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Abstract: Matrix production by nucleus pulposus (NP) cells, the cells residing in the center of the
intervertebral disc, can be stimulated by growth factors. Bone morphogenetic proteins (BMPs) hold
great promise. Although BMP2 and BMP7 have been used most frequently, other BMPs have also
shown potential for NP regeneration. Heterodimers may be more potent than single homodimers,
but it is not known whether combinations of homodimers would perform equally well. In this
study, we compared BMP2, BMP4, BMP6, and BMP7, their combinations and heterodimers, for
regeneration by human NP cells. The BMPs investigated induced variable matrix deposition by
NP cells. BMP4 was the most potent, both in the final neotissue glysosaminoglycan content and
incorporation efficiency. Heterodimers BMP2/6H and BMP2/7H were more potent than their respective
homodimer combinations, but not the BMP4/7H heterodimer. The current results indicate that BMP4
might have a high potential for regeneration of the intervertebral disc. Moreover, the added value
of BMP heterodimers over their respective homodimer BMP combinations depends on the BMP
combination applied.

Keywords: nucleus pulposus; regeneration; bone morphogenetic protein; heterodimer;
proteoglycan; collagen

1. Introduction

Low back pain, a considerable problem in today’s society [1], is associated with degeneration of the
intervertebral disc (IVD) [2,3]. The first signs of IVD degeneration are visible in the nucleus pulposus
(NP) [4], where loss of the glycosaminoglycan (GAG) content leads to the loss of water content impairing
the biomechanical properties of the disc and eventually leading to further degeneration, pain, and
decreased mobility in patients. Current treatments of chronic low back pain, conservative or surgical,
do not address the underlying cause of degeneration. Growth factors are likely candidates to achieve
biologic repair [5]. Among these growth factors are the bone morphogenetic proteins (BMPs) from the
transforming growth factor-β (TGF-β) superfamily, which are commonly known for their involvement
in bone formation. Since their discovery in the 1960s, they have been found to play important roles
throughout the entire body, including formation and maintenance of cartilaginous tissues [6]. Within this
context, the chondrogenic capacity of many BMPs is interesting for regeneration of the NP. BMP2
stimulates growth plate chondrocyte proliferation and hypertrophy to accelerate longitudinal bone
growth [7], but was also shown to be important in postnatal cartilage development and maintenance [8].

Int. J. Mol. Sci. 2020, 21, 2720; doi:10.3390/ijms21082720 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-8584-8646
https://orcid.org/0000-0002-1585-3052
http://www.mdpi.com/1422-0067/21/8/2720?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21082720
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 2720 2 of 18

BMP4 can induce and accelerate chondrogenic differentiation [9,10], while its co-expression with
BMP2 is essential for osteogenesis [11]. BMP6 accelerates hypertrophic differentiation of chick
chondrocytes [12,13]. BMP7 is a cartilage repair factor enhancing anabolic and reducing catabolic
responses in cartilage and the IVD [14]. Noteworthy, BMP heterodimers were suggested to be
more potent than homodimers, not only in bone formation [15–19], but also in NP regeneration [20].
However, it is not clear whether these effects require a heterodimeric conformation, or can be achieved
by costimulation by combinations of the separate homodimers, as this was only once taken as a
comparator, in ectopic bone formation [15].

For NP regeneration, mainly BMP2 and BMP7 have been investigated [21,22], most likely because
they are clinically available [23]. In rabbit models of induced IVD degeneration, injection of BMP7
into the epidural space or the NPs relocated to the epidural space was shown to be safe [24], and
dosages of 2 µg [25] or 100 µg [26] BMP7 per disc exerted regenerative effects. However, in a
spontaneous degeneration model in beagle dogs, injection of dosages up to 250 µg per disc did not
induce regeneration, but resulted in extensive extradiscal bone formation [27] indicating that human
recombinant BMP7 was biologically active.

One reason why BMPs may fail to induce NP regeneration may reside in the limited number
and/or capacity of degenerated NP cells to adequately respond to growth factor stimulation. NP cell
collection from non-extruded discs for isolation and expansion may induce (further) disc degeneration,
as nucleotomy is a well-known method of inducing degeneration [28] and hence is not considered a
feasible clinical approach. To this end, mesenchymal stromal cells (MSCs) are being clinically employed
for NP regeneration. The regenerative effects of MSCs are thought to be mediated by trophic effects
and/or their differentiation toward NP cells [29–33]. To remedy the low amount of cells present, a
combination of BMPs and MSCs could further augment IVD regeneration. In this scenario, BMPs are
expected to both stimulate the resident NPs to proliferate and produce the matrix and facilitate MSCs
to enter the chondrogenic lineage [34].

In the current study, we compared different BMP homodimers, heterodimers, and their respective
homodimer combinations for their potency of inducing GAG formation by degenerated human NP cells
in vitro. Furthermore, in a pilot experiment, we explored the effect of the two best performing BMPs,
i.e., BMP4 and BMP4/7H, in co-cultures of NP cells and MSCs as the first step towards understanding
how clinical applications of BMPs alone or in combination with MSC transplantation may augment
NP regeneration.

