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Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial
physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota
also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial
microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms,
their functional roles, and their interaction with one another or with host immune system have not
been as widely explored. This review covers the recent findings on the non-bacterial communities of
the human gastrointestinal microbiota and their involvement in health and disease, with particular
focus on the pathophysiology of inflammatory bowel disease.
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1. Introduction

Trillions of microbes colonize the human body, forming the microbial community collectively
referred to as the human microbiota. Spanning all three domains of life, bacteria, eukaryotes, and
archaea, as well as viruses, the human microbiota plays an important part in human physiology and
health maintenance by helping in energy harvest, supporting the immune development, and providing
protective, structural, and metabolic functions essential for the human body.

Recent advancements in next-generation sequencing and computational technologies have
provided opportunities to investigate the structure and function of microbial communities associated
with various body sites. As bacteria are the most abundant component of the microbiota, the vast
majority of studies over the last decades focused primarily on the composition of bacterial microbiota
and its effects on human health and disease. On the other hand, research on human fungal (mycobiome),
viral (virome), and archaeal microbiota (archaeome) is still in its infancy. Nevertheless, recent studies
revealed that these non-bacterial microbial populations are also dynamic communities, interacting
with one another and playing a vital role in host wellbeing [1–4].

The gastrointestinal tract is the most densely populated microbial niche of the human body. Despite
its well-established host-beneficial functions, intestinal microbiota has been implicated in various
pathological conditions, including inflammatory bowel disease (IBD) and its two main entities: Crohn’s
disease (CD) and ulcerative colitis (UC). Numerous studies demonstrated that chronic inflammation
of the intestinal mucosa in IBD is associated with alterations in microbial community structure and
function, termed “dysbiosis” (Figure 1). The dysbiotic bacterial microbiota has been extensively
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characterized in IBD [5,6], while the role of other microbiota constituents, as well as their interactions
within the intestinal microbiota, remain unclear.
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Figure 1. A schematic representation of intestinal mucosa in (A) healthy and (B) inflammatory bowel 
disease (IBD)-affected individual. A thick mucus layer covers the epithelium of the healthy intestine. 
Microbiota is dispersed throughout the outer mucus layer, while the inner layer is thick and resistant 
to penetration due to antimicrobial peptides secreted by epithelial cells, and immunoglobulin A (IgA). 
Commensal microbiota suppresses the proliferation of pathobionts and pathogens, tuning the host 
responses towards immunological tolerance and intestinal homeostasis. Various factors can disrupt 
the composition of intestinal microbiota, resulting in dysbiosis and excessive reproduction of 
pathogenic microorganisms. These species produce and secrete toxins, thinning the protective mucus 
layer, damaging the intestinal mucosa, and increasing intestinal permeability. The microbes can gain 
access to epithelial cells and mucosal tissue inducing the imbalance of the TREG/TH17 axis and thus a 
strong inflammatory response by the host immune system leading to or aggravating IBD. 

2. Human Mycobiome 

Fungi are ubiquitous in the environment and a part of all Earth’s ecosystems [7]. In addition, a 
diverse population of commensal fungi has been recognized as a fundamental component of the 
human body, co-existing with other microbes within the human microbiota [8]. In contrast to the vast 
number of studies on the bacterial communities of the microbiota conducted in the last decades, the 
fungal constituents of the microbiota, the mycobiome, received much less attention. Still, recent 
research acknowledged human mycobiome as a dynamic community, responsive to environmental 
and pathophysiological changes, and playing a vital role in host metabolism, as well as maintenance 
of host immune homeostasis [3,8–10]. 

Early research of human mycobiome was based on culture-dependent techniques for the 
identification and characterization of commensal fungal communities. While the new molecular 
culture-independent next-generation sequencing (NGS) techniques proved very effective for 
analyzing the bacterial component of microbiota, the DNA-based sequencing studies of the human 
mycobiome are faced with several limitations. Fungi account for a relatively small percentage of the 
human microbiota, with 105 to 106 fungal cells per gram of fecal matter (compared to 1011 bacterial 
cells per gram) [11] and only 0.1% of the 9.9 million reference genes in a current human gut microbial 
metagenomic reference catalog are reported to be of eukaryotic origin [12,13]. Additionally, the 
identification of composition and diversity of the fungal community is influenced by the nucleic acid 
isolation method [14], the choice of sequencing primer pairs [15], as well as different sequencing 
technologies [16,17] and bioinformatics pipelines [18,19]. Finally, the incomplete databases for 
taxonomic assignment and annotation of fungal genomes present a serious difficulty in studying the 
human mycobiome [15]. The usual molecular target for identifying fungi are the internal transcribed 
spacer (ITS) regions of ribosomal RNA genes. As the ITS regions are highly divergent among fungi, 
these regions are often sufficiently different to classify fungi to the species level. In 2012, ITS was 

Figure 1. A schematic representation of intestinal mucosa in (A) healthy and (B) inflammatory bowel
disease (IBD)-affected individual. A thick mucus layer covers the epithelium of the healthy intestine.
Microbiota is dispersed throughout the outer mucus layer, while the inner layer is thick and resistant to
penetration due to antimicrobial peptides secreted by epithelial cells, and immunoglobulin A (IgA).
Commensal microbiota suppresses the proliferation of pathobionts and pathogens, tuning the host
responses towards immunological tolerance and intestinal homeostasis. Various factors can disrupt the
composition of intestinal microbiota, resulting in dysbiosis and excessive reproduction of pathogenic
microorganisms. These species produce and secrete toxins, thinning the protective mucus layer,
damaging the intestinal mucosa, and increasing intestinal permeability. The microbes can gain access
to epithelial cells and mucosal tissue inducing the imbalance of the TREG/TH17 axis and thus a strong
inflammatory response by the host immune system leading to or aggravating IBD.

