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Abstract: Increasing evidence suggests that the metal homeostasis is involved in the pathogenesis
of various neurodegenerative diseases including senile type of dementia such as Alzheimer’s
disease, dementia with Lewy bodies, and vascular dementia. In particular, synaptic Zn2+ is known
to play critical roles in the pathogenesis of vascular dementia. In this article, we review the
molecular pathways of Zn2+-induced neurotoxicity based on our and numerous other findings,
and demonstrated the implications of the energy production pathway, the disruption of calcium
homeostasis, the production of reactive oxygen species (ROS), the endoplasmic reticulum (ER)-stress
pathway, and the stress-activated protein kinases/c-Jun amino-terminal kinases (SAPK/JNK) pathway.
Furthermore, we have searched for substances that protect neurons from Zn2+-induced neurotoxicity
among various agricultural products and determined carnosine (β-alanyl histidine) as a possible
therapeutic agent for vascular dementia.
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1. Introduction

Senile dementia is a serious problem for our rapidly aging society. It is characterized by profound
memory loss and inability to form new memories in older adults, and its prevalence increases with
age. Senile dementia is mainly divided into Alzheimer’s disease (AD), vascular dementia (VD), and
dementia with Lewy bodies (DLB). Both AD and DLB are characterized by the deposition of abnormally
accumulated proteins; β-amyloid protein (AβP) in AD and α-synuclein in DLB [1,2]. However, VD is a
degenerative cerebrovascular disease, which is caused by a series of strokes or ischemia [3]. Worldwide,
about 50 million people are affected by dementia at 2019, and nearly 10 million cases are annually
increasing [4].

Increasing evidence suggests that metal dyshomeostasis is involved in the pathogenesis of AD,
VD, and DLB [5–7]. It is widely accepted that zinc (Zn) plays critical roles in neurodegeneration
after ischemia and in the pathogenesis of VD [8]. Here, we focus on the link between Zn and the
pathogenesis of VD and review the molecular mechanism of Zn2+-induced neurotoxicity based on our
and numerous other studies. We have already demonstrated the implications of the energy production
pathway, the disruption of calcium homeostasis, and the endoplasmic reticulum (ER)-stress pathway
in the molecular mechanism of Zn2+-induced neurotoxicity [9]. Based on our recent findings about
the involvements of the production of reactive oxygen species (ROS) and the stress-activated protein
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kinases/c-Jun amino-terminal kinases (SAPK/JNK) pathway [10], we developed a hypothetical scheme
about these molecular pathways of Zn2+-induced neurotoxicity.

Furthermore, substances that attenuate Zn2+-induced neurotoxicity may become potential drugs
for the treatment or prevention of VD [11]. Based on this idea, we have developed a convenient
screening system for such substances, and examined extracts of various agricultural products, e.g.,
fruits, vegetables, and fish. Among the tested substances, we found that carnosine (β-alanyl
histidine) protected neurons from Zn2+-induced neurotoxicity [12]. Carnosine is an endogenous
dipeptide, which possesses various advantageous properties such as antioxidant, antiglycation, and
anticrosslinking [13,14]. Carnosine is highly accumulated in skeletal muscles and olfactory bulbs in
the brain. Since the olfactory bulb is a gateway for external information and substances, carnosine
is considered to be an endogenous neuroprotective substance, namely a ‘neuroprotector’ [15]. The
supplement therapy of carnosine or its analogues are reportedly effective for the treatments of
diabetes [16], cataract [17], and brain-related disorders such as depression and Gulf-war illness [18,19].
We have developed a system for quantitative analysis of carnosine using high-performance liquid
chromatography (HPLC) [20] and demonstrated here the developmental changes of the amount of
carnosine and its analogues in the brain. We also discussed the perspectives of carnosine supplement
therapy for the prevention of VD.

2. Zinc and Vascular Dementia

VD is regarded as the second most common type of senile dementia [21]. Its risk factors are
age, male sex, diabetes, and high blood pressure. VD is linked with neurodegeneration that occurs
after stroke or ischemia [3,21]. After transient global ischemia, the interruption of blood flow and
the resulting deprivation of oxygen and glucose induce abnormal neuronal excitation in most parts
of brain, followed by excessive release of glutamate into the synaptic clefts. The successive entry of
large quantities of Ca2+ triggers delayed death of vulnerable neurons in the hippocampus or cerebral
cortex and causes the development of an infarct, which finally leads to cognitive dysfunction and VD
pathogenesis. An epidemiological study has reported the exhibition of dementia symptoms in about
30% of stroke patients after 3 years [22].