2. Results

2.1. The Effects of BMPs on Degenerated Human NP Cells

2.1.1. GAG Deposition

Degenerated human NP cells were cultured in high-density 2D cultures on type II collagen-coated
transwell filters. In the preliminary experiment, the requirement of a growth factor for NP cell-mediated
tissue formation was established by culturing in the presence or absence of TGF-β1 and TGF-β2 (see the
supplementary data). The regenerative effects of BMP homodimers and heterodimers supplemented in
equal concentration were compared by biochemical analysis of the GAG and DNA content (Figure 1).
The cells cultured in the presence of BMP4 produced the highest amounts of GAGs, significant
compared to BMP2 and BMP6 (p ≤ 0.001), but not BMP7. BMP2 induced the lowest amounts of GAG,
GAG/DNA, and the total GAG content, defined as the GAG content of the construct plus the GAG
released into the medium (p ≤ 0.005). Compared to the 0.4 nM TGF-β1 control, the cells cultured
with BMP4 produced more GAG and GAG/DNA and had higher incorporation efficiency (p < 0.001).
The cells cultured in the presence of BMP2 contained lower amounts of GAGs, DNA, and the total
GAG than the cells with 0.4 nM TGF-β1 (p ≤ 0.01). Without a growth factor, a negligible amount of the
matrix was produced (Figure S1).
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and heterodimers (H)) and compared to transforming growth factor (TGF)-β1 controls (4 and 0.4 nM, 
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Figure 1. Glycosaminoglycan (GAG) production by human degenerated nucleus pulposus (NP)
cells from 4 donors cultured on filters coated with type II collagen and treated with different bone
morphogenetic proteins (BMPs, 4 nM total concentration, also with combinations of homodimers
and heterodimers (H)) and compared to transforming growth factor (TGF)-β1 controls (4 and 0.4 nM,
equal to 100 and 10 ng/mL). GAG and DNA content, GAG/DNA are displayed relative to 0.4 nM
TGF-β1-treated NP cells, which were set at 1 (indicated by the dashed line). All the data are n = 12
(3 separate repetitions per donor per condition). (A) GAG content was highest in differentiation cultures
with BMP4 and BMP2/6H and lowest for 4 nM TGF-β1 and BMP2. (B) DNA content was highest when
cells were cultured with BMP2/6H, BMP4, BMP2/7H, and BMP7. (C) The amount of GAG corrected for
DNA was highest in BMP4/7H, followed by BMP4+7, BMP6, and BMP4. (D) Total GAG production,
including the GAGs released into the medium and contained in the neotissue, was highest in BMP4,
BMP2/7H, and BMP4+7. (E) Incorporation efficiency was highest in the cells cultured with BMP4/7H.
(F) Safranin O/Fast Green staining on histological sections of the NP cells cultured on transwell filters
reveals that GAGs were deposited in the presence of all BMPs, although the staining was less intense
for BMP2, BMP6, or BMP7. Cells in the presence of controls with 0.4 and especially 4 nM TGF-β1
produced hypercellular tissues with limited extracellular matrix (ECM). Representative images for all
donors are shown. Significant differences are indicated as follows: * p ≤ 0.001, + p ≤ 0.005, # p ≤ 0.01,
ˆ p ≤ 0.025, $ p ≤ 0.05.

Heterodimers BMP2/6H, BMP2/7H, and BMP4/7H at 4 nM were compared to their respective
homodimer combinations cultured at 2 nM each to achieve a final concentration of 4 nM in order to
determine whether heterodimers have a differential effect (Figure 1). Heterodimer BMP2/6H performed
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better in inducing GAG production (p = 0.002) than BMP2+6, but the GAG/DNA content did not
differ between BMP2/6H and BMP2+6. The BMP2/7H treatment resulted in significantly higher GAG
production and DNA content compared to BMP2+7 (p < 0.001). However, there were no differences
at the GAG/DNA level. No differences were found between BMP4/7 H and BMP4+7 in GAG, DNA,
GAG/DNA, or in the incorporation efficiency. Although heterodimers BMP2/6H and BMP2/7H induced
higher GAG and DNA content and the total GAG than their homodimer combinations, GAG/DNA
levels were not different. Any increase in matrix deposition thus seemed to have been caused by a
higher cell number.

Complementary to the biochemical analysis, qualitative assessment of the deposited matrix was
conducted. BMP treatment induced deposition of GAGs by the NP cells cultured on transwell filters, as
indicated by positive Safranin O staining (Figure 1F). Overall, the proteoglycan-containing extracellular
matrix was visible in the presence of any BMP as well as 0.4 nM TGF-β1, but the cells cultured in the
presence of 4 nM TGF-β1 were packed together with very little extracellular matrix between them.
The Safranin O-stained matrix cultured with BMP4, BMP2+6, BMP4+7, and heterodimers BMP2/6H,
BMP2/7H, and BMP4/7H seemed to have a high intensity, whereas the matrix of the cells cultured with
BMP2, BMP6, BMP7, BMP2+7, and 0.4 nM TGF-β1 stained less intense.

2.1.2. Collagen Production and Deposition

In the same cultures, type II collagen production was also analyzed. Procollagen II (PIICP) as a
measure of type II collagen production was higher in the NP cells treated with BMP4, BMP6, BMP7,
and BMP2+7 than in the ones treated with BMP2/6H (p ≤ 0.037, Figure 2A). Collagen production by
NP cells induced by BMP7 was also higher than the one induced by BMP2 and BMP4+7 (p ≤ 0.015),
but no other differences were noted.

