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Abstract: Lysosomal storage disorders (LSDs) are predominantly very rare recessive autosomal
neurodegenerative diseases.Sphingolipidoses, a sub-group of LSDs, result from defects in lysosomal
enzymes involved in sphingolipid catabolism, and feature disrupted storage systems which trigger
complex pathogenic cascades with other organelles collaterally affected. This process leads to cell
dysfunction and death, particularly in the central nervous system. One valuable approach to gaining
insights into the global impact of lysosomal dysfunction is through metabolomics, which represents
a discovery tool for investigating disease-induced modifications in the patterns of large numbers
of simultaneously-analysed metabolites, which also features the identification of biomarkers Here,
the scope and applications of metabolomics strategies to the investigation of sphingolipidoses is
explored in order to facilitate our understanding of the biomolecular basis of these conditions. This
review therefore surveys the benefits of applying ’state-of-the-art’ metabolomics strategies, both
univariate and multivariate, to sphingolipidoses, particularly Niemann-Pick type C disease. Relevant
limitations of these techniques are also discussed, along with the latest advances and developments.
We conclude that metabolomics strategies are highly valuable, distinctive bioanalytical techniques for
probing LSDs, most especially for the detection and validation of potential biomarkers. They also
show much promise for monitoring disease progression and the evaluation of therapeutic strategies
and targets.

Keywords: metabolomics; lysosomal storage disorders; Niemann-Pick Type C Disease; lipidoses;
nuclear magnetic resonance (NMR) analysis; liquid chromatography-mass spectrometric (LC-MS)
analysis; multivariate power calculations; validation and cross-validation; biomarkers

1. Introduction

In the functional lysosome, lipids and other macromolecules, such as carbohydrates, peptides,
and nucleic acids, are degraded through the action of acid hydrolases. Inherited defects in genes that
encode lysosomal enzymes and non-enzymatic proteins can cause the build-up macromolecules within
the late endocytic system [1]. The ‘umbrella’ term for these diseases is lysosomal storage disorders
(LSDs), a classification that can be further sub-categorised into lipid storage disorders (lipidoses),
mucopolysaccharidoses, glycoprotein storage disorders and mucolipidoses. The lipidoses are the focus
of this review, and are listed in Table 1, together with their corresponding defective genes encoding the
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specific enzyme/protein which is depleted or malfunctional. Table 1 provides detailed information
regarding treatment options, including enzyme replacement therapy (ERT), which is used to remove
the accumulation of the respective lipids by enzymatic processes; substrate reduction therapy (SRT),
which is employed to remove the accumulation of the respective lipids by the use of a drug or binding
molecule; chaperone therapy, which aims to ‘scaffold’ the protein so it is no longer unfolded and
functions appropriately; and finally, haematopoietic stem cell therapy, which involves the implantation
of stem cells. Niemann-Pick disease type C (NPC) is caused by mutations in two genes NPC1 (95% of
clinical cases) and NPC2 and exhibits storage of multiple sphingolipids and cholesterol. The lysosomal
storage of sphingosine in NPC gives rise to a loss of lysosomal calcium ions, a process accompanied
by the accumulation of unesterified cholesterol and glycosphingolipids [2,3]. NPC1 encodes a large
trans membrane protein that resides in the limiting membrane of the lysosome and is termed NPC1
protein [2]. NPC2 encodes a small soluble lysosomal protein that binds cholesterol within the lysosomal
lumen, and which is believed to transfer cholesterol to the NPC1 protein. Full details concerning how
such proteins may complement each other to permit cholesterol passage through the glycocalyx and the
lysosomal membrane are available in [2]. Figure 1a shows how NPC disease impacts on the trafficking
of lipids, whereas Figure 1b shows mechanistic schemes depicting the pathogenesis of a series of other
lipidoses which arise from of enzymatic defects, unlike trafficking disorders as in NPC disease.

The applications of multivariate (MV) metabolomics strategies have been comprehensively
reviewed for many diseases [4], for example cancer [5,6] and Parkinson’s Disease [7]. Links between
LSDs and more common neurological disorders have also been described [1,3].

Metabolomics represents the investigation of a wide range of metabolites simultaneously within
selected biological system. A plethora of such systems can be explored, and which may be microscopic,
such as a living cell, or alternatively, tissues and organs biopsies, and biofluids, e.g., blood plasma and
urine. A metabolomics strategy is advantageous, since the chosen system can be analysed at the point
of response after exposure to specific stimuli, for example treatment or exercise regimens, under pre-set
conditions determined by the experimental design. Metabolomics assists with allowing researchers
to develop a deep understanding of how the system under study responds to such stimuli and in
clinical studies, this has potential applications for the monitoring of patient diagnosis and prognosis,
therapeutic management and even drug development. Metabolomics is typically performed using
highly reproducible and specialised multicomponent analytical techniques.

Our major focus in the present review will be placed on high-resolution nuclear magnetic
resonance (NMR) spectroscopic, and mass-spectrometric (MS) including liquid chromatographic-mass
spectrometric (LC-MS) and LC-MS-MS tandem analyses. Applications of metabolomics techniques to
LSD biomarker discovery have markedly increased recently, and these are summarised in Table 2.

Table 1. Gene defects and approved therapies for lipid storage disorders.

Lipid Storage Disorder Defected Gene Approved Therapies

GM1 Gangliosidosis GLB1 S/S

Sandhoff Disease (GM2) HEXB S/S

Tay-Sachs Disease (GM2) HEXA S/S

Niemann-Pick diseases type A & B (NPA & NPB) SMPD1 S/S

Niemann-Pick disease type C1 (NPC1) NPC1 (95%) SRT

Niemann-Pick disease type C2 (NPC2) NPC2 (5%) SRT

Gaucher Disease (GD) types I-III GBA ERT and SRT

Fabry Disease (FD) GLA ERT and CT

Krabbe Disease (KD) GLB HSCT and S/S

Sphingolipidoses with corresponding defective genes and approved therapies. Abbreviations: CT, Chaperone
Therapy; ERT, Enzyme Replacement Therapy; HSCT, Haematopoietic Stem Cell Therapy; S/S, Symptomatic and
Supportive Therapy; SRT, Substrate Reduction Therapy.
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The multicomponent analytical ability of high-resolution NMR analysis technologies offers major
advantages which are not often readily achievable by alternative techniques such as LC-MS, which
although of greater sensitivity, are focused on the targeted measurement of only one or several
chromatographically related biomarkers. Indeed, the application of a series of n (for example, ≥ 6)
biomarker concentration variables in a metabolomics context offers major advantages over the detection
and determination of only a single biomarker variable. First, biofluid or tissue biopsy ‘patterns’ or
‘signatures’ of metabolites which are representative of a particular LSD process (and potentially
encompassing a range of such biomarkers, each with highly significantly up- or downregulated
concentrations) will, at least in principle, provide a much higher level of confidence regarding the
diagnosis, prognosis and response to treatment of such disorders than that realisable from a single
biomarker; second, the metabolic patterns detected and determined, together with their correlations
to particular components or factors [linear and/or sometimes quadratic combinations of predictor
biomarker variables] provide extensive and valuable information regarding the nature of the metabolic
stress response(s) or disturbance(s), e.g., pathogenic imbalances in amino acid, amino-sugar, fatty acid
and nucleotide metabolism, TCA cycle intermediates, etc., and also the class of organ and tissue damage
(e.g., neurodegeneration), together with the sub-cellular localizations involved; third, the identification
of ‘suppressor’ variables, i.e., those which do not directly provide disease classification information
but nevertheless exert a significant and sometimes substantial influence on reliable biomarker level
variables themselves, are also detectable using correlated component regression (CCR) approaches [8].