Increasing evidence suggests the involvement of Zn in neuronal death after ischemia [7,23–25].
Zn is the second most abundant trace element in the brain. High concentrations of Zn accumulate
especially in the hippocampus, cerebral cortex and amygdala [26]. Zn acts as a cofactor in more than
300 enzymatic functions and plays essential roles in normal brain functions. Moreover, a considerable
amount of Zn forms free Zn ions (Zn2+) that are stored in presynaptic vesicles of glutamatergic
neurons. In addition to glutamate, synaptic Zn2+ is secreted from the vesicles to the synaptic clefts
during neuronal excitation [27,28]. Then, it binds to several receptors including N-methyl-D-aspartate
(NMDA)-type glutamate receptors, γ -aminobutyric acid (GABA) receptors, and glycine receptors
to regulate the neuronal excitability. Zn2+ also binds to various channels including Ca2+ channels,
K+ channels and modulate their activities [29]. Although the precise role of synaptic Zn2+ is still
under investigation, it is widely accepted that Zn2+ plays significant roles in information processing
and memory formation [30,31]. Takeda et al. demonstrated that synaptic Zn2+ is involved in the
maintenance of memory formation and the AβP neurotoxicity [32]. Indeed, Zn2+ has been reported to
influence synaptic plasticity via inhibition of long-term potentiation (LTP). The disorder of ZnT3, the Zn
transporter, which involves in the accumulation of Zn at synaptic vesicles, is related to the pathogenesis
of AD and other neurodegenerative diseases [33]. Zn deficiency causes retardation in mental and
physical development and learning disorders in infants [34]. Low synaptic Zn2+ reportedly enhanced
the susceptibility to febrile seizure [35]. Moreover, some neurons have been reported to contain Cu2+

in synaptic vesicles in addition to Zn2+ [36]. Synaptic Cu2+ is also released to the synaptic clefts during
neuronal excitation and bind to NMDA-type glutamate receptors, to regulate synaptic functions as
well as Zn2+. Therefore, crosstalk between Zn2+ and Cu2+ plays important roles in physiological and
pathophysiological functions in the brain [37].
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Despite its importance, excess Zn2+ is toxic. In physiological condition, the concentration
of free Zn2+ is strictly regulated [29]. In ischemic conditions, a considerable amount of Zn2+

(up to 300 µM) is reportedly co-released with glutamate into synaptic clefts following membrane
depolarization [38]. Koh et al. have demonstrated that Zn accumulates in apoptotic neurons in
the hippocampus after ischemia [39]. Administration of calcium ethylenediaminetetraacetic acid
(Ca-EDTA), a membrane-impermeable Zn2+ chelator, protected hippocampal neurons after transient
global ischemia in experimental animals and reduced the infarct volume [40]. Kitamura et al. have
revealed an increase in extracellular Zn2+ in transient middle cerebral artery occlusion model (MCAO)
rats using a microdialysis method [41]. Furthermore, Zn2+ contributes to the increased permeability of
the blood brain barrier after ischemia [42].

The entry of Zn2+ and the increase in intracellular Zn2+ levels ([Zn2+]i), namely “Zn translocation”,
may be the primary event in Zn2+-induced neurotoxicity. There are three major routes of Zn2+

entry: voltage-gated Ca2+ channels (VGCCs), NMDA-type glutamate receptors (NMDA-Rs), and
AMPA/kainate-type glutamate receptors (A/K-Rs) [8]. Under normal conditions, most hippocampal
neurons express AMPA receptors containing the GluR2 subunit, which are poorly permeable to Ca2+

and Zn2+. However, after ischemia, an acute reduction in GluR2 expression occurs and the neurons
express a specific type of Ca2+-permeable AMPA receptors (Ca-A/K-R). As the permeabilities of Zn2+

and Ca2+ through Ca-A/K-R channels are greater than through NMDA receptor channels, increased
expression of Ca-A/K-R channels enhances the toxicity of Ca2+ and Zn2+. Zn2+ is also implicated in
the transcriptional regulation of Ca-A/K-R channels, as Ca-EDTA attenuated the ischemia-induced
downregulation of the GluR2 gene [40].

The Zn and Cu levels in the synaptic clefts are estimated to be 1–100 µM and 15 µM,
respectively [43,44]. The concentration of Zn in the cerebrospinal fluid (CSF) has been reported
to be increased by about 10–20 ppb (0.15–0.31 µM) after ischemia [41]. Considering that the synaptic
cleft is a small compartment with 120-nm radius and 20-nm height and that the total volume is
estimated to be 1% of the extracellular space [45], the concentration in the synaptic clefts may be much
higher compared with that in the CSF.

