occurrence of liver metastases and the emergence of a new 8.6 cm-large retroperitoneal
lesion (Figure 2D). Other tumor components, including metastases in the CNS, were stable and no
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choroidal metastasis recurrence was detected. Alectinib was discontinued and a fourth tumor rebiopsy
taken from the metastatic retroperitoneal conglomerate revealed still the persistence of EML4-ALK
fusion, but no ALK-mutations and disappearance of the BRAF-mutation. A concomitant liquid biopsy
did not show any DNA-mutations either. However, as shown in Figure 3, the retroperitoneal metastasis
was poorly differentiated with solid arrangement of tumor cells not displaying any production of
mucin, though still expressing the ALK fusion-protein. Indeed, we confirmed by NGS analysis of
RNA that the retroperitoneal metastasis had retained the initial EML4-ALK fusion variant. Moreover,
the metastatic cells had almost completely lost the expression of the adenocarcinoma-marker CK7 and
despite maintaining the expression of the pulmonary marker TTF1, they tended to be spindle-shaped,
lacked expression of the epithelial marker E-Cadherin and were strongly positive for the mesenchymal
marker Vimentin (Figure 3).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 12 
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affecting the spinal cord; (C) third line from left to right: CT scans (C1–4) after 3 months of Alectinib 
treatment, exhibiting mixed response including new hepatic (C1,C3) and pancreatic (C2,C4) 
metastases on transversal and frontal planes; (D) last line from left to right: CT-(D1), PET/CT- (D2, 
D3), and upper part of total-body PET-scan (D4) at progression after re-challenge with Alectinib, 
showing multiple new hepatic metastases (D1,D2,D4) and a large retroperitoneal conglomerate of 
metastasized lymph nodes involving the left kidney (D3, D4). 
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Figure 2. Imaging of the advanced (stage IV) ALK-rearranged NSCLC at diagnosis and at relapse
after sequential treatment with Crizotinib, Alectinib, and re-challenge with Alectinib (relevant changes
indicated by arrows). (A) top line from left to right: diagnostic CT (A1,A2) and MR (A3,A4) scans at
baseline showing metastasized mediastinal lymph nodes compressing the vena cava superior (A1),
the primary lung tumor in the right upper lobe (A2), transversal (A3) and sagittal (A4) images of
vertebral metastases with spinal cord affection; (B) second line from left to right: CT (B1,B2) and MR
(B3,B4) scans at progression after 10 months of Crizotinib treatment, showing liver metastasis (B1),
the largest brain metastasis (B2), transversal (B3) and sagittal (B4) images of new vertebral metastases
affecting the spinal cord; (C) third line from left to right: CT scans (C1–4) after 3 months of Alectinib
treatment, exhibiting mixed response including new hepatic (C1,C3) and pancreatic (C2,C4) metastases
on transversal and frontal planes; (D) last line from left to right: CT-(D1), PET/CT- (D2, D3), and upper
part of total-body PET-scan (D4) at progression after re-challenge with Alectinib, showing multiple
new hepatic metastases (D1,D2,D4) and a large retroperitoneal conglomerate of metastasized lymph
nodes involving the left kidney (D3, D4).
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but the patient did not respond to the treatment and passed away 3 weeks later. 
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Figure 3. The 4th rebiopsy from the retroperitoneal NSCLC metastasis at progression after re-challenge
with Alectinib, displaying features of epithelial-mesenchymal transition (EMT). Although many of the
metastatic NSCLC cells had become more spindle-shaped and did not display any production of periodic
acid–Schiff-positive diastase-resistant mucin (PAS+D), they still expressed the ALK fusion-protein
(ALK). Most of the tumor cells had also lost the expression of the adenocarcinoma marker CK7, but
maintained that of TTF1, consistent with their pulmonary origin. Moreover, the metastatic cells
completely lacked the expression of the epithelial marker E-Cadherin (E-Cad) and had acquired that of
the mesenchymal marker Vimentin (Vim), consistent with EMT. (All images: original magnification
100× except Vim 63×).

These findings indicated that the retroperitoneal metastatic tissue (Figure 3), as compared to the
adenocarcinoma tissue examined at baseline (Figure 1), had undergone phenotypical changes related
to the EMT. This was further supported by supplementary IHC analysis revealing that the initial
baseline metastasis in the cervical lymph nodes had preserved E-Cadherin expression and lacked
Vimentin expression (Figure 1). Thus, features of EMT were not already present in the baseline tumor
tissue. Similarly, we did not find phenotypic changes consistent with EMT in the first, second or third
tumor rebiopsy.