2. Human Mycobiome

Fungi are ubiquitous in the environment and a part of all Earth’s ecosystems [7]. In addition,
a diverse population of commensal fungi has been recognized as a fundamental component of the
human body, co-existing with other microbes within the human microbiota [8]. In contrast to the
vast number of studies on the bacterial communities of the microbiota conducted in the last decades,
the fungal constituents of the microbiota, the mycobiome, received much less attention. Still, recent
research acknowledged human mycobiome as a dynamic community, responsive to environmental
and pathophysiological changes, and playing a vital role in host metabolism, as well as maintenance of
host immune homeostasis [3,8–10].

Early research of human mycobiome was based on culture-dependent techniques for the
identification and characterization of commensal fungal communities. While the new molecular
culture-independent next-generation sequencing (NGS) techniques proved very effective for analyzing
the bacterial component of microbiota, the DNA-based sequencing studies of the human mycobiome are
faced with several limitations. Fungi account for a relatively small percentage of the human microbiota,
with 105 to 106 fungal cells per gram of fecal matter (compared to 1011 bacterial cells per gram) [11] and
only 0.1% of the 9.9 million reference genes in a current human gut microbial metagenomic reference
catalog are reported to be of eukaryotic origin [12,13]. Additionally, the identification of composition
and diversity of the fungal community is influenced by the nucleic acid isolation method [14], the choice
of sequencing primer pairs [15], as well as different sequencing technologies [16,17] and bioinformatics
pipelines [18,19]. Finally, the incomplete databases for taxonomic assignment and annotation of fungal
genomes present a serious difficulty in studying the human mycobiome [15]. The usual molecular
target for identifying fungi are the internal transcribed spacer (ITS) regions of ribosomal RNA genes.
As the ITS regions are highly divergent among fungi, these regions are often sufficiently different to
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classify fungi to the species level. In 2012, ITS was designated as the universal DNA barcode marker
for the kingdom Fungi [20], although this approach revealed potential PCR biases [21,22]. A recent
study proposed adding translational elongating factor 1α (TEF1α) as a secondary barcode to the ITS
barcode in order to increase the taxonomic resolution power and enhance the accuracy of fungal species
identification [23]. On the other hand, the study comparing 18S rRNA screening to ITS sequencing
showed higher sensitivity of 18S rRNA RT-PCR combined with SANGER sequencing, as this method
detected fungal communities in several samples which were ITS negative [24]. Currently, there is no
consensus on the best methodological approach for identifying human mycobiome, and consequently
the results of studies using different methods vary.

Human mycobiome inhabits the gastrointestinal tract but also skin, respiratory tract, genitourinary
tract, as well as other mucosal surfaces in the host. The gastrointestinal tract is the most studied
fungal niche in humans. Reports suggest that the human gut is populated by three fungal phyla,
Ascomycota, Basidiomycota, and Zygomycota [25,26], with the “core” 10 genera identified in the majority of
gastrointestinal tract samples consisting of Candida (particularly C. albicans), Saccharomyces (particularly
S. cerevisiae), Penicillium, Aspergillus, Cryptococcus, Malassezia (particularly M. restricta), Cladosporium,
Galactomyces, Debaryomyces, and Trichosporon [25,27]. The composition of gut mycobiome seems to be
dynamic over time and far more variable than the composition of bacteria, both in humans [28] and in
mice [29]. Most studies consider fungi as commensal organisms in the gut, acquired early in life [30].
This has recently been challenged claiming that fungi do not routinely colonize the gastrointestinal tract
of healthy adults [31], instead postulating that all fungi identified in the human stool samples could
be explained by their presence in the mouth or the diet. Indeed, diet is perceived as a crucial factor
affecting the composition and variability of gut mycobiome [32]. For instance, gut mycobiome content
was found to considerably differ between individuals having different dietary patterns, i.e., vegetarians
and people on a conventional Western diet [25,32]. Additionally, reports suggest that the abundance
of Candida in the gut positively correlated with high carbohydrate diets, and inversely correlated to
consumption of total saturated fatty acids, while recent intake of short-chain fatty acids reduced the
abundance of Aspergillus [26]. Another notable finding of this study was the co-occurrence of Candida
with particular bacterial (Prevotella and Rumminococcus) and archaeal genera (Methanobrevibacter),
providing support for the interkingdom syntrophic relationships in host metabolism.

One of the first indications that fungi play a role in modulating gut homeostasis is the use of
Saccharomyces boulardii as a constituent of herbal medicine traditionally utilized in Southeast Asia to
reduce the severe diarrhea in patients with cholera. S. boulardii is still prescribed as a probiotic to
prevent diarrhea and intestinal colonization with Clostridium difficile following antibiotic therapy [33,34]
and is efficient in preventing recurrent C. difficile infections [35]. The positive effects of S. boulardii
come from inactivating pathogen toxins and directly inhibiting the growth and invasion of intestinal
pathogens [36,37], as well as boosting the host immunity and exerting anti-inflammatory functions in
ulcerative colitis [38,39], Crohn’s disease [38,40], and C. difficile colitis [41]. A recent report suggests
beneficial effects of another probiotic yeast, Candida kefyr, in reducing the severity of colitis in animal
models by decreasing the abundance of Bacteroides and lowering IL-6 production, thus attenuating
inflammation in the intestine [42].