Type II collagen was also visualized with immunohistochemistry, mostly visible throughout the
neotissue (Figure 2B), although only patches of positive staining were seen occasionally in the presence
of 4 nM TGF-β1. There seemed to be no difference in type II collagen staining patterns between
heterodimer BMP2/7H and combined homodimers BMP2+7 or between BMP4/7 H and BMP4+7, in
line with the PIICP production. The type II collagen staining appeared more patchy with BMP2/6H
compared with BMP2+6.

The presence of type I collagen in all the neotissue indicates that matrix formation was not
exclusively chondrogenic (Figure 2C). Type I collagen was diffusely present throughout all the cultured
neotissues, although the intensity appeared highest in the presence of BMP2+6 and lowest with
BMP2/7H. Notably, less type I collagen seemed to be deposited in BMP2/7H compared to BMP2+7.
BMP4/7H-treated constructs stained more intensely compared with BMP4+7-treated ones. In the
presence of 4 nM TGF-β1, neotissue was primarily positive for type I collagen.

To check for possible hypertrophic differentiation, type X collagen immunohistochemistry was
performed (Figure 2D). All the tissues were negative for type X collagen, while the vertebral growth
plate of human fetal IVD tissue stained positive.
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relative to 0.4 nM TGF-β1-treated NP cells, which were set at 1 (indicated by the dashed line). The 
data are n = 12 (3 separate repetitions per donor per condition). Procollagen II production in week 2 
was higher by the NP cells cultured with BMP7 than with BMP2, BMP4+7, and BMP2/6H. The cells 
cultured with BMP4, BMP6, and BMP4+7 also produced more type II procollagen than the cells 
cultured with BMP2/6H. Significant differences are indicated as follows: * p ≤ 0.001, + p ≤ 0.005, # p ≤ 
0.01, ^ p ≤ 0.025, $ p ≤ 0.05. (B) Immunohistochemistry shows that type II collagen was deposited in all 
the neotissues, but only localized staining was seen occasionally in the presence of 4 nM TGF-β1. The 
negative control is a cultured construct, the positive control is an osteoarthritic cartilage. (C) All the 
constructs cultured with BMPs and TGF-β1 were positive for type I collagen visualized by 
immunohistochemistry. The intensity was higher for BMP2+6 and very faint for BMP2/7H. Both 
negative and positive controls are cultured constructs. (D) Type X collagen was not detectable in any 
of the neotissues while the growth plate was immunopositive. Both negative and positive controls 
are fetal vertebra. 

2.1.3. Dose Dependency of BMP4 and BMP7 Stimulation 

BMP4, BMP4+7, and BMP4/7H appeared to be particularly efficient in inducing GAG 
production by NP cells. To assess the effects of BMP4 in more detail and compare this to the more 
frequently used BMP7, dose dependency was determined with NP cells from 4 donors cultured on 

Figure 2. Human degenerated nucleus pulposus (NP) cells were cultured on type II collagen-coated
transwell inserts in the presence of 4 nM bone morphogenetic proteins (BMPs, alone, in combination,
or heterodimers (H)) or 0.4 or 4 nM transforming growth factor (TGF)-β1. (A) Procollagen type II
production (PIICP), measured by enzyme-linked immunosorbent assay (ELISA), is displayed relative to
0.4 nM TGF-β1-treated NP cells, which were set at 1 (indicated by the dashed line). The data are n = 12
(3 separate repetitions per donor per condition). Procollagen II production in week 2 was higher by the
NP cells cultured with BMP7 than with BMP2, BMP4+7, and BMP2/6H. The cells cultured with BMP4,
BMP6, and BMP4+7 also produced more type II procollagen than the cells cultured with BMP2/6H.
Significant differences are indicated as follows: * p ≤ 0.001, + p ≤ 0.005, # p ≤ 0.01, ˆ p ≤ 0.025, $ p ≤ 0.05.
(B) Immunohistochemistry shows that type II collagen was deposited in all the neotissues, but only
localized staining was seen occasionally in the presence of 4 nM TGF-β1. The negative control is a
cultured construct, the positive control is an osteoarthritic cartilage. (C) All the constructs cultured with
BMPs and TGF-β1 were positive for type I collagen visualized by immunohistochemistry. The intensity
was higher for BMP2+6 and very faint for BMP2/7H. Both negative and positive controls are cultured
constructs. (D) Type X collagen was not detectable in any of the neotissues while the growth plate was
immunopositive. Both negative and positive controls are fetal vertebra.