Meanwhile, sixth line treatment with the third-generation ALK-TKI, Lorlatinib, was initiated, but
the patient did not respond to the treatment and passed away 3 weeks later.

3. Discussion

ALK-positive NSCLC is a very heterogenous disease which may progress through different
molecular and phenotypic changes, so that despite frequent long-lasting objective responses to
ALK-TKIs, resistance to these drugs inevitably occurs in different forms [1,2]. Progression patterns
may be variable and may also depend on which generation of ALK-TKI has been used. Moreover, the
biology of ALK-rearrangement plays an important role [1,2,5,6]. Despite developing more frequently
TKI-resistant ALK-mutations, patients with EML4-ALK variant 3a/b may achieve longer PFS when
treated with Lorlatinib as compared to patients carrying EML4-ALK variant 1 [4]. On the other hand,
the incidence of ALK resistance mutations appears to increase with each successive generation of
ALK-TKIs [11]. Figure 4 illustrates the longitudinal disease course and systemic treatment of the
patient. In the first rebiopsy under progression on Crizotinib, we observed the emergence of p.C1156Y
ALK-mutation, which alters the conformation of the ALK-binding pocket residues and results in
a marked decrease in hydrogen bond interactions between Crizotinib and ALK fusion-protein. This
mutation is supposed to be sensitive to Ceritinib. Nonetheless, the second rebiopsy, taken from new
progressive liver metastasis after Ceritinib treatment, displayed the persistence of p.C1156Y and
a new p.D1203N ALK-mutation, which is rare and had thus far been reported only in single patients
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relapsing on Ceritinib or Brigatinib, but not Alectinib [5,11]. However, p.D1203N is more common at
relapse on Lorlatinib, almost always as compound mutation in combination with other ALK-mutants,
such as p.I1171X, p.F1174X, p.L1196M, p.E1210K or p.G1269A, rather than on its own as a single
mutation [2,5,11].
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Figure 4. The course of the disease and systemic therapy from baseline at diagnosis to final progression.
The scheme illustrates the molecular findings in the rebiopsies taken from new emerging metastatic
sites and plasma at the time of progression on the indicated treatments. Cis/Vin × 2 = Two cycles of
Cisplatin/Vinorelbine.

Importantly, we identified also a concomitant p.V600E BRAF-mutation at relapse on Ceritinib.
BRAF-mutations have previously been detected in ALK-positive NSCLC patients after Crizotinib-
treatment of [12], but to our knowledge this is the first report on the emergence of a BRAF-mutation
during treatment with ALK-TKIs of second generation. Together, these observations indicate that
BRAF-mutations such as p.V600E may represent a potential ALK-independent mechanism of resistance
to ALK-TKIs, given the downstream placement of BRAF in the ALK-KRAS-MAPK signaling pathway.
We could not exclude that what appeared to be the acquisition of mutated BRAF as a resistance
mechanism in our patient, was a selection of a pre-existing p.V600E BRAF-clone by ALK-TKI treatment.
Regardless of whether the BRAF-mutation represented a mechanism of acquired resistance or resulted
from the selection of intrinsically ALK-TKI-tolerant cells [13,14], it is interesting that the third rebiopsy
from a progressing hepatic metastasis taken 4 months after Alectinib-start retained the EML4-ALK
fusion and the p.V600E BRAF-mutation, while p.C1156Y and p.D1203N ALK-mutations disappeared.
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The fact that p.V600E BRAF mutation was found in two subsequent tissue rebiopsies at progression
on two different ALK-TKIs and in the following plasma cfDNA, supports its role in antagonizing
ALK-inhibition. Unfortunately, neither the selective BRAF-inhibitor Dabrafenib, nor the MEK-inhibitor
Trametinib were available at our institution at that time. Therefore, neither selective inhibition of
the MAPK pathway with the Dabrafenib-Trametinib combination [15] nor combined anti-ALK/BRAF
therapy could be attempted. In this regard, preclinical studies have provided a solid foundation for
polytherapy with ALK-TKI combined with the MEK-TKI, Trametinib [16]. Preliminary results in the
ongoing phase I/II study of Ceritinib + Trametinib (NCT03087448) so far are showing the feasibility of
this combination with acceptable toxicity at reduced doses of both TKIs.