This review will critically consider the recent history and applications of metabolomics analysis
strategies to the biomolecular investigation of sphingolipidoses. For the purpose of this review, NPC1
will be considered as a sphingolipidosis, because in addition to cholesterol it accumulates sphingolipids,
and since it shares symptoms and pathogenic mechanisms with the sphingolipidoses Niemann-Pick
types A and B.
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Table 2. Biomarkers for lipid storage disorders.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(1) NPC

Mouse Brain
Mouse Liver

Mouse Spleen
LC-MS-MS ~20 specimens

↑ Sphingolipid species in the
liver

↑ GM2 and GM3 gangliosides
in the brain and spleen

Results expressed as mean±SEM values; two-tailed single
factor ANOVA model (p ≤ 0.05 was considered significant).

Bonferroni correction applied.
Biomarker heatmap.

[9]

Human Plasma
Human CSF LC-MS-MS 56 NPC1

56 Controls

↑Monohexosylceramide
and ceramide
↓ Sphingoid bases

Human Plasma LC-MS-MS

109 NPC1
88 Controls

45 Heterozygous
carriers

↑ 7-Ketocholestrol and
cholestane-3β5α6β-triol

Results expressed as mean ±SEM values; two-tailed single
factor ANOVA model (p ≤ 0.05 was considered significant). [10]

Human Plasma LC-MS-MS 5 NPC1
7 Controls

↑ Lysophingomyelin-509 and
sphingosylphosphorylcholine Results expressed as mean ± SD; Student’s t-test [11]

Human Plasma LC-ESI-MS-MS 13 NPC1
60 Controls

↑ Cholestane-3β5α6β-triol and
7-ketocholestrol

Preliminary Kolmogorov-Smirnov test. Student’s t-test for
normally distributed variables and a Mann-Whitney test

for non-normally distributed variables. Pearson correlation
coefficients were employed to evaluate relationships (p <

0.05 was considered significant). ROC curves were
generated (0.998 for cholestane-3β5α6β-triol): specificity of

98.3%; sensitivity of 100%.

[12]

Human Plasma LC-MS-MS
148 non-NPC1

6 NPC
11 NPB1 NPA

↑ Cholestane-3β5α6β-triol Box and whisker plot, mean values only. [13]

Human Urine LC-ESI-MS

1 NPC1 patient
1 3β-HSD deficiency

1 control infant
1 control adolescent

↑ Sulphate conjugates of
cholesterol and bile acids in
NPC and 3β-HSD deficiency

Counts reported in NPC and 3 β-HSD and no counts
reported in controls. No statistical analysis performed. [14]
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Table 2. Cont.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(1) NPC

Human Plasma GC-MS
25 fasting NPC1

25 Controls
23 heterozygotes

↑ Cholestane-3β5α6β-triol and
7-ketocholestrol

Results expressed as mean±SEM values. Two-tail single
factor ANOVA (p ≤ 0.05 was considered significant).

Bonferroni correction applied.
Cholestane-3β5α6β-triol (p < 0.001) ROC curve AUROC

value 1.0.
7-ketocholesterol (p = 0.05) ROC Curve AUROC value

0.9984.

[15]

Mouse Liver 1H NMR
28 Wild-Type

31 Heterozygote
30 NPC1

↑ Phenylalanine, tyrosine
glutamate, lysine/ornithine,

valine threonine,
hypotaurine/methionine

↓ Inosine
nicotinate/niacinamide,
phosphoenolpyruvate,
3-hydryphenylacetate

Analysis of covariance (ANCOVA) model incorporating 3
first-order interaction components of variance;

ANOVA-simultaneous component analysis (ASCA);
Random Forest (RF) model (out-of-the-bag error value
0.175 and 0.19); AUROC value 0.94; Metabolic pathway

topological analysis (MPTA).

[16]

Human Plasma 1H NMR

40 untreated NPC
Total 89 from 34 in
duplicate treated

with Miglustat over
2-year period

30 Control
31 Heterozygote

↓ HDL-cholesterol and
LDL-cholesterol in NPC vs

Control
↑ Triacylglycerol in NPC vs

Control
↑ Ca2+ ions in NPC vs HET
↓ HDL-Cholesterol in NPC vs

HET

ANOVA with Bonferroni correction. PCA scores plots
(RF model: Out-of-the-bag error 0.089±0.0002 (mean±SEM)

Canonical correlation analysis (CCorA).
[17]

Human Urine LC-ESI-MS-MS

2 NPC patients
2 3B-hydroxysteroid

dehydrogenase
deficient patient

8 controls

↑ 3β-Sulfooxy-
7β-N-acetylglucosaminyl-5-cholen-24-oic
acid, and its glycine-amide and

taurine-amide derivatives

Mean±SD values only. [18]
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Table 2. Cont.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(1) NPC

Human Urine LC-MS-MS

23 NPC patients
28 Controls

7 Patients with
cerebrotendienous

xanthomatosis,
glycogen storage

disease types I and II,
citrin deficiency and
abetalipoproteinemia

↑ 3β-Sulfooxy-7β-N-
acetylglucosaminyl-5-cholen-

24-oic acid, and its
glycine-amide and

taurine-amide derivatives

Wilcoxon’s t-test applied to all metabolites detectable
(p < 0.05)

AUROC value > 0.95 for each marker
[19]

Human Urine LC-MS-MS 28 NPC Patients
38 Controls

↑ 3β-Sulfooxy-7β-hydroxy-5-
cholen-24-oic acid,

3β-sulfooxy-7-oxo-5-cholen-24-oic
acid, non-amidated
3βsulfooxy-7β-N-

acetylglucosaminyl-5-cholen-
24-oic acid, glycine-amidated

3β-sulfooxy-7β-N-
acetylglucosaminyl-5-cholen-

24-oic acid and
taurine-amidated
3β-sulfooxy-7β-N-

acetylglucosaminyl-
5-cholen-24-oic acid

AUROC value > 0.92 for each marker
AUROC value 1.0 for

3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid
[20]

Human Plasma HPLC-MS-MS

135 NPC1 Patients
66 NPC1 Carriers

241 Other LSD
46 Controls

↑ Cholestane-3β,5α,6β-triol
and lyso-Sphingomyelin-509

ROC (100% sensitivity and 91% specificity) and AUROC
value 0.99 with 95% CI: 0.98–1.00

ANOVA (p < 0.05).
[21]
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Table 2. Cont.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(1) NPC

Human Urine 1H NMR

13 untreated NPC1
47 control

heterozygote
carriers

↑ Bile acids, BCAAs,
3-aminoisobutyrate, glutamine,

3-methylhistidine, creatine,
quinolinate, succinate,

trimethylamine,
nicotinate,

N-methylnicotinamide,
N-methyl-2-pyridone-

5-carboxamide, N-
methyl-4-pyridone-5-carboxamide

and trigonelline

Cube root-transformed, Pareto-scaling, false discovery rate
or Holm step-down Bonferroni correction; normalisation to
Cn; ANOVA; Principal component analysis (PCA); Partial
least-squares discriminatory analysis (PLS-DA): Q2 = 0.56

and Accuracy 0.93 (p = 5.0 × 10−4); Partial redundancy
analysis (P-RDA) p < 10−4;

MV ROC AUROC value 0.93 (95% CI 0.78–0.99).
UV ROC AUROC value 0.81–0.90;

RF model 83% overall mean classification success;
Heatmap generated.