2.1.3. Dose Dependency of BMP4 and BMP7 Stimulation

BMP4, BMP4+7, and BMP4/7H appeared to be particularly efficient in inducing GAG production
by NP cells. To assess the effects of BMP4 in more detail and compare this to the more frequently used
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BMP7, dose dependency was determined with NP cells from 4 donors cultured on transwell inserts at
concentrations between 0.04 and 4 nM (Figure 3). Any concentration of BMP4 induced more GAG
production than the BMP-free control (p < 0.001), while 0.4, 2, and 4 nM BMP4 induced more GAG
production than 0.04 nM BMP4 (p < 0.001). BMP7 induced more GAG production at 4 nM than the
control, 0.04, and 0.4 nM (p ≤ 0.001) and 2 nM BMP7 (p = 0.009). The increased GAG production by
BMP4 could partially be attributed to the increase in the DNA content (Figure 3B). Normalized per
DNA, GAG deposition was highest for 0.4 nM BMP4 compared to the control, 0.04, and 4 nM BMP4
(p ≤ 0.005). In the presence of 4 nM BMP7, GAG/DNA was higher compared to all other concentrations
(p ≤ 0.009). No differences in the total GAG production were measured between the BMPs or the
concentrations used, but the variability was high. GAG incorporation was most efficient for 2 nM
and 4 nM BMP4 compared to the control, 0.04, and 0.4 nM BMP4 (p ≤ 0.028). The highest GAG
incorporation efficiency for BMP7-treated cells was measured in the presence of 4 nM BMP7 (p ≤ 0.003).
Altogether, BMP4 was demonstrated to have an optimal effect on matrix production by the NP cells
already around 0.4 to 2 nM (equivalent to 5.6 and 28 ng/mL), whereas BMP7 did not appear to reach its
maximum effect until at 4 nM (equivalent to 63.2 ng/mL).
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2.2. Pilot Study: The Effects of BMPs on Co-Cultures of NP Cells and MSCs 

Figure 3. Dose response of human degenerated nucleus pulposus (NP) cells of 4 donors (n = 12;
3 separate repetitions per donor per condition) to different concentrations of bone morphogenetic
proteins (BMP)4 and BMP7 was measured at the biochemical level. (A) Glycosaminoglycan (GAG)
production increased with increasing BMP4 or BMP7 concentration. (B) Higher DNA content was
measured with increasing BMP4 and BMP7 concentration. The effect of BMP7 was less pronounced than
of BMP4. (C) GAG/DNA was highest for 0.4 nM BMP4. In the presence of 4 nM BMP7, GAG/DNA was
higher than with the control or lower concentrations of BMP7. (D) No differences were measured for the
total amount of GAG, including the GAGs released into the medium. (E) Incorporation efficiency was
highest for 2 nM BMP4 and 4 nM BMP4. Higher incorporation efficiency was measured in the presence
of 4 nM BMP7 compared to the control and lower concentrations of BMP7. Significant differences are
given as follows: * p ≤ 0.001, + p ≤ 0.005, # p ≤ 0.01, ˆ p ≤ 0.025, $ p ≤ 0.05.
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2.2. Pilot Study: The Effects of BMPs on Co-Cultures of NP Cells and MSCs

2.2.1. MSC Multipotency

Multipotency assays for adipogenic and osteogenic differentiation of MSCs were performed in a
12-wells plate with an adipogenic or an osteogenic medium, and chondrogenic differentiation was
achieved in pellet cultures with a chondrogenic medium. Adipogenic differentiation was confirmed by
Oil Red O staining, positive staining of alkaline phosphatase (ALP) with fuchsine indicated osteogenic
differentiation, and chondrogenesis was shown by deposition of GAGs in the extracellular matrix as
indicated by positive Safranin O staining (Figure 4).
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Figure 4. Multipotency assays were performed to ascertain the tri-potency of the human mesenchymal
stromal cells (MSCs) used in this study. Red staining by Oil Red O indicated lipid formation after
adipogenic differentiation of MSCs. Alkaline phosphatase was stained in pink by fuchsine, indicating
that osteogenic differentiation occurred. Chondrogenesis was confirmed by Safranin O staining
in pellets.

2.2.2. BMPs with NP Cells Co-Cultured with MSCs

The MSC donor used in this pilot study did not enhance tissue formation by NP cells in the
transwell culture system employed in the aforementioned studies, but actually seemed to inhibit GAG
production by NP cells (data not shown). Therefore, NP cells were co-cultured with MSCs in a 50:50
ratio (often employed in literature [29–33,35]) in pellets in a differentiation medium only and in a
differentiation medium supplemented with 0.4 nM TGF-β1 or BMPs. The BMP concentration was
chosen based on the results of the dose dependency study depicted in Figure 3.

Co-culture of NP cells and MSCs in a 50:50 ratio in the presence of growth factors resulted in a
significantly higher matrix deposition compared to the differentiation medium to which no additional
growth factors were added. The GAG content was highest in the pellets cultured with BMP4 compared
to the pellets cultred with BMP7, BMP4+7, and the differentiation medium with no added growth
factors (p < 0.001, Figure 5A). The DNA content was higher for the pellets cultured with TGF-β1
compared to the pellets cultured with BMP7 and BMP4+7 (p ≤ 0.018, Figure 5B). GAG corrected for
DNA was higher in the presence of all the growth factors compared to the differentiation medium
(p < 0.001) and highest for BMP4 compared to TGF-β1, BMP7, BMP4/7H, and the differentiation
medium (p ≤ 0.024, Figure 5C). Higher GAG/DNA was also measured in the pellets cultured with
TGF-β1, BMP4+7, and BMP4/7H compared to the pellets cultured with BMP7 (p < 0.001). The total
GAG production was higher for TGF-β1, BMP4, BMP4+7, and BMP4/7H compared to BMP7 and
the differentiation medium (p < 0.001), and highest for TGF-β1 compared to BMP4, BMP7, BMP4+7,
BMP4/7H, and the differentiation medium (p ≤ 0.033, Figure 5D). GAG incorporation efficiency was
highest for BMP4 compared to TGF-β1, BMP7, and BMP4+7 (p ≤ 0.012). GAG, DNA, GAG/DNA, and
the total GAG were higher for heterodimer BMP4/7H compared to the combination of homodimers
(Figure 5E).