Although fungi can exert beneficial effects to host health, the disturbance of gut mycobiota was
also implicated in various gastrointestinal diseases. A recent study demonstrated no significant changes
in mycobiome richness between obese and non-obese subjects; however, some specific compositional
differences were noted. The most prevalent genus in non-obese individuals was Mucor, with its
abundance significantly higher in non-obese individuals, and inversely correlated with metabolic
markers of obesity [43]. In colorectal cancer (CRC), an alteration of fungal composition and ecology
was observed, characterized by an increased Basidiomycota/Ascomycota ratio, depletion of S. cerevisiae,
as well as enrichment of Rhodotorula, Malassezia, and Acremonium genera along with several Aspergillus
species (including A. flavus, a major producer of highly toxic carcinogen aflatoxin), suggesting their
possible contribution towards CRC pathogenesis [44]. Insights into gut mycobiota playing a role
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in IBS were also reported. Decreased fungal diversity and dysbiosis were found in IBS patients,
correlating mycobiota signature with visceral hypersensitivity, which is considered as one of the major
pathophysiological features of IBS [45]. Interestingly, treatment with fungicides could recover the
visceral hypersensitivity to normal levels [45]. This finding is in accordance with a previous study
that reported yeast-free diets and antifungal treatments as helpful for IBS subjects [46]. In addition,
S. boulardii was found to be effective in improving symptoms and the quality of life in IBS patients [47].

The majority of research on the effects of gut mycobiota in gastrointestinal diseases was however
concentrated on intestinal inflammation and IBD. Even before the advent of molecular methods
and NGS, increased levels of anti-S. cerevisiae antibodies (ASCA) were commonly found in the
serum of CD patients, suggesting the host’s immune responses toward intestinal fungi [48]. These
antibodies, raised against mannan, a component in the fungal cell wall, were soon identified as
a reliable diagnostic biomarker for CD and predictors of the disease course [49,50]. ASCA also
recognize many other fungi, including Candida [51]. Indeed, reduced fungal diversity and significantly
increased abundance of specific Candida species were found in pediatric IBD patients [52]. Sokol et
al. report a similar finding in adult subjects with IBD: a decrease in gut mycobiome biodiversity and
elevated Basidiomycota/Ascomycota ratio, mainly due to the increased prevalence and abundance of
C. albicans and reduction of S. cerevisiae [53]. Additional studies confirmed an increased representation
of Candida species in IBD, namely C. tropicalis in familial CD [54], as well as C. glabrata in colonic
biopsy samples from patients with CD [55]. Besides elevated Basidiomycota/Ascomycota ratio in IBD
patients in comparison to healthy controls and in IBD flares vs. IBD remission [53], fungal dysbiosis
in IBD patients is also characterized by increased levels of Gibberella moniliformis, Alternaria brassicola,
Aspergillus clavatus, and Cystofilobasidiaceae [55], while Saccharomyces cerevisiae and Malassezia sympodialis
are markedly decreased [53]. Additionally, studies confirm fungal burden is increased in both CD and
UC [55,56], with the fungal cells translocating trough the intestinal barrier during the chronic stage of
colitis [56,57].

Some of the studies simultaneously analyzed both the fungal and bacterial microbiota revealing
that the intestinal microbial network was different in IBD patients when compared to healthy individuals.
Sokol et al. identified positive correlations between the decreased abundance of S. cerevisiae and
reduction of several bacterial genera, such as Bifidobacterium, Blautia, Roseburia, and Ruminococcus.
The total number and the intensity of fungal–bacterial associations were increased in UC, with
distinct interactions potentially involved in the inflammatory processes. On the other hand, weaker
fungal–bacteria correlations were found in CD when compared to healthy volunteers, implying
disrupted connections between two kingdoms in this disease [53]. A study by Hoarau et al. reported
elevated levels of C. tropicalis positively correlated with Serratia marcescens and Escherichia coli in CD.
Moreover, in vitro experiments confirmed these species form thicker mixed biofilm than any of the
species generates individually, creating a commensal niche additionally enriched in fungal hyphae, a
form of growth usually implicated in pathogenic conditions [54]. The fact that interactions between
gut bacteria and fungi are closely associated with disease was also investigated in mouse models of
dextran sulfate sodium (DSS) induced colitis. Qiu et al. found that inflamed mouse intestine contained
increased fungal burden in the mucosa, but decreased in the feces. The dysbiosis was characterized by
elevated Wickerhamomyces, Alternaria, and Candida, together with reduced Cryptococcus, Phialemonium,
and Wallemia, and unidentified Saccharomycetales genus [57]. The study further shows mice with fungi
depleted by fluconazole treatment exhibited aggravated colitis, in contrast to bacteria-depleted mice,
that showed alleviated intestinal inflammation and a trend of disease remission. This finding suggests
that bacteria are the major driving force in acute inflammation and fungi may act as a counterbalance
in maintaining the microbial homeostasis in acute colitis. In chronic recurrent colitis however, fungi
may aggravate the disease severity and translocate into locations outside the gut [57]. A recent study
by Sovran et al. identified opposing effects of administrating C. albicans or S. boulardii to mice with
DSS-induced colitis, resulting in increased disease severity or reduced disease symptoms, respectively.
However, broad-spectrum antibiotic treatment protected the mice from colitis and C. albicans had no
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pro-inflammatory effect when administered to mice with disrupted bacterial microbiota, suggesting
bacteria are essential for the development of colitis and C. albicans requires the presence of specific
bacteria that trigger the intestinal inflammation to increase the disease intensity. On the other hand,
mice with depleted Enterobacteriaceae exhibited normal susceptibility to colitis, but neither C. albicans
nor S. boulardii could exert disease-modulating effects in this experimental setting. After reintroducing
Enterobacteriaceae, both C. albicans and S. boulardii recovered their effects in severity of colitis [58].