[22]

Human Urine LC-ESI-MS-MS 1 NPC

↑ 3β-Sulfooxy-7β-hydroxy-5-
cholen-24-oic acid and

3β-sulfooxy-7-oxo-5-cholen-24-oic
acid

No statistical analysis performed. [23]

Human Plasma LC-MS-MS 70 Control
57 NPC

↑Lysosophingomyelin and
glucosylsphingosine

AUC AUROC values±95% CI Lysosophingomyelin 0.9994,
glucosylsphingosine 0.7764. [24]

Human Dried
Blood Spot LC-MS-MS 27 NPB

20 Control ↑ Lysosophingomyelin Mean (p < 0.0001), Student’s t-test. [25]

Human Plasma LC-ESI-MS-MS

38 NPD not ASM
Deficient

7 NPD ASM
Deficient

7 NPC
34 GD
12 KD

>300 Controls

↑ 7-Ketocholestrol in NPC and
NPB ASM deficient patients Mean ± SEM; ANOVA (p ≤ 0.05). [26]



Int. J. Mol. Sci. 2020, 21, 2533 9 of 37

Table 2. Cont.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(1) NPC

Human Dried
Blood Spot

Human Urine
UPLC-MS-MS

DBS
73 NPC1
2 NPC1

Homozygous
2 NPC1

Heterozygous
2 NPC1 Wild Type

84 Controls
70 NPC1

Heterozygotes
Urine

14 NPC1
2 NPC1

Homozygous
10 Controls

47 NPC1
Heterozygotes

↑ 3β-Hydroxy,7β-N-
acetylglucosaminyl-5-cholenoic

acid 40 times higher in NPC
disease than that ofcontrols;
however, these values were
considered normal in some

patients in view of a mutation
↑

3β,5α,6β-Trihydroxycholanoyl-
glycine 10 times higher in NPC

compared to controls better
biomarker in dried blood spots

Kruskal-Wallis test; Dunn’s significance level of 0.05.
↑ 3β,5α,6β-Trihydroxycholanoyl-glycine (p < 0.001) when

compared to controls and carriers in dried blood spots.
[27]

Human EDTA
Plasma HPLC-ESI-MS-MS

107 Controls
16 NPC

91 Other diseases

7-Ketocholestrol (7-KC)
unspecific biomarker

↑ Cholestane-3β,5α,6β-triol
(CT) sensitive but not specific

Mann-Whitney U-test, Spearman’s correlation analysis,
ROC Curve AUROC value (p < 0.05 considered statistically

significant).
NPC vs Controls

95% CI for CT, 62–275 vs. 3.5–4.4 ng/mL, p< 0.0001; 95% CI
for 7-KC, 178–795 vs. 11.8–14 ng/mL, p < 0.0001.

100% sensitivity and 88.7% specificity.

[28]

(2) Fabry

Human
Urine/Human

Plasma
UPLC-ESI-MS-MS 111 Urine

129 Plasma

↑ Sphingolipids significantly in
31 plasma and 26 urine

samples. 48% elevation in
plasma, 42% in urine over

those of controls.
Phospholipids also reported to
be higher: fold-changes 15% in

plasma and 13 in urine.

PCA plot: Fabry patients loaded positively on PC1,
Controls loaded negatively on PC1. Sphingolipids also

loaded strongly on PC1.
[29]

Human Urine qTOF-MS 63 Untreated Fabry
59 Controls

↑ Globtriaosylceramide and
globotriosylsphingosine PCA, OPLS-DA and S-plot: p = 0.05. [30]
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Table 2. Cont.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(2) Fabry

Human Urine LC-MS 42 FD
48 Controls ↑ Lyso-Gb3 plus its analogues AUROC value 1.0 [31]

Human Plasma LC-MS-MS
38 FD male and
female patients

120 controls
↑ Lyso-Gb3 Mean ± SD or median. Whitney U test. ROC curve

analysis (p < 0.05) [32]

Human Urine qTOF-MS

16 untreated Fabry
males

16 healthy Control
males

↑ Galabiosyceramide Analogs OPLS-DA, Pareto-scaling
p = 0.05. [33]

Human Urine UPLC-MS-MS

52 Fabry paediatric
male

108 Fabry adults
52 control paediatric

45 control adults

Gender effects biomarkers;
paediatric females have lower

levels
↑ Lyso-Gb3 / related analog

profile

ROC Curve AUROC values;
Mann-Whitney U test; Spearman rank correlation

coefficient
p < 0.05 in Fabry male children

Treated females had lower lyso-Gb3 / related analogue
profiles.

[34]

Human Plasma Nano-LC-MS

16 Male
10 heterozygous

females
5 functional variants

40 controls

Gender effects biomarkers;
females have lower levels
↑ Lyso-Gb3 / related analog

profile

Mean±SD
Tukey multiple comparison test (p < 0.0001); no difference

in functional variants found (p > 0.05).
[35]

Human Plasma UPLC-MS-MS 178 healthy controls
74 Fabry

↑ Lyso-Gb3
Lower levels in females

Specificity 100%; Sensitivity Males 95%, Females 88%;
Significance Males (p < 0.005) Females (p < 0.15). [36]

Human Urine LC-MS 164 Fabry
94 controls

↑ Lyso-Gb3 and analogs
Lower levels in females

p < 0.001 lyso-Gb3 analogue levels in urine and gender,
lyso-Gb3 levels analogue levels correlated well with

enzyme replacement therapy (ERT) in males (p< 0.05).
Mann-Whitney U-test and Spearman rank correlations

were performed.

[37]

Human Plasma HPLC-ESI-MS-MS
48 untreated Fabry

79 treated Fabry
36 control

↑ Lyso-Gb3
Lower levels in females
Untreated Fabry males

distinguishable from controls;
ERT- treated Fabry males

less so.

Box-and-whisker plots only. [30]
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Table 2. Cont.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(2) Fabry

Human Plasma HPLC

10 Fabry Male
8 Heterozygote

Female ↑ Lyso-Gb3 increased in males Mean±SD values. Student’s t-test p < 0.05 considered
significant. Males significant (p < 0.05) [38]

Human Urine UPLC-MS-MS 150 Fabry Patients
95 Controls ↑ Gb3 Isoforms

Mann-Whitney U Test (p < 0.001) established significant
differences between Gb3 Isoforms, genders, treatments and

concentrations.
[39]

Human Plasma
Human Urine UPLC-ESI-MS-MS

10 Fabry
Hemizygotes

10 Fabry
Heterozygotes

20 Controls

↑ Lyso-Gb3 in both urine and
plasma Mean±SD values only. [40]

Mouse Plasma
Mouse Spleen
Mouse Heart
Mouse Liver

Mouse Kidney

LC-MS-MS Wild Type (n = 3)
Fabry (n = 5)

↓ Significantly lower lyso-Gb3
after administration of 0.5

mg/kg human α-galactosidase
A mRNA in plasma, spleen,

heart, liver and kidney

Mean±SD/SEM and ANOVA [41]

Human Plasma
Human Urine LC-MS-MS

18 asymptomatic
females

18 symptomatic
females
27 males

27 control urine
58 control plasmas

↑ C22:1, C22:0, C22:1-OH,
C22:0-OH, C24:2, C24:0,

C24:2-OH, C24:1-OH,
C24:0-OH, C26:0

Galabiosylceramide in
asymptomatic females

PCA and OPLS-DA of urine and plasma samples.
Kruskal-Wallis and Mann-Whitney tests used for

univariate comparisons. ROC curve analysis.
[42]

(3)
Gaucher

Human Serum
Human

Peritoneal Fluid
Human

Pericardial Fluid

MALDI
TOF-MS

2 Gaucher Disease
1 Leukemia

3 Ovarian Tumors
5 Respiratory

Infection

↑ Glycosylceramide in all
biofluids examined for GD

patients
Mean±SD values only. [43]

Human Plasma HPLC
27 Gaucher Disease

Type I
15 Control

↑ Glycosylceramide in disease
vs control

↓ Glycosylceramide and
Glycosylceramide /Ceramide
ratio in disease vs 6 months of
treatment with ERT/SRT group

Median and range values; Mann-Whitney U test;
Correlations tested by rank correlation test (Spearman

coefficient) p < 0.05 considered significant.
Glycosylceramide p = 0.0327 and

Glysocylcarmide/ceramide ratio p = 0.0034 after 6 months
after receiving ERT/SRT.

[44]
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Table 2. Cont.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(3)
Gaucher

Human Plasma LC-MS-MS

148 Controls
98 GD

13 GD Carriers
262 Patients with

other LSD including
NPC KD FD and
Hunters Disease

↑ Glucosylsphingosine 100% specificity/100% sensitivity AUC 95% CI in ROC
Analysis: AUROC value 1.0. [45]

Human Plasma LC-ESI-MS-MS 64 GD
28 control

↑ Glucosylsphingosine 200-fold
higher than controls

Positive correlations between
glucosylsphingosine and

sphingolpids established in
addition to plasma

glucosylsphingosine and liver
volume, bone marrow fat

fraction

Median and range, Mann-Whitney U test, rank correlation
test (Spearman coefficient) statistically significant when

2-tailed p < 0.05
glucosylsphingosine and sphingolipids correlation, with p

= 0.002.