3. Zn2+-Induced Neurotoxicity

3.1. GT1–7 Cells as a Model System for Investigating Zn2+-Induced Neurotoxicity

The molecular mechanism of Zn2+-induced neuronal death is of great importance for the
development of drugs for VD. To this end, primary cultured neurons of rat cerebral cortex or
hippocampus, or PC-12 cells, a pheochromocytoma cell line, have been used by many researchers [46,47].
However, the roles of Zn2+ are highly complex in these neuronal cells, which possess glutamate receptors.
Since glutamate also causes neurotoxicity and Zn2+ regulates the glutamate-induced excitability, it
is difficult to distinguish between the effects of Zn2+ and glutamate. We found that Zn2+ induced
marked death of GT1–7 cells (immortalized hypothalamic neurons), as shown in Figure 1A, and
that these cells were highly sensitive to Zn2+ compared with other neuronal cells, including primary
cultures of the rat cerebral cortex or hippocampus neurons, PC-12 cells, and B-50 cells [48,49]. GT1–7
cells were originally developed by Mellon et al. in 1991 by genetically targeting tumorigenesis
in mouse hypothalamic neurons [50]. These cells possess neuronal characteristics such as neurite
extension, secretion of gonadotropin-releasing hormone (GnRH), and expression of neuron-specific
proteins and receptors including microtubule-associated protein 2 (MAP2), tau protein, neurofilament,
synaptophysin, GABAA receptors, dopamine receptors, and L-type Ca2+ channels. However, GT1–7
cells do not exhibit glutamate-induced toxicity, as shown in Figure 1B, because they lack or possess
low levels of ionotropic glutamate receptors [51]. Owing to these properties, we considered the GT1–7
cell line an excellent model system for investigating Zn2+-induced neurotoxicity.
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Figure 1. Zn2+-induced neurotoxicity in GT1–7 cells. (A) GT1–7 cells were exposed to with or without
30 µM ZnCl2. After 24 h, live cells were stained with carboxy fluorescein (green) and dead cells
were stained with propidium iodide (red). Bar represents 50 µM. (B) Viability of GT1–7 cells after
exposure to Zn or glutamate. GT1–7 cells were treated with ZnCl2, or glutamate. After 24 h, cell
viability was analyzed using the WST-1 method, which counts the living cell number by measures
the cellular mitochondrial dehydrogenase activity [52]. Data are expressed as mean ± SEM, n = 6.
* p < 0.05, ** p < 0.01, compared with control. (C) Viability of GT1–7 cells after exposure to Zn with
other pharmacological substances. GT1–7 cells were treated with 30 µM Zn with sodium pyruvate (Pyr:
1 mM), o-phenanthroline (o-phe; 20 µM) carnosine (Car: 1 mM), CuCl2 (10 µM), or AlCl3 (100 µM).
After 24 h, cell viability was analyzed using the WST-1 method. Data are expressed as mean ± SEM,
n = 6. * p < 0.05, ** p < 0.01 compared with Zn alone.

3.2. Molecular Pathways Underlying Zn2+-Induced Neurotoxicity

We investigated the molecular mechanism underlying Zn2+-induced neurotoxicity using GT1–7
cells. Zn2+ induced apoptotic death of GT1–7 cells, which were terminal deoxynucleotidyl
transferase-mediated biotinylated UTP nick end labeling (TUNEL)-positive and exhibited DNA
fragmentation [48,49]. The LD50 was estimated to be 35 µM.

First, we tested the effects of treatment with various pharmacological agents prior to Zn2+ treatment
of GT1–7 cells and found that neither antagonists nor agonists of excitatory neurotransmitters (D-APV,
glutamate, and CNQX), nor those of inhibitory neurotransmitters (bicuculline, muscimol, baclofen,
and GABA) influenced the viability of GT1–7 cells. However, several compounds including energy
substrates (pyruvate and citrate), metal chelators (o-phenanthroline and deferoxamine), peptides,
and amino acids (carnosine, anserine, and histidine) attenuated the Zn2+-induced death of GT1–7
cells [53–57] (Figure 1). Furthermore, we investigated the viability of GT1–7 cells with or without other
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metal ions after exposure to Zn2+. We found that co-exposure to sublethal concentrations of Cu2+

and Ni2+ remarkably exacerbated Zn2+-induced death, whereas co-exposure to Al3+, Gd3+, or Ca2+

attenuated the Zn2+-induced death of GT1–7 cells [58–60].
Next, we analyzed the Zn2+-induced genetic changes using DNA microarray analysis and

real-time PCR (RT-PCR). After 4 h of exposure to Zn2+, various genes including metal-related genes (Zn
transporter 1 (ZnT-1), metallothionein 1 (MT1), and metallothionein 2 (MT2)), endoplasmic reticulum
(ER) stress-related genes, signal transduction-related genes, and Ca2+ signaling-related genes were
upregulated [56,57]. Moreover, the gene expression after co-exposure to Cu2+ and Zn2+ (Cu2+ + Zn2+)
was investigated [59]. We then used the substances that attenuated Zn2+-induced neurotoxicity as
model compounds and investigated the molecular pathways of Zn2+-induced apoptotic neuronal death.
In the following subsections we described the five pathways involved in Zn2+-induced neuronal death.