The last rebiopsy after progression on Pemetrexed and Alectinib re-challenge revealed the
maintenance of the EML4-ALK fusion, although no ALK- or BRAF-mutations were detected in this
tissue sample or in the concomitant plasma cfDNA. Considering that the BRAF-mutation was identified
in the previous rebiopsies from hepatic biopsies, we cannot exclude that Pemetrexed caused or
contributed to the disappearance of the BRAF-mutated tumor clone, as we did observe a partial
response of some hepatic lesions to this drug. Alternatively, a form of synthetic lethal phenotype upon
the arrest of Alectinib, leading to excessive MAPK signalling and toxic consequences in tumor cells
co-expressing ALK-fusion and BRAF-mutation, may have occurred. Indeed, such an oncogene-induced
toxic phenotype has been described in preclinical models of lung adenocarcinoma co-expressing
mutations in KRAS and EGFR or KRAS and BRAF [17–19].

The mechanism of resistance to Alectinib at this time and the lack of response to the following
attempted treatment with Lorlatinib may be associated with the observed phenotypical changes
related to the EMT of the metastatic cells. Interestingly, EMT was previously described in a few
patients at progression on Ceritinib [5] and in ALK-positive NSCLC cell lines becoming resistant to
Crizotinib, Ceritinib or Brigatinib after prolonged exposure to these drugs [5,8–10], but to the best of
our knowledge it has not been reported before in connection with Alectinib treatment of patients with
ALK-positive NSCLC.

Secondary mutations in the ALK TK-domain that sterically impede the TKI-binding to the ALK
fusion-protein are a common on-target mechanism of resistance to ALK-TKIs [1,2,5,6,11]. Each ALK-TKI
appears associated with a distinct spectrum of ALK resistance mutations, though the solvent-front
p.G1202R mutation that typically occurs after prolonged treatment with second-generation TKIs
is resistant to all ALK-TKIs of first- and second-generation [2,5,6,11]. The current availability of
several types of next-generation ALK-TKIs allows sequential treatment of patients with advanced
ALK-positive NSCLC, choosing these drugs not only according to their potency and activity against
the occurring secondary ALK-mutations, but also based on CNS-penetrance and possible side effects.
Despite the clinical benefit from this approach, the selective pressure of sequential ALK-TKIs increases
the likelihood of cancer cells developing new resistance mechanisms, such as different compound
ALK- mutations or ALK-independent mechanisms, which almost always are refractory to currently
available ALK TKIs [6,11]. The currently ongoing phase III clinical trial with Lorlatinib against
advanced ALK-rearranged NSCLC will clarify the optimal sequential use of ALK-TKIs and whether
it is possible to adopt Lorlatinib (hitherto, the ALK-TKI with the widest range of activity against
single ALK resistance-mutations) as first line therapy, to avoid or reduce the occurrence of compound
ALK-mutations. Alternatively, a fourth-generation ALK-TKI will be necessary to overcome the
compound ALK-mutants [11].

Yet, a substantial number of NSCLC-patients receiving ALK-TKIs become resistant to these
drugs through ALK-independent mechanisms [2,5,6,11]. The latter are only partially elucidated and
particularly challenging, as they may inevitably cause refractoriness to further ALK inhibition, thereby
requiring alternative forms of treatment to be counteracted. As in other reported cases of advanced
ALK-positive NSCLC [5,6,11], we observed in the longitudinal re-biopsies taken at tumor progression
during treatment the emergence of both ALK-dependent and ALK-independent mechanisms of
ALK-TKI-resistance. Co-existence of the two types of resistance mechanisms can be detected in certain
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metastatic lesions, as indicated by our second re-biopsy at relapse on Ceritinib displaying secondary
ALK-mutations and BRAF-mutation. This suggests the concomitant clonal evolution of different drivers
of TKI-resistance within the same metastatic lesion. Importantly, the BRAF p.V600E mutation that
for the first time we report emerging during patient treatment by second-generation ALK-TKIs, can
potentially activate a bypass signaling downstream ALK that causes refractoriness to ALK-TKIs. Thus,
the occurrence of this BRAF-mutation at progression on ALK-TKIs may represent an indication for
combined targeted therapy with currently available ALK- and BRAF/MEK-inhibitors.