In TGF-β1, BMP4, or BMP7, the combination of homodimers, and the heterodimer, the co-cultured
pellets showed positive staining for various matrix components in varying intensities, such as
proteoglycans, indicated by Safranin O staining, and type II and type I collagen, indicated by
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immunohistochemistry (Figure 5F). The most intense Safranin O staining was observed in the pellets
cultured with BMP4 followed by the combination of homodimers BMP4 and BMP7, while the most
intense type II collagen staining was seen in the presence of BMP4 and heterodimer BMP4/7H. In the
presence of BMP4+7, the pellets produced only limited type II collagen. The pellets cultured with
TGF-β1 showed the most intense type I collagen staining, with only limited Safranin O and type II
collagen staining.
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the control (differentiation culture medium without BMPs or TGF-β1). NP cells from 3 donors were
co-cultured with MSCs from a single donor. All the data are n = 12 (4 separate repetitions per NP
cell donor per condition). (A) Glycosaminoglycan (GAG) content was highest for BMP4, TGF-β1, and
BMP4/7H. (B) DNA content was higher for the pellets cultured with TGF-β1 compared to BMP7 and
BMP4+7. (C) GAG corrected for DNA was higher for all the growth factors compared to the control.
(D) The total GAG production, determined as the GAGs in the tissue as well as released into the
medium, was higher for TGF-β1, BMP4, BMP4+7, and BMP4/7H compared to BMP7 and the control.
(E) Incorporation efficiency calculated as the percentage of the GAG incorporated into the tissue of the
total GAG, was highest for BMP4. Significant differences are given as follows: * p ≤ 0.001, + p ≤ 0.005,
# p ≤ 0.01, ˆ p ≤ 0.025, $ p ≤ 0.05. (F) Safranin O staining was present in all the growth factor-treated
MSC+NP pellets, but not in controls. The most intense staining was seen in the pellets cultured with
BMP4. Type II collagen immunopositivity was present in all the pellets except for controls. The most
intense staining was seen in BMP4- and BMP4/7H-treated pellets. The most intense type I collagen
staining was visible in the pellets cultured with TGF-β1; it was also present when cultured with the
various BMPs. Only control pellets were negative for type I collagen.

3. Discussion

In the current study, we have shown that BMPs, heterodimers, and their homodimer combinations
induced proteoglycan formation and deposition, and deposition of type I and type II collagen by
degenerated human NP cells. In particular, the NP cells cultured with equal concentrations of BMP4,
BMP4+7, BMP6, and heterodimers BMP2/7H and BMP4/7H showed more extensive matrix deposition
by NP cells compared to the NP cells cultured with BMP2 and its combinations, BMP7, or TGF-β1.
The differences in matrix deposition could partly be attributed to an increase in the cell number.
Furthermore, GAG incorporation was most efficient for the NP cell cultures treated with BMP4+7,
BMP2/7H, and BMP4/7H. Altogether, these findings indicate that heterodimers of BMPs can display
enhanced regenerative effects compared to their respective combinations of homodimers, but the
effects were frequently not different from their most potent homodimers alone or the combination of
the respective homodimers.

Among the different BMP homodimers tested in the present study, BMP4 outperformed the other
BMPs. Although BMP6 also induced high GAG production, it was significantly lower than when
induced by BMP4, especially when looking at the total production over time. Furthermore, when the
commonly used BMP7 was compared to BMP4 in different concentrations, BMP4 induced significantly
more matrix formation by NP cells at much lower concentrations. In co-cultures of NP cells and MSCs
of one donor, most regeneration was accomplished by the addition of BMP4 rather than a heterodimer.
The present study shows that of the BMPs tested here, BMP4 may be the most suitable candidate
for NP regeneration, although BMP2 and BMP7 thus far have been the usual candidates employed
in regenerative treatment strategies of the degenerated disc [21,22,24–27,36–38]. In line with these
findings, induction of chondrogenesis in MSCs has been shown to be more efficient with BMP4 than
with BMP7, and these cells produced a better proteoglycan-rich matrix in vivo [39]. Our results seem
to contrast with a previous study in which bovine NP cells in the monolayer were transduced with
vectors for various BMPs (BMP2, -3, -4, -5, -7, -8, -10, -11, -12, -13, -14, and -15 and SOX9) [40]. Here,
BMP2 and -7 were the most effective in inducing GAG production, followed by BMP4. BMP4 and -14
induced the highest type II collagen content. However, the physiology of healthy bovine NP cells does
not necessarily resemble human NP cells from degenerated discs [41]. It also remains to be determined
whether concentrations of the various BMPs produced by the transfected bovine NP cells were equal
and hence can provide solid evidence on the differences in biologic potency of the BMPs studied.
The difference in effects between the BMPs found here may be explained by the fact that they operate
via different pathways, as has been shown for BMP2 and BMP7 in human NP cells [38] and BMP4 and
BMP7 in human MSCs [42]. Signaling of various BMPs in development is also different across different
joints in mice at birth [11]. BMP4 seemed to exert its effects partially by enhancing the cell content, but
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also by enhancing synthetic activity of the NP cells. Altogether, these findings indicate that BMP4 may
be a better candidate for future NP regenerative strategies.