[46]

Dried Blood
Spots LC-MS

35 Mild Type I GD
34 Severe Type I GD

12 Type III GD
↑ Glucosylsphingosine

Median and range reported, non-parametric Spearman’s
and parametric Pearson’s correlations employed to observe

relationships.
[47]

(4) Krabbe

Mouse
Hindbrain

Tissue
GC-MS/LC-MS 8 Wild Type

8 ‘Twitcher’

↑ Hypoxathinein Twitcher
↓ Glucose usage in Twitcher,

phospholipid and membrane
turnover in Twitcher,

cholesterol lanosterol and
lathosterol in Twitcher
↓ N-acetylaspartate

ANOVA, Random forest model Student’s t-test p < 0.05
considered significant

P ≤ 0.05 12 metabolites significantly modified
RF 31%-100% accuracy dependent on collection point.

[48]

Dried Blood
Spot (DBS) LC-MS-MS

75 Controls
Newborns

8 Newborns
65 Krabbe Disease

↑ Pyschosine in KD Mean±SEM values only. [49]

DBS HPLC-MS-MS
23 ‘at-risk’ KD

newborns
8 KD

↑ Pyschosine in KD Mean values only. [50]

DBS LC-MS-MS
220 Controls

26 KD
18 GALC mutation

↑ Pyschosine in KD Range of values only. [51]
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Table 2. Cont.

Disease Sample Type Methodology Sample Size
Potential Biomarkers

Upregulated (↑) or
Downregulated (↓)

Statistical Models and Analysis References

(5) GM1
and GM2

Urine
Preparative

TLC-1H NMR
Analysis

10 Controls
50 Diseased

samples including
GM1, GM2, Salla,

Fucosidosis,
Tyrosinena Type I

and II,
Citrullinemia,

Canavan Disease,
French-type sialuria,

α- and β-
mannsidosis,

aspartylglu-cosaminuria

↑ N-acetylated biantennary
octasaccharide, N-acetylated
triantennary decasaccharide/

tetraantennary
dodecasaccharide in GM1
↑ Oligosaccharides in GM2

No statistical analysis performed [52]

Suggested biomarkers from metabolomics investigations for LSDs using LC-MS or NMR-based methodologies. Abbreviations: 3β-HSD, 3β -hydroxysteroid-∆-5C27-steroid dehydrogenase;
ANCOVA, analysis of covariance; ANOVA, analysis of variance; ASCA, analysis of variance simultaneous component analysis; AUC, area under the curve; AUROC, area under
receiver operating characteristic; BCAA, branched chain amino acid; CCorA, canonical correlation analysis; CT, cholestane-3β,5α,6β-triol; DBS, dried blood spot; ERT, enzyme
replacement therapy; ESI, electrospray ionisation; FD, fabry disease; GC, gas chromatography; GD, gaucher disease; HDL, high density lipoprotein; HET, heterozygous; HPLC, high
performance liquid chromatography; KC, 7-ketocholesterol; KD, Krabbe disease; LC, liquid chromatography; LDL, low-density-lipoprotein; LSD, lysosomal storage disorder; lyso-Gb3,
globotriaosylsphingosine; MALDI, matrix-assisted laser desorption/ionization; MS, mass spectrometry; MV, multivariate; NMR, nuclear magnetic resonance; NPA, Niemann-Pick
Disease Type A; NPB1, Niemann-Pick Disease Type B1; NPC1, Niemann-Pick Disease Type C1; O-PLS-DA, ortho-partial least squares discriminant analysis; PCA, principal component
Analysis; PLS-DA, partial least squares discriminatory analysis; P-RDA, partial redundancy analysis; QTOF-MS, quadrupole time of flight-mass spectrometry; RF, random forest;
ROC, receiver operating curve; SD, standard deviation; SEM, standard error of the mean; SRT, substrate reduction therapy; TLC, thin-layer chromatography; UPLC, ultra-performance
liquid chromatography.
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2. Metabolomic Evaluations of Sphingolipidoses

2.1. Niemann-Pick Diseases

The majority of metabolomics research conducted on sphingolipid storage diseases has been
focused on NPC1 disease. High-resolution 1H NMR analysis has been successful in identifying
potential urinary biomarkers for NPC1 disease diagnosis, and these include branched-chain amino
acids (BCAAs), selected bile acids and 3-aminoisobutyrate [22], the latter arising from either BCAA
catabolism or thymine degradation. These analyses further indicated that the brain and liver were
the prominent sites affected, an observation which is consistent with its disease manifestations,
including seizures and hepatomegaly. The area under the receiver-operating characteristic curve
(AUROC) values determined ranged from 0.81–0.91 for the most significant metabolites, and partial
least squares-discriminatory analysis (PLS-DA) yielded significant values of Q2 (0.56) and an accuracy
of 0.93 [22]. ROC curves are plots of the true positive classification rate (i.e., sensitivity or probability of
detection) against the false positive rate (1-specificity). AUROC values can range between 0 and 1.0, 1.0
representing perfect classification test success, with 0.5 no success whatsoever; values ranging within
the 0.5 – 1.0 range indicate increasing levels of classification success on consideration of sensitivity and
specificity (however, for all AUROC values determined, it is necessary to ensure that their lower 95%
confidence interval (CI) values do not cover the null 0.5 value).Q2 represents the R2 value (the latter
quantitatively reflecting extent to which independent multivariate components explain the dependent
one, qualitative or quantitative) when a PLS model constructed from a training set is applied to an
unknown ‘test’ set. Hence, a high value for Q2 is one with minimal deviation from R2, and this indicates
that the PLS model developed functions independently of the dataset employed to train it.

The above NMR-based metabolomics approach also has potential applications for disease
progression monitoring, but these benefits have yet to be demonstrated in practice. At the sub-cellular
level, the lysosome, ER and mitochondria were the main affected organelles in this investigation.
Moreover, high-performance liquid chromatographic (HPLC) analysis coupled with a UV detection
system has also been used to target specific amino acid imbalances and DNA methylation in murine
cerebellum collected from experimental mice with this condition, in which BCAAs significantly (p > 0.05)
arose from elevated glutamine/glutamate oxidation, in a response to prolonged neuron survival [53].
The combination of DNA methylation and amino acid imbalances explores new mechanisms which are
ascribable to neurodegeneration in NPC disease. Indeed, this combinatorial approach could influence
new treatment strategies, in which these amino acid imbalances are addressed by specific treatments.

LC-MS analysis has been used to understand upregulations or downregulations of potential
biomarkers, as well as changes in biomarker expression in NPC1 disease as a response to treatment
with miglustat and 2-hydroxypropyl-β-Cyclodextrin (HPβCD) [9]. The mechanism of action for
miglustat is its inhibition of glucosylceramidase (GlcCer) synthase activity, whereas the mechanism
of action for HPβCD features reductions in cholesterol and overall lipid accumulation through the
formation and transport of inclusion complexes; the hydrophobic interior of HPβCD incorporates
hydrophobic biomolecules such as cholesterol to form such inclusion complexes. This study monitored
the effectiveness of drug administration and uptake, and identified specific upregulated markers in
mouse brain, liver and spleen. These included elevated levels of ceramide, GM1, GM3, sphingolipid
species, and lactosylceramide in NPC1 tissues, which markedly reduced upon treatment with HPβCD,
an effect greater than that observed with miglustat treatment [9]. Elevated markers in human
plasma and cerebrospinal fluid (CSF) were identified as monohexosylceramides and ceramides [9].
Administration of the substrate reduction therapy (SRT) miglustat which inhibits GlcCer synthase
did not significantly reduce these biomarker concentrations. [9]. However, it was proposed they
may downregulate on administration of HPβCD, since this downregulation was observed in the
tissues of the mouse model [9]. This research needs further confirmation of biomarkers prior to
translation into clinical practice for disease diagnosis or clinical progression. Another research study
monitored the effectiveness of HPβCD treatment in mice, using 2,4(S)-hydroxycholesterol (2,4(S)-HC)
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as a pharmacodynamic marker, employing an LC-MS-MS approach to assess the metabolic activity
in NPC1 disease [54]. Brain 2,4(S)-HC levels were found to build-up from high cholesterol levels.
2,4(S)-HC is produced exclusively at this location, and acts as a biological response to eliminate
cholesterol; excess cholesterol is toxic, and 2,4(S)-HC can cross the blood-brain barrier (BBB), unlike
cholesterol itself [54]. A different investigation, [55] also monitored 2,4(S)-HC levels in blood plasma in
order to assess treatment outcomes with HPβCD in murine models; 2,4(S)-HC was therefore proposed
as a biomarker for diagnostic purposes and therapeutics development.