3.2.1. Energy Production Pathway

Administration of sodium pyruvate, an energy substrate, significantly inhibited the Zn2+-induced
death of GT1–7 cells [53]. This result is consistent with findings of other studies using primary cortical
neurons [61,62], oligodendrocyte progenitor cells [63], or retinal cells [64]. Shelline and his colleagues
have reported that Zn2+ exposure decreased the levels of NAD+ and ATP in cultured cortical neurons,
and that treatment with pyruvate restored the NAD+ level [61]. Furthermore, administration of
pyruvate to experimental animals reportedly attenuated the neuronal death after ischemia in vivo [65].
We demonstrated that pyruvate and citrate attenuated Cu2+-enhanced Zn2+-induced neurotoxicity of
GT1–7 cells [66]. Increasing evidence suggests that Zn2+ is localized within mitochondria and triggers
impaired mitochondrial functions [67,68]. Therefore, energy failure and inhibition of glycolysis in
mitochondria may be involved in Zn2+-induced neurotoxicity.

3.2.2. Ca2+ Homeostasis

Our pharmacological approach demonstrated that nimodipine, an L-type VGCC blocker,
attenuated Zn2+-induced neurotoxicity. Consistently, Kim et al. have reported that Zn2+-induced
death in PC-12 cells was attenuated by nimodipine, and enhanced by the L-type VGCC activator,
S(−)-Bay K 8644 [69]. Other L-type Ca2+ channel blocker, nifedipine, also attenuated Zn2+-induced
neurotoxicity [70]. Additionally, Kim et al. demonstrated that aspirin inhibited N-type VGCC and
attenuated Zn2+-induced neurotoxicity by preventing Zn2+ entry [71]. These studies suggest that Ca2+

dyshomeostasis is involved in the mechanism of Zn2+-induced neurotoxicity.
To further address this issue, we used a high-resolution multisite video imaging system with

Fura-2 as the cytosolic Ca2+ fluorescent probe to observe temporal changes in the intracellular calcium
level ([Ca2+]i) after exposure to Zn2+ [49]. This multisite fluorometry system enables simultaneous
long-term observation of temporal changes in [Ca2+]i in more than 50 neurons. After the exposure to
Zn, increases in [Ca2+]i were observed in GT1–7 cells. As noted above, addition of Al3+ significantly
inhibited Zn2+-induced neurotoxicity in a dose-dependent manner. We found that pretreatment with
Al3+ significantly blocked the Zn2+-induced [Ca2+]i elevations, though it did not influence Zn2+ influx.
Although Al is neurotoxic, it did not exhibit toxicity in this experimental condition since Al3+ is difficult
to enter the cells without membrane permeable chelators [72]. Thus, it is possible that Al3+, a known
blocker of various types of Ca2+ channels [73], attenuates Zn2+-induced neurotoxicity by blocking
Zn2+-induced elevations in [Ca2+]i.

3.2.3. Endoplasmic Reticulum (ER) Stress Pathway

Our DNA microarray analysis demonstrated that Zn2+ induced a marked upregulation of
ER stress-related genes, including CCAAT-enhancer-binding protein homologous protein (CHOP),
and growth-arrest and DNA-damage-inducible gene 34 (GADD34) [56,57].

ER stress is associated with the accumulation of unfolded or misfolded proteins and is
involved in various neurological disorders, such as cerebral ischemia, AD, and prion diseases [74].
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ER stress is distinguished by three signaling proteins (ER stress sensors) termed inositol-requiring
enzyme-1α (IRE1α), protein kinase R (PKR)-like ER kinase (PERK) and activating transcription factor
6 (ATF6) [75]. Upon activation, IRE1α, PERK, and ATF6 induce various signal transduction events.
The phosphorylation of the α subunit of eukaryotic translation initiation factor 2α (elF2α) is mediated
by PERK, and then regulates the translation of activating transcription factor 4 (ATF4). ATF4 is a
transcription factor that drives the expression of CHOP and GADD34.