Notably, while BMP4/7H compared to homodimer combination BMP4+7 did not show stronger
induction of extracellular matrix production on degenerated NP cells in a monoculture, it did exhibit
an additive anabolic and proliferative effect on the NP cells co-cultured with MSCs in a pilot study, as
shown previously for bone regeneration [15]. This difference might be attributed to cell type-specific
signaling, although the mechanism behind possible enhanced potency of heterodimers is not clear.
The potency of heterodimers was demonstrated in bone formation in Chinese hamster ovary (CHO) cells,
rats, mini-pigs, and goats [16–18], human embryonic stem cell differentiation [43], and murine blood
plasma [44], although here the combination of separate homodimers was not included. In cartilaginous
tissues, the effects of heterodimers have been studied to a limited extent only [20,45], also omitting the
comparison to (a combination of) homodimers. How heterodimers may exert differential effects over
(combined) homodimers is not completely clear. Heterodimers were shown to have different receptor
binding properties than homodimers, and thereby enhance SMAD signaling more than the homodimer
receptor binding [46,47], also compared to combined homodimers [48], and might have reduced
affinity for antagonists compared to homodimers [48,49]. The stability of the BMP-to-receptor-binding
also seems to be higher for heterodimers compared to homodimers, which may provide another
explanation [46]. Moreover, in Drosophila, enhanced receptor binding was found to give differential
effects that could not be explained by altered downstream signaling alone [50]. As such, the present
study provides clear evidence that heterodimers can be more potent than the respective homodimer
combinations, both in a culture with NP cells only and in co-cultures of NP cells with MSCs, although
this was not the case for all combinations.

TGF-β is frequently used in cultures of NP cells, because without growth factor stimulation, they
produce little matrix as has been shown previously [51,52]. It does, however, also have unwanted
effects, such as increasing expression of type I collagen and MMP13 [53]. Interestingly, differentiation
of MSCs is enhanced by TGF-β [54], but gene expression patterns for NP-specific matrix components in
human cervical and lumbar NP cells were more NP-like with BMP2 than with TGF-β [52]. This might
account for the high amounts of GAGs produced in the co-cultures in the presence of TGF-β in
the current study and also for the fact that in NP cells, BMPs were more efficient in inducing GAG
production. The matrix produced in the presence of TGF-β appeared also of lower quality than the
matrix produced in the presence of BMP4 as indicated by the lower incorporation efficiency and the
more intense type I collagen staining.

MSCs are currently being used to prevent NP degeneration or enhance NP regeneration
in vitro [29–33,55] and in animal models [31,56,57] and have been shown to be safe in the clinical trials
reported [58,59] and ongoing (for example, NCT01290367, NCT01860417, NCT02338271). Co-cultures
of MSCs and NP cells have been reported to enhance matrix production by (degenerated) NP
cells [54,60,61]. Although differentiation of MSCs toward an NP-like phenotype has been shown [60],
enhanced matrix production is thought to be due to the trophic effects MSCs have on other cells [62,63].
In the current study, when growth factors, especially BMP4, were added to the culture medium of
co-cultures, matrix production seemed to be enhanced. BMPs are expensive products and limited in
use due to short half-lives [64], MSCs could be employed as carriers for BMPs in addition to their
proteoglycan production. Possibly, BMP production by transfected MSCs can induce regeneration by
resident NP cells and implantation of these genetically modified MSCs might be a very interesting
treatment strategy [65–71].

In conclusion, although BMP2 and BMP7 have been clinically approved, they are not the most
potent inducers of regeneration of degenerated human nucleus pulposus cells. Instead, BMP4 emerges
from this study as a potent inducer of regeneration by NP cells. It remains to be determined if this
also applies to the NP cells combined with MSCs. Heterodimers were found in some cases to be more
potent than the combination of homodimers, which showed a cell- or culture-system dependency, and
hence heterodimers should always be compared to a combination of the respective homodimers.
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4. Materials and Methods