Oxidation products of cholesterol are commonly monitored biomarkers in NPC disease, not only
because of the increased levels of intercellular free cholesterol, but also in view of oxidative stress
which is a feature of the condition. Similarly, selected bile acids also serve as disease biomarkers; since
these are also synthesised from cholesterol in the liver, they have been correlated with cholestasis in
NPC1 patients [15,22]. One study, [15], has reported increases of cholestane-3β5α6β-triol levels in
NPC1 patient plasma profiles, and in mouse plasma and liver, whole brain and cerebellum tissues.
Cholestane-3β5α6β-triol, a further oxidation product of cholesterol, which functions as an endogenous
neuroprotectant, has been reported to be upregulated in the blood plasma of NPC patients [10,12,21,28].
Other disorders, such as lysosomal acid lipase deficiency and cerebrotendinous xanthomatosis, have also
been shown to correlate with enhanced cholestane-3β5α6β-triol concentrations in human plasma, and
hence this biomarker suffers specificity issues for the diagnosis of NPC1 disease [28]. Others indicated
that cholestane-3β5α6β-triol could be used as a biomarker in conjunction with lyso-sphingomyelin-509,
an approach which provided a model with 91% specificity and 100% sensitivity [21]. These findings were
validated using HPβCD, with cholestane-3β5α6β-triol significantly downregulated with treatment [15].
However, such critical effective drug-based validation processes were not performed in the studies
of [10,12,21,28].

Two investigations, [10,15], also reported an elevation in 7-ketocholesterol, which is also an
oxidation product of cholesterol, indicating that 7-ketocholesterol may be non-specific as a biomarker
for diagnosis, as suggested in other studies [26,28]. Human plasma 7-ketocholesterol concentrations
were also found to be elevated in NPB, sterol disorders, peroxisomal diseases, metachromatic
leukodystrophy, mucolipidosis II/III, LAL-deficiencies [28] and cardiovascular diseases [56]. Notably,
other correlations between NPC and NPB patients have been noted, since both exhibit elevated levels of
lysosphingomyelin in blood plasma and dried blood spots as a diagnostic marker [21,22] respectively.
Indeed, current literature predominately focuses on biomarkers known to be associated directly with the
disorder, and the accumulation of intracellular metabolites, rather than what effect this accumulation
has on the metabolome as a whole. A combination of statistically significant biomarkers, such as
cholesterol oxidation products, bile acids and 3-aminoisobutyrate, including those which are directly
and indirectly associated with the disease, could offer a more sensitive and specific solution for the
long-term monitoring of LSDs [17]. Other potential sphingomyelin precursors have been investigated
including sphingosylphosphorylcholine, which has been demonstrated to be marginally increased in
NPC plasma using an LC-MS-MS strategy in a pilot study [11]. However, it was recommended that
this biomarker should be used in conjunction with, for example, plasma lysosphingomyelin-509, also
known as N-palmitoyl-O-phosphocholineserine [57] (with a median fold-change value of 65 in NPC
plasma relative to healthy controls), in order to be applied as a biomarker for diagnostic purposes in
clinical practice [11].

Further studies have been performed using LC-MS-based methodologies, analysing no more
than two NPC samples which monitored urinary bile acid sulphate conjugates for diagnostics, i.e.,
3β-sulfooxy-7β-hydroxy-5-cholen-24-oic acid and 3β-sulfooxy-7-oxo-5-cholen-24-oic acid, both of
which were found to be significantly upregulated in NPC disease [14,18,57]. However, more recently,
a larger study performed by the same research group demonstrated upregulations in 3β-sulfoxy-7β-
hydroxy-5-cholen-24-oic acid and its glycine and taurine conjugates, using urine samples from NPC
patients (n = 23) and control (n = 28) participants [19]. A further investigation with control (n = 38)
and NPC patients (n = 28) found similar findings with an AUROC value > 0.92 for 3β-sulfoxy-7β-
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hydroxy-5-cholen-24-oic acid, 3β-sulfoxy-7-oxo-5-cholen-24-oic acid, non-amidated 3β-sulfooxy-7β-N-
acetylglucosaminyl-5-cholen-24-oic acid, glycine-amidated 3β-sulfoxy-7β-N-acetylglucosaminyl-5-
cholen-24-oic acid, and taurine-amidated 3β-sulfoxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid [20].
The most significant marker with an AUROC value of 1.0 was 3β-sulfooxy-7β-hydroxy-5-cholen-24-oic
acid [20]. The sensitivity and specificity of these biomarkers, and how treatments can use the biomarkers
to provide diagnostic information, needs to be explored.

Bile acids have been identified as potential biomarkers for early diagnosis in view of the observed
upregulation of their precursors 7-oxocholesterol and cholestane-3β5α6β-triol in human urine and
plasma [27]. A novel MS assay was created in order to detect these bile acid biomarkers in dried blood
spots, urine and plasma, and with a much larger sample size than those featured for investigation of the
above dysfunction [27]. However, conclusive evidence demonstrating a decrease in these biomarker
concentrations following treatment is still lacking [27].

A combination of these biomarkers in selected biofluids could provide more statistical power,
since the majority of the analyses performed in these studies were targeted and univariate, while MV
approaches could provide improved specificity for NP disease diagnostics. However, few investigations
have correlated these markers with disease progression and disease severity indices. Clearly, correlations
of such biomarker levels with disease profiles is necessary for successful clinical management [58].
It is, therefore, necessary to ensure that potential biomarkers selected for NPC1 disease are specific to
this condition in order to avoid misdiagnoses. At present, there is a lack of evidence in the literature
showing the intrinsic value of these candidate biomarkers individually. Indeed, most of these diseases
exhibit subtly different manifestations, translating into modified metabolic responses. Therefore,
without thorough testing of the range of other LSDs, and without the rigorous validation of such
biomarkers, misdiagnosis remains a possibility.

Studies performed on Chinese hamster ovary cells, and cells collected from an NPC patient
versus an NPC carrier, and also COS-7 and fibroblast cells from an NPC patient, have also been
analysed using an HPLC electrospray ionisation (ESI)/MS/MS strategy to determine sphingomyelin
levels [59]. This study demonstrated an upregulation in total sphingomyelin, including specific species,
such as d18:1/18:1, d18:1/18:0, d18:1/20:0, d18:1/22:0, d18:1/24:1, and d18:1/26:1 [59]. Moreover, this
investigation showed that Rab9, a GTP-binding protein that controls trafficking from the late endosome
to the Golgi, is defective; upon reducing sphingomyelin within the cell using sphingomyelinase, Rab9
was able to function more effectively, and cholesterol accumulation was concomitantly diminished
significantly [59]. Consequently, sphingomyelin reduction is another potential therapeutic target for
NPC disease. This investigation demonstrated the usefulness of metabolomics analysis of cell systems
in lysosomal storage disorders to assess the mechanisms of cellular pathogenesis.

Finally, high-resolution NMR analysis has been employed to observe the urinary excretion of
miglustat, valproate, and valproate metabolites in NPC1 disease [60]. Valproate is frequently used
in NPC1 disease to control seizures. Hence, this NMR-based approach could contribute to more
personalised medicine approaches in human patients. Similar studies have also been performed with
HPLC coupled with light scattering as a detection system (HPLC-LS), and these demonstrated the
detection of HPβCD in human urine [61].