The host immune system recognizes fungi using pattern recognition receptors (PRRs), with the
resulting host responses ranging from tolerance to inflammation. The key PRR for coordinating host
response to fungi is Dectin-1 (CLEC7A), a C-type lectin receptor that recognizes β-glucans in the
fungal cell wall [59]. Dectin-1 activates macrophages and dendritic cells, initiates phagocytosis of
fungi, and induces signaling cascade via caspase-associated recruitment domain-containing protein
9 (CARD9) and NF-kB to produce pro-inflammatory cytokines. A recent study demonstrated a
central role of Dectin-1 in regulating the severity of inflammation in mouse models of DSS-induced
colitis [60]. Dectin-1 deficient mice were found to develop more severe colitis, due to the overgrowth of
opportunistic fungi (i.e., Candida and Trichosporon), while treatment with antifungal drug fluconazole
ameliorated the disease [60,61]. The same study revealed that a polymorphism in the Dectin-1 gene was
associated with increased severity of disease in patients with UC [60]. Recent research also identified
CARD9 as the key downstream signaling molecule for the induction of immune response to fungi [62].
CARD9-deficient patients are especially susceptible to fungal infections and polymorphism in CARD9
gene is associated with a higher risk of developing IBD [63]. Interestingly, Candida overgrowth, which
is one of the characteristic features in IBD patients, could not be positively correlated with CARD9
polymorphism [64]. Instead, Candida was hardly detectible in CARD9 deficient mice, suggesting this
taxon was not the driver of dysbiosis as in dectin-1 deficient animals [65]. IL-17 and IL-22 were also
found to affect commensal fungal communities. A clinical study revealed secukinumab, an IL-17A
antagonist, was associated with exacerbations in patients with CD, identifying the higher rate of fungal
infections in treated subjects [66]. Both IL-17 and IL-22 might act as inducers of antimicrobial peptides
(AMPs) in epithelial cells and were reported as protective against mucosal fungal infections [67,68].

3. Human Virome

Viruses are the most abundant and widespread biological entities on Earth [69] and integral
members of the human microbiota. The entire assembly of eukaryotic and bacterial viruses
(bacteriophages) populating the human body was termed the human virome. The virome includes
double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), as well as RNA viruses. Significant
research effort in recent years was devoted to characterize this diverse community and appraise its
impact on the host wellbeing [70–72]. Viruses are found in numerous human body sites, with the
intestine being the most extensively populated and studied niche. Intestinal virome is large and diverse,
but nonetheless stable and highly personalized [1,73], established in the earliest period of human life
simultaneously with the colonization of bacteria and other constituents of the gut microbiota [74].
The gut virome in the neonatal period predominantly consists of bacteriophages, with only a small
fraction of eukaryotic viruses, and akin to the bacterial microbiome, it significantly varies across
individuals [75]. In contrast to research on bacteria and fungi, no universal marker gene can be utilized
to study viruses and the majority of obtained sequences do not exist in publicly available databases
(“viral dark matter” [76,77]), so the usual methodological approach of virome research is metagenomics.

The healthy human intestine is a home to approximately 1015 bacteriophages, outnumbering the
commensal bacteria by a factor of 10 [71,78], with the “core phageome” predominantly consisting
of dsDNA viruses from the Caudovirales order (Myoviridae, Podoviridae, and Siphoviridae families)
and ssDNA viruses of the Microviridae family [79]. A recent study identified a novel type of phage,
crAssphage, as the most prevalent human-associated virus, accounting for up to 90% of the reads from
human fecal viral metagenomes and about 22% of the reads in the total metagenome [80]. CrAssphage
and novel crAass-like phages are associated with Bacteroidetes bacterial phylum and are likely to
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become a family within the Caudovirales order [81,82]. The phages usually exhibit temperate lifestyle
and integration into bacterial hosts as prophages, however, environmental stressors can induce the
lytic cycle resulting in viral replication and destruction of host cells. Thus, the intestinal virome is
closely linked to the prokaryotic microbial communities not just by sharing a common niche, but also
by contributing to the ecosystem dynamics as well as by providing various genetic elements such
as virulence factors or antibiotic resistance genes while integrated as a prophage [83]. Accordingly,
there is mounting evidence that the community of phages in the gut is altered when dysbiosis-related
disorders are considered, such as IBD and colorectal cancer. In addition, a shift from lysogenic to lytic
replication in the population of temperate phages may be linked to the development of IBD [84].

The exact role of human gut virome in the etiology of IBD has yet to be elucidated, as not only
our understanding of the virome is still fragmented and without clear links to different inflammatory
conditions, but there is also an inherent complexity of IBD as a prototypic multifactorial disease [1,85].
Still, recent research provided some rationale for considering virome as a potentially important
stakeholder in the development of chronic inflammatory conditions of the gut [86]. One of the
first studies that linked gut virome dysbiosis with IBD pathogenesis clearly showed the increased
abundance of phages infecting bacterial orders Alteromonadales and Clostridiales, including bacterial
species Clostridium acetobutylicum, as well as elevated numbers of Retroviridae family representatives,
in subjects with CD [87]. In this paper, authors also pinpointed viral biomarkers associated with the
disease and hinted the importance of interactions between viral and bacterial communities in the
gut [87]. A large study by Norman et al. observed disease-specific changes and reduced diversity of
the gut virome in both CD and UC, revealing the primary difference in the IBD-associated virome was
the increased richness of Caudovirales phages on a taxonomic level; however, the exact viruses that may
give rise to such change were different in CD when compared to UC [88]. A dataset used for this study
was recently reanalyzed, confirming IBD-specific changes in the virome, loss of the “core phageome”
and increased abundance of induced temperate phages in patients with CD [84]. However, in contrast
to the previous report, no changes in viral richness and overall viral alpha diversity were demonstrated.
Furthermore, the changes in the composition of virome mirrored shifts in bacterial composition, while
both virome and bacteriome alterations were more pronounced in patients with CD when compared to
UC, reflecting the disease severity. Hence, integrating both bacteriome and virome assessment offers
higher classification power between healthy and diseased states in IBD [84]. In addition, Fernandes et
al. revealed how minor patterns and differences in gut virome may be used to differentiate pediatric
patients with IBD from healthy controls. In this study, most pronounced changes have been observed in
the relative abundance of Caudovirales order of phages, with a substantially lower number of strains in
the Microviridae family in patients with CD compared to healthy controls [89]. Similarly, the expansion
of the Caudovirales was observed in another study, together with decrease in richness and diversity in
patients with UC [90].