Moreover, we showed for the first time the occurrence of EMT in advanced ALK-positive
NSCLC upon progression on Alectinib. The EMT was not only associated with refractoriness to
Alectinib, but also with total lack of response to the following therapeutic attempt with Lorlatinib,
indicating that potent ALK inhibition was no longer effective in this situation. As described in a few
cases of Ceritinib-resistant ALK-positive NSCLC [5], the EMT is characterized by loss of epithelial
markers, particularly of the cell-adhesion protein E-Cadherin, by the NSCLC cells, which acquire
mesenchymal phenotypical features and become spindle-shaped, overexpress Vimentin, increase
their motility and invasiveness, and ultimately turn into TKI-resistant cells. Several transcription
factors and related genes have been implicated in the induction of EMT by TKI-treatment, however
it is still poorly understood how EMT causes TKI-resistance [13,14]. Indeed, a key event in the
induction of TKI-resistance in the NSCLC cells appears to be the downregulation of E-Cadherin
itself [13,14], as also suggested by recently reported mutations of genes regulating EMT and E-Cadherin
expression in Crizotinib-resistant NSCLC [20]. Furthermore, EMT may cause TKI-resistance at least
in part by transcriptional downregulation of BIM, a pro-apoptotic Bcl-2 family member required for
TKI-induced apoptosis of NSCLC cells [21]. Preclinical studies in NSCLC cell lines have also shown
that TKI-treatment can induce overexpression of the receptor-TK AXL, which contributes to the EMT
of these cells allowing them to survive the treatment and proliferate [9]. Finally, an intricate interplay
between cancer hypoxia and EMT-induction resulting in the activation of insulin-like growth factor 1
receptor (IGF1R) and TKI-resistance has been postulated in NSCLC [14,22]. Notably, EMT was recently
observed in two patient-derived ALK-positive NSCLC cell lines becoming resistant to Lorlatinib [23].
Moreover, concomitance of cells with ALK-mutation L1196M and cells with EMT as independent
mechanisms of Crizotinib-resistance have been described in a patient with ALK-rearranged NSCLC [24].
Additionally, in preclinical experiments with ALK-positive NSCLC cells becoming refractory to
Crizotinib, the occurrence of EMT caused cross-resistance to the ALK-TKIs of new-generation Ceritinib,
Alectinib, and Lorlatinib [24]. Together with our case, these observations support the notion that the
EMT may counteract the effects of all the ALK-TKIs currently used in the clinics and further explain
the lack of response of our patient to Lorlatinib.

Further characterization of ALK-rearranged NSCLC patients participating in clinical trials or
from real-life cohorts will likely provide additional information on the potential ALK-dependent/
-independent mechanisms of resistance to different ALK-TKIs. As suggested by this and previous
reports [2,5,6,11], comprehensive longitudinal monitoring of these patients through sequential tissue
and liquid re-biopsies taken at relapses during treatment is necessary for this purpose. This general
approach will also help decipher the frequency and impact of BRAF-mutations as critical bypass
signaling potentially involved in ALK-TKI resistance. Moreover, it will elucidate the mechanisms by
which EMT causes TKI-resistance.

4. Materials and Methods

4.1. Immunohistochemistry (IHC) and Histochemical Stain

IHC was performed on FFPE 2.5-µm-thick tissue sections using a BenchMark ULTRA automated
slide immunostainer (Ventana Medical Systems, Inc., Roche Diagnostics; Hvidovre, Denmark).
The pre-diluted Ventana’s rabbit mAbs D5F3 against ALK, SP52 against CK7, SP141 against TTF1,
and EP700Y against E-Cadherin as well as the mouse mAb 3B4 against Vimentin (Ventana, Roche
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Diagnostics; Hvidovre, Denmark), were employed according to the manufacturer’s instructions and
staining conditions, including the usage of the corresponding negative control (sections stained with
an unrelated matched rabbit IgG mAb) and the positive control (samples with ALK-rearrangement or
known expression of the specified antigens), as previously described [25,26]. The histochemical stain
for mucin was performed by standard periodic acid–Schiff + diastase digestion (PAS+D) method.