2.2. Fabry Disease

Fabry Disease (FD) (OMIM 301500) is an X-linked disorder arising from a defect in GLA, causing
dysfunction with α-galactosidase A and the storage of Gb3 [1,62]. Targeted approaches have been
applied for the potential diagnosis of FD using MS methodologies and have been successful using
a relatively large sample size (Table 2) [29,30,33]. Typical diagnosis for Fabry disease involves an
enzymatic assay of α-galactosidase A activity in leukocytes using a blood sample, or detection
of Gb3 deposition in a skin biopsy, followed by a genetic test. Recently, in a cohort of Chinese
patients the detection and determination of globotriaosylsphingosine (lyso-Gb3) in blood plasma
provided a more significant correlation with the Mainz severity score index than α-galactosidase A
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activity measurements did, i.e., r = 0.71 and -0.69 for globotriaosylsphingosine and α-galactosidase
A, respectively [32]. In particular, this study established that lyo-Gb3, analysed using LC-MS-MS,
was more successful in diagnosing female FD participants [32]. Diagnosis of females is a particularly
challenging issue in view of the X-linked inheritance pattern of this disorder. Females demonstrated
a later onset of FD, with the difference in onset in males and females being 13 and 33 age yrs.
respectively [32]. These previous investigations, along with reports from [36], which examined the
plasma of over 250 FD participants (some of which received enzyme replacement treatment (ERT)),
suggested a causal link between increased levels of lyso-Gb3 and FD. However, this biomarker cannot
be applied to young patients since age has a significant impact on the concentration of lyso-Gb3

monitored [36].
Moreover, the levels of plasma lyso-Gb3 and four other analogues (with m/z values of 786, 784

(−2), 802 (+16) and 804 (+18)) have been recently used to assess treatment outcomes using LC-MS-MS
in a mouse model, in addition to six isoforms of Gb3 including C16:0, C16:1, C18:0, C22:0, C24:1,
C24:0 [41]. The novel human α-galactosidase A mRNA treatment using human α-galactosidase A
showed dose-dependent activity in lyso-Gb3 in mice, and lyso-Gb3 concentrations were significantly
reduced after a 6-week period [41]. However, this investigation only used male mice aged 5 months
to assess this treatment. In another recent study, it was found that Gb3 and isoforms were unable to
distinguish between female and male FD participants versus controls, but good discrimination was
established between male control and male FD participants [63].

A non-invasive method using urine sampling has been explored using LC-MS [33–35].
A FD-specific biomarker, lyso-Gb3, is significantly elevated in FD patients relative to that in healthy
controls [33–35]. This biomarker is also sensitive to the gender of the patient; indeed, female patients
were less likely to be diagnosed with this X-linked LSD in view of lower observed levels, and therefore
results arising from female samples are susceptible to misdiagnosis. Despite this, lyso-Gb3 has been
suggested to serve as a sensitive biomarker in urinary profiles; however, the patient cohort involved
was not paediatric, and this marker has not been demonstrated to be an early marker for FD [31].
Notwithstanding, there are some issues associated with using biofluids from single gender donor
groups, data acquired not being fully representative of the entire sample population [33]. However,
since FD is X-linked and more severe in male patients, this approach is considered appropriate for
pilot studies in FD. Furthermore, age-matched samples also offer substantial diagnostic potential,
since some markers, such as lyso-Gb3, are undetected in younger patients, as shown by [34]. This
study also reported the misdiagnosis of male and female participants through the use of a single
biomarker, where ideally a universal methodology or the use of reference ranges would be the
preferred approach [34]. Using a range of control, diseased, and heterozygous participants improves
the validation of biomarkers [17], and global standards in the field have been proposed in order to
ensure that data acquired from such studies are clinically reliable [64].

More recently, it has been demonstrated that there are potential urinary and plasma markers in
the more challenging FD female cohort using LC-MS-MS [42]. Ceramide dihexosides were proposed
as biomarkers, including C22:1, C22:0, C22:1-OH, C22:0-OH, C24:2, C24:0, C24:2-OH, C24:1-OH,
C24:0-OH, C26:0 Gb3 isoforms, and these were observed to be 5-fold elevated in the urinary profiles of
asymptomatic FD patients [42]. However, this significance was not observed in plasma profiles [42].
This study was the first to implement principal component analysis (PCA) and orthogonal partial
least squares-discriminatory analysis (OPLS-DA) MV analysis strategies in order to identify potential
biomarkers in FD, in addition to standard univariate comparisons. FD urine samples have also been
analysed using electrospray ionization-mass spectrometry (ESI-MS) in [65], and upregulations in
ceramide trihexoside, lactosylceramide and ceramide, along with downregulations in glucosylceramide
and sphingomyelin, were observed. These markers were suggested to be ideal for the detection of FD
prognosis for patients receiving enzyme therapy [65].

Validation must be performed prior to translation into clinical practice, or alternatively the
rigorous establishment of an age and/or gender-specific reference range of biomarker concentrations is
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required. Furthermore, it would be advantageous to establish a global metabolomics approach for
urine and plasma samples using 1H NMR or alternative multicomponent analysis in order to ascertain
the validity of the results and/or the uniformity of similar biomarkers potentially observable across
the entire metabolome. Biomarkers can be validated through pharmacokinetic models, which show
that they normalise, or start to normalise, following treatment. Moreover, specificity and sensitivity of
the biomarker to a specific lipidoses, along with an overall evaluation of the reliability of analytical
equipment and methods employed, notably that concerning the accuracy, precision, reproducibility and
limits of biomarker detection and quantification, are further important parameters for consideration.

2.3. Gaucher Disease

Similar to NPC disease, there are variants of Gaucher disease (GD) (types 1, 2 and 3): GD 1 (OMIM
230800) is non-neurological, while GD 2 (OMIM 230900) and GD 3 (OMIM 231000) are neurological
conditions also involving the spleen and liver [66,67]. Targeted metabolomics approaches have also
been applied to GD, using LC and LC-MS technologies. The plasma biomarker glucosylceramide
(GlcCer), and ceramide ratios, have been used in combination with ERT treatment for this condition,
with levels significantly decreasing with corresponding treatments in GD 1 patients [44]. Moreover,
glucosylsphingosine has also been determined to be a biomarker in dried blood spots (DBS) from
children with GD 1 and 3 diseases [47]. Glucosylsphingosine has also proven to have diagnostic
potential in other LSDs, further validating its potential as a generalised LSD-specific biomarker [45,46].
However, glucosylsphingosine levels are also markedly elevated in the plasma of patients with NPC
disease, but to a different extent—GD concentrations of this plasma biomarker are relatively higher,
as noted in Ref. [24]. Another investigation showed an upregulation of glucosylsphingosine in KD and
GD plasma samples, but the concentrations were distinguishable, since GD patients had significantly
higher levels [68]. As with any potential screening biomarker, the selection of glucosylsphingosine
would be required to involve the provision of essential reference ranges in order to ensure that the
correct diagnosis decision was made for both GD and NPC patients. Urine has received little attention
as a potential biofluid sample type for GD metabolomics studies, and this is reflected by the lack of
reports available in the area.

Another investigation reported a potential marker for GD in serum, specifically GlcCer.
Notwithstanding, there were validation issues in view of the lack of controls and heterozygous
carrier samples integrated into the study for comparative purposes [43]. Indeed, statistical information
from a sample size of only n = 2 is, of course, unreliable [43]. However, such small sample sizes represent
one of the challenges presented by the monitoring a rare LSD in human participants. Furthermore,
samples analysed in this study were collected using invasive methodologies, such as venipuncture.
Invasive sample collection is a common theme in the observation and monitoring of LSDs. However,
more evidential data could be generated by considering urinary metabolic profiles, together with those
of other readily accessible biofluids such as saliva, perhaps, which have successfully been used for the
diagnosis of other diseases, including cancer and diabetes [69].