Recent animal studies corroborated the role of enteric phages in IBD. By using murine models,
Seth et al. showed that increased viral richness and increased alpha diversity exhibit a positive
correlation with gut dysbiosis and the level of proinflammatory cytokines in the serum [91]. Similarly,
another study showed the increasing bacteriophage levels (primarily Escherichia, Lactobacillus, and
Bacteriodes-infecting phages) in germ-free mice may alter the state of mucosal immunity and exacerbate
colitis by inducing the production of IFN-γ via TLR9 [92]. Additionally, recent research suggests that
Spounaviridae phage subfamily, as well as phages that target Streptococcus and Alistipes may serve as
informative disease markers for murine colitis analogous to IBD [93]. Interestingly, this study did not
reveal increased levels of bacterial hosts, suggesting the abundance of phages is not always correlated
with host abundance and that inflammation might be caused by induction of phage replication and
excision. However, the most critical finding was the overlap of intestinal phage metagenomes in
the mouse model and human studies, indicating that the mouse colitis model could be suitable for
studying human disease [93].
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Bacteriophages were recently proposed as a therapeutic option for treating CD [94]. A cocktail of
phages was reported to reduce symptoms in the mouse model of dextran sulfate sodium (DSS)-induced
colitis, as well as significantly reduce fecal adhesive-invasive E. coli (AIEC). AIEC was shown to colonize
the ileal mucosa of CD and correlate with disease location, activity, and postoperative recurrence [95].
In fact, the phage cocktail was found to target AIEC in homogenates of ileal biopsies taken from CD
patients [94], and the preparation is currently under evaluation in a clinical trial.

Although most research concentrated on phage virome, eukaryotic virome is also proving to have
a substantial role in human health and disease; therefore, both should be considered as distinct, but
related entities. The human intestinal mucosa is increasingly colonized with eukaryotic viruses from
birth to 2 years of age, suggesting that the eukaryotic virome is established through environmental
exposure [74]. The human eukaryotic virome consists of Adenoviridae, Anelloviridae, Astroviridae,
Parvoviridae, Picornaviridae, and Picobirnaviridae families, demonstrating that viruses, which are usually
considered as pathogens or opportunistic pathogens, frequently populate the human intestine [74].
These viruses can exert symptomatic manifestations or can remain latent for a long time, also providing
beneficial effects for the host [86,96].

A growing body of data confirms that perturbations in eukaryotic virome are linked to the
pathogenesis of IBD [86]. Zuo et al. employed deep sequencing techniques to discern alterations of the
gut virome in patients with UC, showing an increased abundance of Pneumoviridae in UC patients
compared to the control group, while the opposite was found for Anelloviridae family [90]. A study
that analyzed colon samples of IBD patients and healthy controls showed that IBD was characterized
by increased levels of Herpesviridae family, as well as augmented expression of pertaining endogenous
viral sequences [97]. Larger studies are warranted to further elucidate this relationship, although the
role of certain herpesviruses in IBD development and disease exacerbations was already described [98].
Recently, Ungaro et al. utilized a thorough metagenomic analysis of gut mucosa on a large cohort
of treatment-naïve IBD patients to explore potential viral signatures and triggers [99]. They found a
high abundance of Hepadnaviridae family (together with the protein HBx) in patients with UC, and an
increased abundance of Hepeviridae family when compared to controls. On the other hand, diet-related
Polydnaviridae and Tymoviridae viral families were less enriched in patients with UC, and the same was
valid for Virgaviridae in patients with CD [99]. The role of eukaryotic viruses as potential triggers of
gut inflammation has been studied in animal models as well, mostly concentrating on Norovirus as a
contributor to intestinal inflammation [100,101].

Since it is clear that many viral families are potential players in the development of inflammatory
processes in the gut, further studies are needed to precisely identify possible viral triggers, principally
by appraising metagenome signatures of those with the disease. Nonetheless, there are many challenges
in studying human virome, and the biggest may be the sample composition (as most habitually a fecal
specimen is used) [102]. Extensive chemical, enzymatic, and mechanical processing is indispensable
for eliminating cellular DNA and dietary elements to enrich the virome fraction [103]. This issue is
even more pronounced when studies of mucosal virome are pursued, and where DNA yields are
substantially lower [104]. Therefore, akin to other metagenomic approaches, it is pivotal to balance
sequencing depth, sequencing chemistry, and read length. However, these challenges are bound to be
solved, and as gut virome research becomes standardized and expands even further, opportunities
will arise to explore virome-directed treatment approaches for IBD, clinical testing of aforementioned
phage preparation being the first step in that direction.