For more detailed analysis, we used RT-PCR to examine the Zn2+-induced expression of
these genes and other ER stress-related genes such as immunoglobulin binding protein (Bip), ER
degradation-enhancing α-mannosidase-like protein (EDEM), spliced X-box binding protein-1 (sXBP1),
glucose-regulated protein 94 (GRP94), and protein disulfide isomerase (PDI) [59]. After 4 h of exposure
to Zn2+ alone, enhanced expression levels of activity-regulated cytoskeleton (Arc), CHOP, GADD34,
and ATF4 were observed as well as metal-related genes, including ZnT-1, MT1, and MT2. By contrast,
other ER stress-related genes including Bip, EDEM, sXBP1, GRP94, and PDI did not exhibit significant
changes. Based on our results, it is plausible that the PERK-related pathway is involved in Zn2+-induced
ER stress. Furthermore, a synergistic increase in the gene expression levels of Arc, CHOP, and GADD34
was observed in cells co-exposed to Cu2+ and Zn2+, despite the fact that Cu2+ alone did not induce
significant changes in these genes. CHOP is responsible for initiating an apoptotic cascade [76] and
mediates the activation of GADD34, which reportedly increases after traumatic brain injury [77]. We
also demonstrated that the amount of CHOP protein was significantly increased after Cu2++Zn2+

treatment, compared with Zn2+ alone using western blot analysis [59]. Furthermore, we found that
dantrolene, an inhibitor of ER stress, attenuated Zn2+-induced neurotoxicity [59]. Based on these
findings, it is highly likely that the ER stress pathway is critically involved in Zn2+-induced neurotoxicity,
and that low concentrations of Cu2+ promote Zn2+-induced neurotoxicity by potentiating the ER stress
pathway. Moreover, we have demonstrated that ER stress is involved in the Ni2+-enhancement of
Zn2+-induced neurotoxicity [60].

3.2.4. SAPK/JNK Pathway

Our DNA microarray results demonstrated that several genes downstream of the stress-activated
protein kinases/c-Jun amino-terminal kinases (SAPK/JNK) pathway, such as c-Jun and ATF2, were
upregulated in cells exposed to Cu2+ + Zn2+. SAPK/JNK are members of the mitogen-activated
protein kinase (MAPK) family. The SAPK/JNK signaling pathway plays critical roles in apoptotic cell
death, necroptosis, and autophagy [78]. This pathway has been shown to be activated by a variety of
environmental stressors, such as oxidative stress, inflammatory cytokines, and metals. Upon activation
of this pathway, MAPK kinase 4 (MKK4) or MKK7 phosphorylates and activates the SAPK/JNK.
Thereafter, c-Jun and ATF2, major downstream factors of SAPK/JNK, are phosphorylated and activated
by SAPK/JNK. Ultimately, the phosphorylated forms of c-Jun and ATF2 induce downstream factors
related to cell death and mitochondrial injury, leading to cell death. We examined the expression of
these factors and we found that phosphorylated (i.e., active) forms of SAPK/JNK were increased by
Cu2+ + Zn2+ treatment in GT1–7 cells [10]. Consistently, phospho-c-Jun and phospho-ATF2 were also
induced by Cu2+ + Zn2+ co-treatment. Moreover, SP600125, an inhibitor of the SAPK/JNK signaling
pathway, significantly suppressed the activation of the SAPK/JNK signaling pathway by Cu2+ + Zn2+

and the neuronal cell death.

3.2.5. ROS Pathway

Oxidative stress is involved in various degenerative pathways; reactive oxygen species (ROS)
induce the SAPK/JNK pathway, the ER stress pathway, and numerous other adverse effects [79,80]. Zn
exists only as Zn2+ and is not implicated in the redox pathway, although it is reportedly linked with
oxidative stress. In contrast, Cu is a redox-active metal that exists as oxidized Cu2+ and reduced Cu+.
We found that the antioxidant, thioredoxin-conjugated human serum albumin (HSA-Trx), attenuated
neuronal death induced by Cu2+ + Zn2+ [81]. We also found that the addition of Cu2+ induced
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ROS production in GT1–7 cells, despite that Zn2+ alone did not produce ROS nor did it influence
Cu2+-induced ROS production [10]. Thus, it is possible that Cu2+ triggers ROS production, and then
induces the SAPK pathway and/or the ER pathway, thereby enhancing Zn2+-induced neurotoxicity.