4.1. Cultures

4.1.1. Cell Isolation

Intact lumbar IVDs of 11 donors (age 47 to 68, mean age 53) were obtained as part of the standard
postmortem procedure as approved by the medical ethics committee of the University Medical Center
Utrecht (METC No. 12-364). The vertebrae were removed along the endplates and the tissue was
graded for degeneration according to the Thompson classification [72]. Only Thompson grade III IVDs
were used in this study. NP tissue was conservatively separated from annulus fibrosus tissue, and cells
were isolated using 1 h incubation with 14 U/mL Pronase (Roche, Basel, Switzerland) and 110 U/mL
deoxyribonuclease (DNAse) II (Sigma, St. Louis, MO, USA), followed by overnight incubation
with 13.7 U/mL collagenase type 2 (Worthington, Lakewood, NJ, USA) and 110 U/mL DNAse, all
diluted in a Dulbecco’s modified Eagle’s medium (DMEM, low-glucose, pyruvate, L-glutamine,
31885, Gibco, Carlsbad, CA, USA). NP cells were then plated and expanded with DMEM + 10%
heat-inactivated fetal bovine serum (FBS, HyClone, Logan, UT, USA) + 200 U/mL penicillin, 200 µg/mL
streptomycin, 50 mg/L amphotericin-B, and 50 mg/L gentamycin (Lonza, Basel, Switzerland) and 10
ng/mL recombinant human basic fibroblast growth factor (bFGF, with BSA as the carrier, R&D Systems,
Minneapolis, MA, USA) for 2 passages before use in regeneration cultures. MSCs were isolated from
bone marrow of a 69-year old female undergoing arthroplasty (METC number 08-001) by centrifugation
on Ficoll-Paque PLUS (GE Healthcare, Little Chalfont, UK) and expanded in alpha-minimum essential
medium (α-MEM, Gibco) + 10% FBS + 1% ascorbic acid-2-phosphate (ASAP, Sigma) + 100 U/mL
penicillin + 100 µg/mL streptomycin (pen/strep, Gibco) + 1 ng/mL bFGF. After three days, the MSC
cultures were washed to remove non-adherent cells.

4.1.2. BMPs in NP Differentiation Culture

For differentiation, NP cells of 4 donors were seeded in high density on 0.12 cm2 type
II collagen-coated polycarbonate film (PCF) 0.4 µm transwell filters (Merck Millipore, Billerica,
MA, USA) at passage 2 at 1*106 cells/cm2 with a differentiation culture medium (DMEM + 2%
insulin-transferrin-selenium-X (ITS-X, Gibco) + 0.4 nM ASAP + 2% human serum albumin (Sanquin,
Amsterdam, the Netherlands) + pen/strep. BMP2, BMP4, BMP6, BMP7, heterodimers BMP2/6H,
BMP2/7H, and BMP4/7H (all with BSA as the carrier, R&D Systems) were added to the culture medium
at 4 nM, and combinations of BMP2+6, BMP2+7, and BMP4+7 homodimers were added at 2 nM per
homodimer. As the positive control, 0.4 and 4 nM TGF-β1 (10 and 100 ng/mL, respectively, R&D
Systems) were included based on the fact that TGF-β1 and TGF-β2 retrieved similar anabolic effects
on human NP cells in the same culture setup (Figure S1). Based on the matrix production in the
comparison between the different BMP homodimers tested in the present study, BMP4 and BMP7 were
also applied to 4 donors at the concentration of 0.04, 0.4, 2, and 4 nM. Cultures were performed for
28 days in a humidified incubator at 37 ◦C and 5% CO2. The medium was changed 3 times per week
and stored at −80 ◦C until further analysis. The culture medium was collected during the entire culture
period and stored at −80 ◦C for GAG and PIICP analysis.

4.1.3. MSC Multipotency Assays

Multipotency of isolated MSCs was assessed by their capacity to differentiate towards an
adipogenic, osteogenic, and chondrogenic lineage [73]. For adipogenic and osteogenic differentiation,
the cells were plated in 12-well plates at 6000 cells/cm2 and grown until confluency. Then, an adipogenic
medium (α-MEM + 10% heat-inactivated FBS + pen/strep + 1µM dexamethasone (Sigma, St. Louis, MO,
USA) + 0.5 mM IBMX (3-isobutyl-1-methylxanthine, Sigma) + 0.2 mM indomethacin (Sigma) + 1.72 µM
insulin (Sigma)) or an osteogenic medium (α-MEM + 10% FBS + 0.2 nM ASAP + pen/strep + 10 mM
β-glycerophosphate (Sigma) + 10 nM dexamethasone (Sigma)) was added to the cultures. 250,000 cells
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were pelleted and cultured with a chondrogenic medium (DMEM + 0.2 nM ASAP + 1% ITS-Premix
(Fisher Scientific, Waltham, MA, USA) + pen/strep + 0.1 µM dexamethasone + 0.4 nM TGF-β1, with BSA
as the carrier, R&D Systems). After 21 days, Oil Red O staining was performed to assess adipogenesis.
After 7 days, alkaline phosphatase (ALP) produced by the osteogenically differentiated MSCs was
visualized with fuchsinw (Fuchsin + kit, K0625, DAKO, Glostrup, Denmark). Chondrogenically
differentiated pellets were fixed with 4% buffered formalin, embedded in paraffin, and Safranin O/Fast
Green/hematoxylin staining was performed as described below.

4.1.4. MSC and NP Cell Co-Culture

As MSCs did not thrive in the transwell culture system, co-cultures were performed in a pellet
culture. Since no differences were found between NP cell ratios (data not shown), subsequent co-culture
experiments with BMPs were done with the NP:MSC cell pellets with a ratio of 50:50, which are also
frequently used in literature [29–33,35]. Pellets of a single MSC donor (at passage 4) with 4 NP cell
donors were formed by centrifugation of U-bottom 96-well plates containing cell suspensions in a
differentiation culture medium at 1750 rpm (616× g) for 2 min. The medium was changed every 3 days.
Pellets were formed with MSCs and NP cells (50:50) and cultured in the presence of 0.4 nM BMP4,
BMP7, BMP4+7 (0.2 nM each), BMP4/7H, or TGF-β1.