4. Human Archaeome

Archaea are a separate domain of life, distinct from Bacteria and Eukarya [105]. Despite being
morphologically similar to bacteria regarding their shape, size, and unicellular organization, archaea
feature many characteristics that are more closely related to those of eukaryotes, such as DNA replication
and repair mechanisms, RNA transcription, and protein translation machinery [106]. Although sharing
properties with both Bacteria and Eukarya, archaea exhibit unique characteristics not present in either



Int. J. Mol. Sci. 2020, 21, 2668 8 of 21

of these two domains. The archaeal cell walls do not contain peptidoglycans, but are composed
diverse structures including methanochondroitin and pseudomurein [107], while their cell membranes
are composed of L-glycerol-ether/isoprenoid lipids (in contrast to D-glycerol-ester/fatty acid lipids
in bacterial and eukaryotic membranes), enhancing membrane stability and rigidity [108]. Finally,
archaea use distinctive metabolic pathways that can utilize sunlight, organic, and inorganic substrates
as energy sources [109]. Due to their biochemical and metabolic advantages, archaea are capable of
populating a broad variety of habitats. The first archaea identified were extremophile species thriving
in severe environments; however, with the advanced detection tools and molecular methods, archaea
were also found in moderate climates, constituting a considerable portion of the Earth’s microbial
biomass [109]. Furthermore, archaea were detected in plants [110] and in animal digestive tracts as
part of the commensal microbiota [111,112].

Miller et al. discovered and characterized the first archaeon in human feces, Methanobrevibacter
smithii, over 35 years ago [113]. As the research on the human microbiota focused almost
exclusively on the commensal bacteria, the insight into the human archaeome during the following
decades was limited to only three archaeons identified in human stool samples: M. smithii, [113],
Methanosphaera stadtmanae [114], and Methanomassiliicoccus luminyensis [115], and one from oral mucosa:
Methanobrevibacter oralis [116]. Recently, the application of molecular tools enabled detection of a
number of archaeal signatures in the human samples, suggesting archaea are essential constituents of
the human microbiota [117], colonizing infants during the first year of life [118] and forming distinct
communities across the human body [2,119].

The majority of the detected archaea in the human gastrointestinal tract are methane-producing
organisms (methanogens), which possess the unique ability to respire H2 and produce methane as
the main metabolic product under anaerobic conditions. In the human gut, the methanogens exist
in a syntrophic relationship with bacterial species. Anaerobic bacterial fermentation results in the
generation of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, as well as carbon
dioxide and hydrogen gas [120]. Accumulation of H2 in the colon, however, inhibits bacterial energy
production. By acting as a hydrogen sink and removing hydrogen gas, methanogens improve bacterial
fermentation efficiency and allow more complete anaerobic degradation of organic material [120], thus
confirming archaea as a keystone species essentially involved in metabolic processes and optimal
energy yield of the entire human microbiota [121]. Methanogens in the human gastrointestinal tract
account for up to 10% of all gut anaerobes, with M. smithii being the predominant archaeon, found in
almost every subject [122], possibly due to its ability to establish syntrophic association with several
bacterial species [123]. M. stadtmanae and M. luminyensis were detected in 30% and 4% of subjects
tested, respectively [115,122]. Along with two candidate species “Candidatus Methanomassiliicoccus
intestinalis” and “Candidatus Methanomethylophilus alvus”, several unknown members of the orders
Methanosarcinales, Methanobacteriales, Methanococcales, Methanomicrobiales, and Methanopyrales were
found to populate the human gut [124]. Besides these methanogenic archaea, members of the orders
Desulfurococcales, Sulfolobales, Thermoproteales, Nitrososphaerales, and Halobacteriales have also been
detected in the human intestine [124]. Recent publication utilizing archaea-specific methodology
suggested an increased prevalence of M. stadtmanae in the majority of human samples, but failed to
detect any nonmethanogenic archaeal lineages [112]. The only nonmethanogenic strains that were
successfully isolated and characterized from the human gut are Haloferax massiliensis and Haloferax
assiliense, demonstrating halophilic archaea can inhabit the human gut [125,126].

The potential role of archaea in human health and disease is a controversial subject. High
prevalence of M. smithii in human population, as well as its low immunogenic potential, suggests
this species is a typical commensal gut microbe [127,128]. The same finding was reported for
M. luminyensis [129]. In fact, M. luminyensis was shown to be able to degrade trimethylamine (TMA), a
compound associated with metabolic disorders such as trimethylaminuria [130], as well as reducing
trimethylamine-N-oxide (TMAO) plasma levels, preventing the development of cardiovascular and
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chronic kidney diseases [131,132]. Thus, a potential use of M. luminyensis as an archaeal probiotic, or
“archaebiotic”, was proposed to promote a positive effect of archaea on human health [133].

On the other hand, several studies suggest the role of archaea in the development of intestinal
diseases. Methane, the end-product of methanogenesis, has been implicated in slowing down the
intestinal transit resulting in constipation and gastrointestinal disorders [134,135]. In a population
with irritable bowel syndrome (IBS), the subjects with the constipation-dominant disease (IBS-C) were
shown to have a higher proportion of methane producers than individuals with the diarrhea-dominant
disease (IBS-D) [135]. It was also shown that IBS-C involves an increase in M. smithii abundance [136]
and a specific formulation of lovastatin, a fungal metabolite found to inhibit methane production in
methanogenic microorganisms, was recently tested as a possible way to treat those suffering from
IBS-C [137]. The methanogenic archaea are also associated with the etiology of IBD. A three-fold increase
in the abundance of M. stadtmanae, which was shown to possess high immunogenic potential [127],
was reported in IBD patients when compared to healthy individuals, suggesting this archaeon might
be involved in pathologic conditions within the human gut [138]. Studies also indicated a lower
proportion of patients were positive for methanogens in their gut compared to controls, primarily due
to a reduction in the number of M. smithii in IBD subjects [138,139]. A recent report found significantly
lower M. smithii levels among IBD patients compared to healthy individuals, with the levels returning
to normal values in disease remission [140]. To conclude, the shift in archaeal populations associated
with IBD could be related to bacterial dysbiosis and alteration in the intestinal nutritional environment
(i.e., reduction of hydrogen gas and increase of short-chain alcohols such as methanol), favoring
methylotrophic archaeal species, particularly M. stadtmanae, thus increasing the inflammatory response
within the human gut [141].