3.3. Hypothesis Regarding the Molecular Pathways Underlying Zn2+-Induced Neurotoxicity

Based on these results, we propose a possible scheme of the pathways underlying Zn2+-induced
neurotoxicity (Figure 2).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 17 
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Figure 2. Schematic of the hypothetical molecular mechanisms underlying the protective effects of
carnosine against neuronal death induced by Zn. Zn and Cu are stored in presynaptic vesicles and
secreted to the synaptic clefts during ischemia. Excess amounts of secreted Zn can translocate into cells
and induce disruption of Ca2+ homeostasis, energy failure in mitochondria, ER stress and oxidative
stress, and apoptotic neuronal death. Co-exposure to Cu2+ enhances these effects. These pathways
are inhibited by Zn chelators (Ca-EDTA and o-phenanthroline (o-phe)), Ca2+ channel blockers (Al3+

and nimodipine), energy substrates (pyruvate (Pyr) and citrate (Cit)), and the inhibitor of the ER stress
pathway (dantrolene (Dant)) or the inhibitor the SAPK/JNK signaling pathway (SP600125), antioxidants
(HSA-Trx), or carnosine (CAR). Carnosine is synthesized in glial cells and is secreted in response to
stimulation by glutamate and Zn. It protects neurons from Zn neurotoxicity. Carnosine inhibits the ER
stress-related apoptotic pathways and the ROS pathway.
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In the case of transient global ischemia, neuronal excitation occurs in a large area of the brain.
Thereafter, both Zn2+ and Cu2+ are secreted from synaptic vesicles into the synaptic clefts and
translocate into the neurons. Chelators such as Ca-EDTA and o-phenanthroline block this translocation
process and attenuate Zn2+-induced neuronal death. Furthermore, the increased [Zn2+]i triggers the
inhibition of the energy production machinery in the mitochondria. The energy substrates, pyruvate
and citrate, prevent this process. Zn2+ also leads to an increase in [Ca2+]i levels, which is inhibited by
Al3+ and other Ca2+ channel blockers. The increase in [Ca2+]i induces ROS production and triggers
the ER stress and various apoptotic pathways including the SAPK/JNK pathway. Co-exposure to
Cu2+ further induces ROS production and enhances the ER stress pathway and/or the SAPK/JNK
pathway. Finally, these processes trigger neurodegenerative pathways, and lead to the neuronal death
observed in VD. Carnosine is released from glial cells and enters into neurons by peptide transporters.
Carnosine regulates Zn2+ and Cu2+ homeostasis, inhibits Zn2+-induced ER stress and ROS production,
and protects neurons from excess Zn2+ (details are discussed in Section 4.4).

4. Carnosine as a Protective Substance Against Zn2+-Induced Neurotoxicity

4.1. Screening System for Protective Substances Against Zn2+-Induced Neurotoxicity

Considering the involvement of Zn in ischemia-induced neuronal death, substances that protect
against Zn2+-induced neuronal death may be potential candidates for the prevention or treatment of
neurodegeneration following ischemia, and ultimately provide a lead for VD treatments. To explore
this idea, we established a convenient and rapid screening system for such substances using GT1–7
cells [10]. We examined the potential inhibitory effects of various agricultural products such as
vegetable extracts, fruits extracts, and fish extracts. Among tested, we found that extracts of Japanese
eel (Anguilla japonica), mango fruit (Mangifera indica L.), and round herring (Etrumeus teres) protected
GT1–7 cells from Zn2+-induced neurotoxicity, then separated the active fraction using HPLC and
determined the components’ structures by LC-mass spectrometry (MS). Finally, the active compounds
were revealed to be carnosine, citrate, and histidine [12,56,82].