4.2. Fluorescence in situ Hybridization (FISH)

FISH analysis of ALK-rearrangement in tumor cells was performed utilizing the triple color
ZytoLight® SPEC ALK/EML4 TriCheckTM probe (Zytovision GmbH, AH diagnostics A/S, Tilst,
Denmark), according to principles described before [25], with minor modifications. Briefly, 1.5-µm-thick
sections were scanned using a X63 objective and appropriate filter sets in an automated Leica DM5500
B fluorescent microscope (Leica MICROSYSTEMS A/S; Copenhagen, Denmark), using fibroblasts,
leukocytes, and endothelial cells as internal controls and individually assessing 100 tumor cell nuclei
(20 neighboring tumor cell nuclei from five random areas of homogenous distribution of ALK signals)
for ALK (green and orange) and EML4 (blue) signals with the X100 objective. Cut-off for positive
rearrangement was 15%.

4.3. Multiplex PCR/NGS Assay for Gene Fusions

To confirm the EML4-ALK fusion and specify the fusion variant, Archer® anchored multiplex
PCR (AMP™)/NGS assay (FusionPlex® Solid Tumor Kit) was performed on RNA isolated from tissue
biopsies, according to the manufacturer’s instructions (ArcherDX, Inc., Boulder, CO, USA).

4.4. Analysis of Mutations in Tumor-Rebiopsies and Liquid Biopsies

To identify TKI-resistance mechanisms during treatment, the baseline biopsy and four longitudinal
re-biopsies from new consecutive metastatic lesions emerging during the disease evolution were
analyzed histologically and by IHC for ALK-protein expression, FISH and NGS for ALK-rearrangement
and other gene fusions. Moreover, targeted NGS of DNA was performed for hot-spot mutations such
as relevant SNVs, indels and CNVs across 52 genes in the panel, according to the assay’s instructions
(Oncomine Focus Assay; ThermoFisher Scientific, Roskilde, Denmark). For each FFPE biopsy, 10 ng of
genomic DNA, purified by the QIAamp DNA Minikit (QiagenAB, Vedbæk, Denmark) and quantified
by the Qubit® dsDNA HS assay on a Qubit® 2.0 Fluorometer (ThermoFisher Scientific, Roskilde,
Denmark), were used. After preparation of amplicon-based libraries, the DNA was sequenced on the
Ion Torrent™ GeneStudio™ S5 Plus System (ThermoFisher Scientific, Roskilde, Denmark) according to
the manufacturer’s instructions. Additionally, liquid biopsies (cfDNA from plasma) were analyzed for
relevant DNA-mutations by the Oncomine Lung cfDNA NGS-assay according to the manufacturer’s
instructions (ThermoFisher Scientific, Roskilde, Denmark).

4.5. Ethical Aspects

The patient’s family gave informed written consent for the publication of this paper, including
clinical data and images of the deceased patient. The study was conducted in accordance with the
Declaration of Helsinki and the ethical guidelines of the Capital Region of Denmark. The case was
part of a clinical study on ALK-positive NSCLC patients at our institution that was approved by the
local ethical committee of Rigshospitalet, Copenhagen University Hospital and by the Danish Capital
Region’s Committee for Health Research Ethics (project identification code and approval number:
H-15008619; approval date: 23 March 2017).

5. Conclusions

Following the treatment course of this disseminated ALK-rearranged NSCLC by longitudinal
rebiopsy-based assessment, we observed heterogeneous and transitional mechanisms of resistance



Int. J. Mol. Sci. 2020, 21, 2847 10 of 12

to different ALK-TKIs. These included the emergence of secondary ALK-mutations and the p.V600E
BRAF-mutation, which had not previously been associated with resistance to Ceritinib and Alectinib.
In addition, we detected phenotypical changes consistent with EMT following treatment with Alectinib.
EMT of ALK-positive NSCLC related to ALK-TKI treatment remains poorly explored and to our
knowledge it has not been reported before in patients receiving Alectinib, but only in a few patients
progressing on Crizotinib or Ceritinib [5,24]. This resistance heterogeneity suggests a continuously
evolving state of the disease. Sequential use of different generation’s ALK-TKIs and/or combination
therapies may allow prolonged responses (over 3 years in this case) with a satisfactory quality of life.
However, phenotypical EMT-related changes represent a major hurdle for TKI-based therapy and, as in
our case, may explain rapid disease progression and a lack of response to second- and third-generation
ALK-TKIs, despite the preserved ALK-positive status of the tumor. Thus, this case illustrates that
ALK-positive NSCLC is biologically a very unstable disease that changes its genetic makeup over time,
while developing different forms of resistance.
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