2.4. Krabbe Disease

To date, few human metabolomics investigations in Krabbe Disease (OMIM 245200) (KD) have
been performed using multicomponent LC-MS or NMR analyses [70]. Such prospective metabolomics
studies may require a period of years to perform, e.g., the DBS analysis of samples collected over a 6-year
period from patients with KD [49], and a similar dried blood spot (DBS) analysis collecting samples
over a 5-year period from KD patients [71]. One study completed targeted analysis on pyschosine [45],
a biomarker indicator of impaired galactosylceramidase, and have provided recommendations and
reference ranges for KD patients. Indeed, others observed changes in the metabolism of twitcher KD
mice hindbrain tissue, specifically decreased phospholipid turnover, mitochondrial metabolism of
BCAAs, and upregulated neurotransmitter metabolism, inflammatory cascades and osmolytes, when
compared to those of healthy controls [48]. Another investigation has assessed pyschosine levels
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in Krabbe’s patients and newborns against ‘at risk’ new-borns [50]. Additional investigations are
required, particularly against alternative control samples, along with larger sampling sizes to validate
these findings. An additional investigation compared KD patients to age-matched healthy controls
and found a significant elevation of pyschosine in DBS collected from KD patients, although there was
also an increase in carriers [51]. At present, there are no treatment strategies available for KD patients,
which presents a major barrier against successful biomarker validation.

2.5. GM1, GM2 and GM3 Gangliosidoses

Although much is known regarding the clinical aspects of the GM1 (OMIM 230500) (GM1),
and GM2 gangliosidoses (OMIM 268800) (GM2), the cellular mechanisms leading to neurodegeneration
are poorly understood, and the precise functions of gangliosides (i.e., their cellular and biochemical
properties) are not yet fully understood [72,73]. Moreover, very few metabolomics studies focused on
the GM1 and GM2 gangliosidoses have been performed.

More recently, reverse-phase LC has been used to analyse biomarkers in biofluids; these can also
be measured in brain and liver tissues collected from mice, and hippocampus samples from humans
with Sandhoff (SD, GM2) disease [74]. PCA analysis was able to successfully distinguish between SD
and control hippocampus samples from humans, in addition to brain and liver samples from control
and SD mice [74]. Disturbances were observed in pathways associated with protein catabolism and
lipid metabolism. N-acetyl compounds were altered in the SD brain from humans and mice, including
elevated N-acetylgalactosamine 4-sulphate which has been proposed to be correlated with a deficiency
in the HexB enzyme [74]. N-Acetyl-l-aspartate and l-glutamate were downregulated in the brain [74].
The investigation focused on brain samples and provided potential new targets for biomarkers which
may be accessible in non-invasively collected biofluids.

A study distinguished between different gangliosides; however, it unfortunately did not account
for the matrix effects exerted by biofluids since the experiments were performed in vitro [75]. Another
investigation went further and developed a liquid chromatography-electrospray ionisation-mass
spectrometry (LC-ESI-MS) method which was able to monitor blood serum ganglioside levels
in participants (n = 10) with different oesophageal diseases, but not the gangliosidoses [76].
Other authors, [77], have developed a method for the observation of GM1 and GM2 gangliosides
simultaneously in CSF using LC-MS-MS. This methodology used 30 human CSF samples in which
GM1 and GM2 were ‘spiked’ and recovered with a high accuracy, i.e., 98 and 102 % respectively.
More recently, quantitative immunoassays were used to determine key biomarkers in CSF and blood
serum in 2 infantile Sandhoff, 9 infantile Tay-Sach’s, 5 juvenile Sandhoff, 6 infantile GM1, 7 late
infantile GM1 and 1 juvenile GM1 patients, and compared these to 100 healthy control participants [78].
Of 188 metabolites tested, five key markers identified were epithelial-derived neutrophil-activating
protein 78, monocyte chemotactic protein 1, macrophage inflammatory protein-1 alpha, macrophage
inflammatory protein-1β, and tumour necrosis factor receptor 2, which were all upregulated in the CSF
of gangliosidoses infantiles, and were also linked to inflammation within the central nervous system
(CNS). In view of their rarity and severity, longitudinal metabolomics studies will, of course, take
longer to perform. Markers which could be evaluated include those pertaining to CNS degradation,
or lysosomal dysfunction such as quinolinate and N-acetylsugars respectively.

Another investigation explored urinary N-acetylated storage compound biomarkers in patients
with GM1 disease which arises from β-D-galactosidase deficiency [52]. In this study, TLC separations
were sequentially followed by 1D 1H NMR analysis [52]. The first of two bands investigated in this
manner corresponded to an N-acetylated biantennary octasaccharide, and the second to an N-acetylated
triantennary decasaccharide or tetraantennary dodecasaccharide [52]. The 500 MHz 1H NMR profile of
a patient with this condition contained a series of N-acetyl-CH3 function singlet resonances within the
2.02–2.04 ppm range, the band of highest intensity corresponding to δ = 2.03 ppm [52]. These results
are consistent with elevations in the urinary concentrations of oligosaccharides with a D-galactosyl
residue at their non-reducing ends.
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1H NMR spectra acquired on urine collected from a patient with Sandhoff disease demonstrated
the excretion of oligosaccharides, specifically acetamido-CH3 function singlet resonances within
the δ = 2.02–2.08 ppm range, the highest intensity one corresponding to a concentration of
ca. 80 µmol/mmol of creatinine [52]. Combined preparative TLC-1H NMR analysis provided
evidence that these signals were at least partially ascribable to oligosaccharides with the structures
β-GlcNAc-(1→2)-α-Man-(1–3)-[β-GlcNAc-(1→2)-α-Man-(1–6)]-β-Man-(1→4)-GlcNAc (band 1), and
β-GlcNAc-(1→2)-α-Man-(1–3)-[β-GlcNAc-(1→4)][β-GlcNAc-(1→2)]-α-Man-(1–6)]-β-Man-(1→4)-GlcNAc
(band 2) [52].

Recently, our group performed a pilot investigation using a conventional 1H NMR-based
metabolomics approach. This previously unpublished pilot study was conducted in order to identify
new, potentially valuable biomarkers for GM1 Type II gangliosidosis, particularly those which
correlated with severity and progression. Plasma samples were collected from patients with GM1
Type II Gangliosidosis (n = 10) and control participants (n = 28) with mean ages of 11 ± 2.3 and 22 ±
0.7 years, respectively (Figure 1). More than 40 metabolites were detectable in these spectra, including
a range of biomolecules such as short-chain organic acid anions (e.g., acetate, formate, fumarate, lactate,
pyruvate, succinate, glycolate and 3-D-hydroxybutrate); the BCAAs leucine, isoleucine and valine;
other amino acids including glycine, alanine, glutamate, glutamine, lysine, proline, taurine, histidine,
phenylalanine and tyrosine, etc., together with N-acetylamino acids; carbohydrates, most especially
GM1 disease-relevant N-acetylsugars; and nicotinate and nicotinamide pathway metabolites, among
others. Typical spectra acquired are shown in Figure 2a. Average spectral intensity profiles, which
show significant differences in lipoprotein-associated triacylglycerol concentrations between the two
phenotypes, are depicted in Figure 2b. 1H NMR spectra therefore clearly reveal disturbances in lipid
metabolism, a common feature of LSDs.
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Figure 2. GM1 Type II and control plasma NMR profiles. (a) Typical 700 MHz 1H NMR spectral profiles
from GM1 Type II gangliosidosis and corresponding control plasma (blue and red spectra respectively).
Assignments: [1] very-low-density-lipoprotein (vLDL)/low-density-lipoprotein (LDL) triacylglycerol
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(TAG)-terminal-CH3 functions; [2] BCAAs (valine-, leucine- and isoleucine-CH3s); [3] vLDL/LDL-
bulk-chain-(-CH2-)n; [4] Lactate-CH3; [5] Alanine-CH3; [6] lipoprotein TAG-CH2CH2CO- [7] unassigned
multiplet; [8] Acetate-CH3 [22] acute-phase glycoprotein-carbohydrate side-chain N-aceytylsugar-
CH3/lipoprotein TAG-CH2-CH=CH-; [53] glutamine-β-CH2; [9] lipoprotein TAG-CH2-CO2-; [54]
acetone-CH3; [55] acetoacetate-CH3; [15] glutamine-γ-CH2; [10] citrate-CH2A/B; [12] lipoprotein
TAG-CH=CH-CH2-CH=CH-/citrate-CH2A/B; [28] albumin lysine residue-ε-CH2; [21] free lysine-ε-CH2/

creatinine-N-CH3/creatine-N-CH3; [26] high-density-lipoprotein phospholipid choline head-group-N+