The recent hypothesis on the role of archaea in human intestinal diseases suggests the butyric
acid, a short-chain fatty acid (SCFA), as the essential component in the regulation of syntrophic
archaea/bacteria biofilms in the gut. The archaeal overgrowth and increased removal of SCFA from the
biofilms results in dysbiosis, triggering bacteria to become endoparasitic and enter intestinal epithelial
tissues, which in turn leads to inflammatory processes in the human gut [142]. The “syntrophic
imbalance hypothesis” is supported by the fact that methanoarchaea overgrowth is implicated in
human diseases, including the IBS [143] and the levels of butyric acid are shown to decline in patients
with IBS and IBD [144,145]. Moreover, one of the suggested treatments for intestinal disorders proposes
utilizing butyrate-producing bacteria supplements to enhance intestinal epithelial barrier integrity [146].
In addition, the ryzophagy cycle in plant/symbiotic bacteria systems identified butyric acid as a signal
molecule for maintenance of bacteria in biofilms, with the low concentrations of butyric acid inducing
bacterial endoparasitism [147].

Although the research on the commensal viral and fungal constituents of human microbiota
gained momentum recently, most microbiota studies still fail to include the archaea. The studies on
human archaeome usually employ either cultivation or qPCR methodology [118,119,148], while 16S
rRNA gene-based research often uses bacterial-targeted protocols and universal primer pairs to cover
the broadest prokaryotic diversity [119,149]. The low abundance of archaeal DNA in human samples,
inefficient cell lysis and DNA extraction, failure of the universal primers to fully detect archaeal
signatures, as well as incomplete 16S rRNA gene databases, all represent methodological pitfalls of
human archaeome analysis [112,150,151]. As archaea feature fundamentally different biology compared
to their bacterial and eukaryotic counterparts, a specific methodology is required to investigate the
human archaeome. Pausan et al. recently proposed an optimized detection method using specific 16S
rRNA gene targeting primer pair combinations for NGS amplicon sequencing, as well as optimized
qPCR protocols for quantifying the archaeal 16S rRNA gene to evaluate the bacteria/archaea ratios [152].
The proposed approach might prove useful as a standard operating procedure for detecting the full
spectrum of archaeal diversity in human samples.

The archaea are a keystone species in the human microbiota with a profound impact on all aspects
of human life. Although our current knowledge on the archaea is still mostly based on methodological
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concepts highly biased toward bacterial commensals, improved detection methodologies should enable
future studies to further identify new archaeal taxa, assess their impact on the composition and function
of the entire gut microbial community, as well as their contribution to human health or disease.

5. Eukaryotic Parasites

The pathogenic potential of commonly encountered intestinal parasites is well established.
Mounting research evidence, however, suggests that instead of causing disease, a significant proportion
of these organisms can be linked to maintaining intestinal homeostasis [4]. Eukaryotic parasites evolved
to cause minimal harm to their human hosts [153], and some protozoan species can be considered a
part of the human microbiota. Hamad et al. recently employed classical and molecular parasitological
diagnostic methods to confirm the presence of over 15 different genera of protozoa (amoebozoans,
flagellates, ciliates, stramenopiles, and apicomplexans) known to parasitize, but also commensalize the
human gastrointestinal tract [154].

The role of protozoan parasites in the development and progression of IBD has been studied by
several research groups, with the emphasis on Blastocystis hominis [155,156]. B. hominis is a common
protozoan parasite in the gut found in both humans and animals, transmitted by the fecal–oral route
and associated with various gastrointestinal disorders. Initial studies reported a significantly increased
frequency of protozoa infection, with a high rate of B. hominis, in UC patients with persistent and
intermittent disease activity as compared to the remission states [157]. Similarly, another study
demonstrated B. hominis infection was associated with more severe symptoms and decreased disease
treatment efficiency in patients with refractory ulcerative colitis [158]. A more recent study revealed
specific isolates of Blastocystis that may exert pathogenic effects by disrupting gut microbiota [159]. This
finding was in line with epidemiological data that linked virulent subtypes of B. hominis with intestinal
dysbiosis [160]. However, contrasting results on the role of B. hominis in IBD were also reported. Studies
revealed a lower burden of B. hominis (and Dientamoeba fragilis) in patients with UC when compared to
the healthy individuals [161,162], while another report demonstrated a lower prevalence of B. hominis
in patients with active UC compared to those in remission [163]. Additionally, Blastocystis-positive
patients exhibited a higher abundance of Clostridia class, Ruminococcaceae, and Prevotellaceae families,
as well as Faecalibacterium and Roseburia butyrate-producing bacterial genera, while Enterobacteriaceae
were enriched in Blastocystis-free patients, suggesting B. hominis colonization was not associated with
the colitis-specific dysbiosis but with an increased diversity of intestinal bacterial microbiota [164]. A
recent study found no difference in B. hominis prevalence between the active and remission phases
of the disease, suggesting that B. hominis does not play a role in UC flare-up [165]. Moreover, this
study reported a higher abundance of B. hominis in the healthy group than in patients with UC, as
well as milder disease symptoms for majority of Blastocystis-positive UC patients. Similar findings
were published for IBS as well [166,167], thus implying B. hominis is a common constituent of healthy
human microbiota exerting a protective role in gastrointestinal diseases [156]. Due to the proposed
mutualistic interaction of Blastocystis and its host, some authors even suggested using the protist in
a manner similar to that described for some intestinal helminths [168], in order to elicit a beneficial
immunomodulatory response in patients with IBD [169]. Additional confirmation that B. hominis
could be a commensal microorganism comes from a study in which patients with recurrent Clostridium
difficile infections (rCDI) were treated using fecal microbiota transplantation (FMT) [170]. Although
Blastocystis-positive fecal samples were previously excluded from FMT by many stool banks, resulting
in a high rate (30%–50%) of donor exclusion, this study reported no adverse gastrointestinal symptoms
nor any significant effect on the treatment outcome when Blastocystis-positive stool was used for
the procedure.