4.2. Carnosine as an Endogenous Neuroprotector

Carnosine is a dipeptide composed of β-alanine and histidine. Figure 3 shows the chemical
structures of carnosine and its analogues (anserine (1-methyl carnosine) and homocarnosine). They are
naturally occurring dipeptides commonly present in most vertebrate tissues such as birds, fishes, and
mammals including humans [13,14]. Carnosine is found in particularly high concentrations in animals
and fish that exhibit high levels of exercise, such as horses, chickens, bonitos, and whales. Carnosine is
one of the most abundant small-molecule compounds in skeletal muscles with concentrations ranging
from 50 to 200 mM, similar to those of creatine and ATP [83]. During high-intensity anaerobic exercise,
muscle contractions lead to lactic acid production and a decrease in intracellular pH, which influences
various metabolic functions, and the resulting acidosis caused muscle contractile fatigue. Owing to the
alkaline property of carnosine (pKa value was 7.01), it is thought to play a significant role in intracellular
buffering and in maintaining the pH balance in the muscle [84]. Therefore, the concentration of muscle
carnosine is considered to have a positive relationship with exercise performance. Indeed, highly
trained athletes have higher carnosine levels than those in untrained individuals [85]. Compared with
humans, horses have a 6–10 times higher muscle carnosine concentration. We analyzed the amount of
carnosine in five muscles of thoroughbred horses and found that the amount of carnosine is linked to
the muscle fiber type [86]. Furthermore, dietary supplementation of carnosine or β-alanine induces
an increase in the concentration of muscle carnosine and a delay in fatigue during high-intensity
exercise [87].
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Additionally, carnosine possesses various beneficial characteristics such as antioxidation,
antiglycation, anticrosslinking, and metal chelation [14]. Carnosine scavenges both reactive oxygen and
nitrogen, which contain unpaired electrons. Carnosine inhibits lipid oxidation through a combination of
free radical scavenging and metal chelation. It inhibits the Maillard reaction that involves reducing sugar
and proteins, providing a multitude of end products, most notably advanced glycation end-products
(AGEs), which contribute to the pathogenesis of various senile diseases such as AD, vascular stiffening,
atherosclerosis, osteoarthritis, inflammatory arthritis, and cataracts. Carnosine and its analogues
are reportedly effective for oxidative stress-induced disorders [88]. Furthermore, carnosine has
anticrosslinking properties that inhibit the oligomerization of proteins. It is widely accepted that
crosslinking of disease-related proteins (e.g., AβP, prion protein, and α-synuclein) and the subsequent
conformational changes are central in the pathogenesis of various neurodegenerative diseases termed
“conformational diseases” including AD, DLB, and prion diseases [89]. Corona et al. have demonstrated
that carnosine supplementation inhibited AβP deposition and improved learning abilities of AD model
mice [90]. Carnosine prevents the oxidative stress and inflammation induced by AβP [91]. We showed
that carnosine attenuated the neuronal death induced by prion protein fragment peptide (PrP106–126)
by changing its conformation [92]. Since carnosine inhibits the fibrillization of lens α-crystalline,
N-acetyl carnosine is used as a drug for cataract treatment [17]. Carnosine is a chelator of metal ions
and forms complexes with Ca2+, Cu2+, and Zn2+. Thus, it is likely that this dipeptide controls the
availability of Zn2+ in neuronal tissue, particularly in the olfactory lobe where both carnosine and Zn
are enriched. The Zn-carnosine complex, termed polaprezinc, is effective in the repair of ulcers and
other lesions in the alimentary tract [93]. Polaprezinc is also used for Zn supplement therapy and is
protective against the cadmium-induced lung injury [94]. Additionally, carnosine reportedly attenuates
Mn-induced neurotoxicity [95]. Based on these beneficial characteristics, carnosine is considered to be
a “gatekeeper” or “neuroprotector” in the brain [15].

4.3. Carnosine in the Brain

The concentrations of carnosine and related peptides are different among species and vary
according to regions [14]. To explore the significance of carnosine and related compounds, we have
established a convenient system for quantitative analysis of carnosine, anserine, and homocarnosine
using HPLC [20]. Since carnosine and its analogues are highly hydrophilic, it is difficult to separate
these compounds using reversed-phase HPLC equipped with a conventional octadecylsilyl (ODS)
column, which is generally used in peptide analysis. Thus, we used an HPLC system equipped with
a carbon column (HypercarbTM), which contains porous graphite carbon. Using this system, we
have analyzed the amount of carnosine and its analogues in various foods using conventional UV
spectroscopy at 215 nm [9].

We investigated their presence in the rat brain. Figure 4A shows a typical chromatogram of
standard carnosine, anserine, alanyl histidine, and homocarnosine. Figure 4B exhibits a typical
chromatogram of a water extract of rat olfactory bulbs dissected after 15 weeks of age, which was
heated at 95 ◦C for 15 min to remove proteins. After this simple pre-treatment, the recovery rates of
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carnosine and other compounds were determined to be more than 99%. We found that the considerable
amount of carnosine in olfactory bulbs. However, only small amounts of carnosine were observed in
the cerebral cortex and cerebellum, and anserine was not detected in any of the tested regions. When
we examined the changes in carnosine and its analogues in embryos, and rats at 6 and 15 weeks of age,
we found that the amount of carnosine in olfactory bulbs increased with age (Figure 4C). Meanwhile,
homocarnosine did not exhibit changes with age after birth (Figure 4D). These results are consistent
with previous studies. In the mammalian brain, carnosine and homocarnosine, but not anserine, have
been detected [96]. It is secreted from oligodendrocytes by the stimulation of glutamate [97]. Boldyrev
et al. reviewed that carnosine is mainly present in neurons of olfactory bulbs or in glial cells, and its
concentration in the olfactory bulb is more than 1000 µmol/kg [14], similar to our findings in Figure 4C.
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Figure 4. Developmental changes in carnosine and related compounds in the brain. Each brain region
(cerebrum, cerebellum, and olfactory bulb) was dissected from Wistar rats, homogenized and heated
at 95 ◦C for 15 min. After centrifugation, the supernatant was analyzed by HPLC equipped with a
HypercarbTM column (Thermo Fisher Science, Waltham, MA, USA). Carnosine (Car), homocarnosine
(HC), alanyl histidine (AH), and anserine (Ans) were analyzed using an isocratic elution of 7%
acetonitrile in the presence of 0.1% trifluoroacetic acid at a flow rate of 1 mL/min and monitored with
UV at 215 nm. Data are expressed as mean ± S.E.M (n = 4). (A) Typical chromatogram of standard
solutions. (B) Typical chromatogram of the olfactory bulb extract at 15 weeks. (C) Developmental
changes in carnosine. The amount of carnosine (nmol/g wet tissue) in cerebral cortex, cerebellum,
and olfactory bulb at embryo 18 days (E18), and 6 weeks (6 W) and 15 weeks (15 W) postnatal was
analyzed by HPLC. Data are expressed as mean ± S.E.M (n = 4). * p<0.05, compared with E18. (D)
Developmental changes in homocarnosine. The amount of homocarnosine (nmol/g wet tissue) in
cerebral cortex, cerebellum, and olfactory bulb at embryo 18 days (E18), and 6 weeks (6 W) and 15 weeks
(15 W) postnatal was analyzed by HPLC. Data are expressed as mean ± S.E.M (n = 4).