4.2. Analyses

4.2.1. Biochemistry: Tissue GAG and DNA Content

From 3 to 5 cultured constructs or pellets per donor and treatment group were digested in a
digestion buffer (250 µg/mL papain and 1.57 mg/mL L-cysteine (Sigma)). A PicoGreen assay (Life
Technologies, Carlsbad, CA, USA) was used to determine the DNA content against a λ-DNA standard
curve. Fluorescence was measured in a POLARstar Optima fluorescence microplate reader (Isogen
Life Science, Utrecht, The Netherlands) at 485 nm excitation and 530 nm emission. Glycosaminoglycan
(GAG) content of the digested samples or the medium was measured with a 1,9-dimethylmethylene
blue (DMMB, Sigma) assay and quantified against a chondroitin-6-sulfate standard curve. The optical
density (OD) was determined at 525 nm and reference wavelength 595 nm with a VersaMax microplate
reader and the SoftMax Pro software (Molecular Devices, San Jose, CA, USA).

4.2.2. Procollagen II ELISA

The carboxy-terminal propeptide of the type II collagen (PIICP) content in the culture medium
is directly related to type II collagen production during the culture period [74]. We have previously
shown that most PIICP is produced in week 2 and is correlated to the total amount formed during the
culture period [75]. The PIICP was measured on 3 medium samples per donor and treatment group
using an enzyme-linked immunosorbent assay (ELISA, Cloud-Clone Corp., Houston, TX). The samples
and the standard diluted in the culture medium were incubated for 2 h, after which incubations
with detection antibodies were performed for 1 h and, after washing, 30 min subsequently. Then the
plate was washed and incubated with a 3,3′,5,5′-tetramethylbenzidine (TMB) substrate solution for
20–25 min. After addition of the stop solution, the plate was measured at 450 nm on a VersaMax
microplate reader.

4.2.3. Histology

Two cultured constructs or pellets per donor and treatment group were fixed for two days with
10% buffered formalin (J.T.Baker, Avantor Performance Materials, Center Valley, PA, USA), dehydrated
though a graded series of alcohol and embedded in paraffin. Sections of 5 µm were stained with 0.125%
Safranin O for GAGs and 0.4% Fast Green for collagens.
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4.2.4. Immunohistochemistry

Immunohistochemistry for aggrecan, type I, type II, and type X collagen were performed after
0.03% hydrogen peroxidase activity blocking and antigen retrieval with Pronase (1 mg/mL, Sigma) and
subsequent hyaluronidase (10 mg/mL, Sigma) incubation (for type I and II collagen) or cooking in a
citrate buffer (10 mM sodium citrate, pH 6.0, for aggrecan). Antigen retrieval for type X collagen was
performed with pepsin (1 mg/mL, Sigma) incubation for 2 h at pH 2.0 followed by hyaluronidase at
37 ◦C. After antigen retrieval, protocols were the same for all antibodies. Primary antibodies for type
I collagen (2 µg/mL, rabbit, EPR7785, Abcam, Cambridge, UK), type II collagen (0.4 µg/mL, mouse,
DSHB II-II6B3, DSHB, Iowa City, IA, USA), type X collagen (10 µg/mL, mouse X53, Quartett, Berlin,
Germany), or aggrecan (1:150, mouse, 6-B-4, Abcam), or isotype controls (DAKO, concentrations
matched with the primary antibody), were diluted in PBS + 5% BSA and incubated overnight at
4 ◦C, after which species-specific Envision kits (DAKO) and 3,3′-diaminobenzidine tetrahydrochloride
hydrate were used for visualization. Sections were counterstained with the Mayer’s hematoxylin
solution and dehydrated and mounted with DePeX. Microscopy pictures were taken with an Olympus
BX51 upright microscope and the CellˆF software (Olympus, Tokyo, Japan).

4.3. Statistics

Statistical analyses were performed using the SPSS software (IBM, Armonk, NY, USA). For the
normally distributed procollagen ELISA data, a univariate ANOVA with randomized block design with
the post hoc Tukey t-test was performed. Otherwise, the non-parametric Kruskal–Wallis test with post
hoc multiple Mann–Whitney comparisons were performed with the Benjamini–Hochberg correction
for multiple testing. Outliers detected with the five-sigma rule (values outside the mean ± 5 * standard
deviation range) were removed. The data are displayed as the mean ± the SD.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/8/2720/s1.
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Abbreviations

ALP alkaline phosphatase
ASAP ascorbic acid-2-phosphate
bFGF human basic fibroblast growth factor
BMP bone morphogenetic protein
BSA bovine serum albumin
α-MEM Eagle’s minimum essential medium – alpha modification
DMEM Dulbecco’s modified Eagle’s medium
DMMB 1,9-dimethylmethylene blue
ELISA enzyme-linked immunosorbent assay
FBS fetal bovine serum
GAG glycosaminoglycan
H heterodimers
IBMX 3-isobutyl-1-methylxanthine
ITS insulin-transferrin-selenium
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IVD intervertebral disc
METC medical ethics committee
MMP matrix metalloprotease
MSC mesenchymal stromal cell
NCT national clinical trial
NP nucleus pulposus
OD optical density
pen/strep penicillin + streptomycin
PIICP carboxy-terminal propeptide of type II collagen or procollagen II
TGF-β transforming growth factor-β
TMB 3,3′,5,5′-tetramethylbenzidine
SD standard deviation
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