Many protozoan parasites, however, are pathogenic species and can cause intestinal inflammation
and disease. Colitis induced by Entamoeba histolytica may resemble CD [171,172]. Other parasites
can complicate the course of IBD, i.e., cryptosporidiosis leads to increased hospitalization in children
with either UC or CD [173]. Considering the latter, an association between Cryptosporidium parvum
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infection and gut dysbiosis (most notably perturbations of Bacteroidetes/Firmicutes ratio linked to
chronic inflammatory processes) has been demonstrated in animal models [174]. On the other hand,
the presence of the Entamoeba spp. (excluding the pathogenic E. histolytica) has been linked to
increased bacterial diversity in the gut, as well as with the changes in the composition of the gut
microbiome—more specifically, Entamoeba colonization was negatively correlated with inflammatory
diseases and autoimmune disorders [175].

Finally, one of the major issues that hampers further exploration of the relationship between
protozoan parasites and other microbiota is the deficiency of genomic data on intestinal protozoa and
other parasites [4]. While genomic data is available in public databases for Blastocystis and Dientamoeba,
there is scant ribosomal DNA sequences for some other gut parasites, even the common ones such as
Entamoeba coli [4,176]. In addition, there is extensive genetic diversity in some common gut parasites,
thus the associations between dysbiosis and various subtypes or genotypes are still not elucidated.

6. Conclusions

The significant role of non-bacterial microbiota in maintaining human homeostasis, as well as in
disease etiology, is slowly unveiling (Table 1). The impact of these diverse fungal, viral, archaeal, and
protozoan communities on human health needs to be determined in more detail in order to expand the
current “bacteriocentric” view of human microbiota and provide more holistic understanding of the
human superorganism.

Table 1. Major contributors of non-bacterial microbiota changes in IBD.

IBD Type Change Reference

Mycobiome

CD + UC ↑ Basidiomycota/Ascomycota ratio [53]
CD + UC ↑ Candida albicans [53]

CD ↑ Candida tropicalis [54]
CD ↑ Candida glabrata [55]
CD ↑ Gibberella moniliformis [55]
CD ↑ Alternaria brassicola [55]
CD ↑ Aspregillus clavatus [55]
CD ↑ Cystofilobasidiaceae family [55]

CD + UC ↓ Saccharomyces cerevisiae [53]
CD + UC ↓Malassezia sympodialis [53]

UC ↓ Fungal diversity [53]
CD + UC ↑ Fungal burden [55,56]

UC ↑ Fungal–bacteria interactions [53]
CD ↓ Fungal–bacteria interactions [53]

Virome

Phageome

CD ↑ Phages infecting bacterial orders
Alteronomoadales and Clostridiales [87]

CD ↓Microviridae family [89]
CD + UC ↑ Caudovirales order [88,90]
CD + UC ↓ Phage diversity [88,90]

Eukaryotic
virome

CD ↑ Retroviridae family [87]
UC ↑ Pneumoviridae family [90]
UC ↓ Anelloviridae family [90]

CD + UC ↑ Herpesviridae family [97,98]
CD + UC ↑ Hepadnaviridae family [99]
CD + UC ↑ Hepeviridae family [99]

UC ↓ Polydnaviridae family [99]
UC ↓ Tymoviridae family [99]
CD ↓ Virgaviridae family [99]

Archaeome
CD + UC ↓Methanobrevibacter smithii [138,140]
CD + UC ↑Methanosphaera stadtmanae [138]

Eukaryotic parasites UC ↑ Blastocystis hominis [157,158]
UC ↓ Blastocystis hominis [161–165]
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To achieve this task, two important prerequisites are essential: (1) expanding fungal, viral, archaeal,
and protozoan reference genomes in the currently available databases for reliable identification of
those microorganisms; (2) establishing uniform methods of detection for each non-bacterial commensal
population to ensure consistent and comparable evaluation of microbial abundance in different human
body sites. The improved tools and the newly generated data would provide deeper insight on
commensal non-bacterial communities and the possibilities of their exploitation in promoting human
health and ameliorating disease. Although microbiome-directed therapy is still in its infancy, studies
conducted thus far suggest that direct or indirect alterations in human virome and mycobiome, as
well as changes in archaea and eukaryotic parasites may improve health outcomes in inflammatory
diseases such as IBD.

However, the association of commensal fungi, viruses, archaea, and eukaryotic protozoa with
the host in healthy/diseased states, as well as their interactions with each other, reflects a rather
intricate nexus that transcends a mere “cause and effect” relationship. Experimental approaches should,
therefore, be tailored to pinpoint where and how exactly these constituents of human microbiota play
a role (i.e., whether at the disease onset, during early stages, or during active or latent disease) and
account for a plethora of confounding factors which are currently pervasive in most of the studies.
Although future research venues are paved with colossal challenges, the investments may pay off, as
future applications of microbiome-based diagnosis, prognosis, treatment, monitoring, treatment, and
prevention of the disease holds promise for a paradigm shift in translational and clinical medicine.
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