4.4. The roles of Carnosine in Protection from Zn2+-Induced Neurotoxicity

We found that carnosine protected neurons against Zn2+-induced neurotoxicity, and then
investigated how it affects the pathways. As carnosine can chelate Zn2+, it is plausible that it
binds extracellular Zn2+ and inhibits Zn2+ translocation like other chelators. However, our results
using a Zn2+-sensitive fluorescent dye and RT-PCR indicated that carnosine did not influence [Zn2+]i

nor the expression of ZnT-1 [57]. Meanwhile, we demonstrated that carnosine inhibited Zn2+-induced
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upregulation of ER stress-related genes such as GADD34 and CHOP, and attenuated neurodegeneration
induced by ER-stressors such as thapsigargin and tunicamycin [57]. Thus, it is possible that carnosine
protects neurons from Zn2+ by affecting the ER stress pathway, not by inhibiting Zn2+ translocation.
Based on the activities of carnosine, we have published two patents for carnosine and related
compounds (D-histidine) as drugs or supplements for the prevention and/or treatment of VD [98,99].
Moreover, increasing evidence from experimental animals suggests that carnosine protects against
ischemia-induced neurodegeneration in vivo [100–103].

It is widely believed that orally administered carnosine rapidly degraded toβ-alanine and histidine
by carnosinase in the blood. However, the supplementation of carnosine or β-alanine reportedly
increased the level of carnosine in the brain [104,105]. Therefore, it is possible that dietary carnosine or
related amino acids can be synthesized to carnosine in the brain and enters into cells by oligopeptide
transporters such as PEPT2, PHT1, and PHT2 [106]. Considering the carnosine level in the body
decreases with age [107], the carnosine supplementation therapy may be beneficial for VD, AD, and
other diseases. The supplementation of carnosine (40 mg/day) was effective in treatment of patients
with major depressive disorders [18]. Recent epidemiological study revealed the inverse correlation
between serum β-alanine and pathogenesis of dementia [108]. Furthermore, the carnosine/anserine
supplementation (750 mg anserine and 250 mg carnosine per day) reportedly improved episodic
memory in elderly people [109] or mild cognitive impairment [110].

5. Conclusions and Future Perspectives

Our hypothesis about the molecular pathways of Zn2+-induced neurotoxicity may aid for the
developments of preventive drugs for VD. Carnosine has many beneficial properties such as water
solubility, heat-inactivation, and being nontoxic, and therefore, it may become a good neuroprotective
drug or supplement that is beneficial for our health. Further research on the molecular mechanism by
which carnosine prevents neurotoxicity is required.
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AD Alzheimer’s disease
AβP Alzheimer’s β-amyloid protein
AMPA α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid
Arc activity-regulated cytoskeleton
Ca-EDTA calcium ethylenediaminetetraacetic acid
CHOP CCAAT-enhancer-binding protein homologous protein
D-APV 2-amino-5-phosphonovalerate
ER endoplasmic reticulum
GABA γ-aminobutyric acid
GnRH gonadotropin-releasing hormone
GADD34 growth-arrest and DNA-damage-inducible gene 34
HPLC high performance liquid chromatography
LTP long-term potentiation
[Ca2+]i intracellular calcium levels
NMDA N-methyl-D-aspartate, ROS; reactive oxygen species
SAPK/JNK stress-activated protein kinases/c-Jun amino-terminal kinases
VD vascular dementia
VGCC voltage-dependent Ca2+ channel
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