(CH)3; [56] β-Glucose-C2H; [24] unassigned multiplet; [11,14,17,18,25] glucose-C2–6H ring
protons; [57] unassigned multiplet; [20] tyrosine-/histidine-/phenylalanine-α-CH’s; [27] lactate-CH; [58]
threonine-α-CH; [59] β-glucose-C1H; [60] α-glucose-C1H; [61] lipoprotein TAG-CH=CH-; [62]
urea-CO-NH2; [29,30] tyrosine aromatic-CH protons; [33,41] histidine-imidazole ring-CHs; [32,36]
phenylalanine aromatic-CH’s; [41] Histidine-CH [63] formate-CH. (b) Average blood plasma 1H NMR
profiles of unfasted GM1 Type II gangliosidosis patients (n = 10) (blue) and fasted control participants
(n = 27) (red). Left: elevated vLDL/LDL TAG- bulk-chain-(-CH2-)n resonance intensities in healthy
controls (δ= 1.10–1.30 ppm)/ Right: elevated unsaturated TAG-CH=CH- resonance intensities in healthy
controls (δ = 5.10–5.40 ppm). The Supplementary Materials section provides details regarding ethical
approval and informed consent of participants, 1H NMR sample preparation and acquisition parameters.

MV metabolomics analysis using 1H NMR data by PLS-DA revealed a clear distinction between
the two disease classification groups (i.e., GM1 type II (juvenile onset) gangliosidosis versus. healthy
controls, (Figure 3)). Permutation testing demonstrated a high level of discrimination between these
two classifications (p = 0.0015). Variable importance parameter (VIP) values also confirmed a high level
of significant differences between many of the 1H NMR intelligently selected bucket (ISB) variables;
for example, downregulated lipoprotein-associated triacylglycerols in the GM1 type II gangliosidosis
patients, observations which indicate overall perturbances in lipid metabolism in this disease (Figure 2).

This observation is of particular interest, since the GM1 Type II participants were unfasted while
the control ones were fasted, and therefore we would expect an elevation in lipids in the GM1 Type II
participants. The top five most significant metabolites in the VIP bucket regions included 0.80–0.91
(very-low-density-lipoprotein (vLDL) and low-density-lipoprotein (LDL) triacylglyerol (TAG)-CH3)
1.95 – 2.02 (N-acetyl-CH3/TAG-CH2-CH=CH- signal), 3.72 – 3.75 (Unassigned), 8.04 – 8.11 (trigonelline)
and 1.44 – 1.46 ppm (unassigned (d)) (Figure 3). The most significant bucket found from this MV
analysis was attributable to vLDL/LDL-TAGs; however, these significant metabolites may arise from
age differences between GM1 Type II and the control participants, i.e., the GM1 Type II patients are
younger with mean ± SEM ages of 11 ± 2.3 years and 22 ± 0.7 years for GM1 Type II and controls
respectively. This pilot investigation highlights the importance of ensuring that such metabolomics
studies recruit participants who are age-matched as much as possible. However, we would expect
plasma creatinine levels to rise with increasing age, but the reverse effect was observed with GM1
Type II patients, which represent the younger cohort. Creatinine is upregulated in GM1 Type II
patients, an observation ascribable to muscle weakness; alternatively, these increases may arise from
dietary sources [79]. Histidine, trigonelline and valine were also elevated in GM1 Type II patients,
but this elevated concentration is likely to arise from dietary sources and the different fasting status of
the participants involved in this investigation [79,80]. However, elevated blood histidine has been
correlated with ataxia, psychosis, and tremors [79], the first of which (ataxia) is symptomatic of the GM1
Type II condition. Sample storage length could also impact on metabolite concentrations in the samples
investigated, and this correlation has been demonstrated elsewhere [81]. Samples analysed over a
2-year period demonstrated that metabolites present in the blood serum of fasting individuals are
more stable, and correspondingly, more pronounced in unfasted serum samples [81]. Modifications to
many metabolites were observed, significant ones including phosphatidylcholines, acylcarnitines and
sphingolipids, which were upregulated in fasting serum samples versus unfasted serum samples [81].
Taurine was also observed to be significantly elevated [81]. Such modifications clearly complicate
any metabolomics investigations, and hence rigorous control experiments are required in these
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circumstances. Therefore, we recommend a combination of univariate and multivariate analyses as
the best approach. Sample storage could also partially influence the results acquired here, since the
GM1 type II samples were collected in the 2011–2017 period, and hence were stored for longer than the
control samples, which were all collected in 2017.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 24 of 38 
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intelligent bucket regions, with their corresponding metabolite assignments. The red and green right-
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plasma samples respectively. The higher the VIP score, the more important the bucket region is 
considered in the PLS-DA model (all VIP values ≥ 1 are considered significant). Abbreviations: LDL, 
low-density-lipoprotein; TAG, triacylglycerol; vLDL, very-low-density-lipoprotein. 

A unique strategy included observing all the lipidoses simultaneously using an LC-MS-MS 
investigation into plasma hexosylsphingosine, globotriaosylsphingosine, lysosphingomyelin and 
lysosphingomyelin-509 levels [82]. This investigation observed patients with FD (n = 16), GD (n = 8), 

Figure 3. Multivariate analysis of spectral data from GM1 Type II and control plasma integral bucket
regions. (a) PLS-DA scores plot showing controls (red) and GM1 Type II (green) together with 95%
confidence ellipses. PC1 and PC2 represent 60 and 13% of the dataset variance respectively. Removal
of all glucose ISB regions, which were clearly elevated in GM1 Type II participants in view of the
non-fasting of participants, was performed prior to simulation of this plot. (b) Plot of variable
importance parameter (VIP) values arising from the PLS-DA analysis, showing significantly greater
intensity intelligent bucket regions, with their corresponding metabolite assignments. The red and
green right-hand side abscissa axis represent metabolites which are elevated or depleted in GM1 Type II
or control plasma samples respectively. The higher the VIP score, the more important the bucket region
is considered in the PLS-DA model (all VIP values ≥ 1 are considered significant). Abbreviations: LDL,
low-density-lipoprotein; TAG, triacylglycerol; vLDL, very-low-density-lipoprotein.
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Interestingly, N-acetyl signals located within the δ = 1.95 – 2.01 ppm range did not appear to be
markedly elevated in this biofluid, but this observation is not directly comparable to the findings made
in [52], since the low-molecular-mass N-acetylated saccharide derivatives monitored by them were
detected in the urinary profiles of these patients. Indeed, the results acquired here clearly demonstrate
the complexity of metabolomics datasets, and also the importance of establishing a rigorous and
robust experimental design prior to analysis. Additionally, this pilot study highlights the importance
of considering all factors, including of age, diet and xenobiotics, for correct interpretation of the
results. Although combinations of a series of potential biomarkers in the form of a disturbed metabolic
‘signature’ or pattern offers major advantages over the use of only a single, targeted biomarker for
diagnostic purposes, reliable and successful validation of the discriminatory biomolecules found
here will be best achieved by the multicomponent 1H NMR analysis of additional samples collected
from rare GM1 Type II patients, and also an improved participant age range matching for the heathy
control specimens.

A unique strategy included observing all the lipidoses simultaneously using an LC-MS-MS
investigation into plasma hexosylsphingosine, globotriaosylsphingosine, lysosphingomyelin and
lysosphingomyelin-509 levels [82]. This investigation observed patients with FD (n = 16), GD (n = 8),
KD (n = 3), NPC (n = 11), control adults (n = 108) and control children (n = 86). From these analyses,
researchers were able to distinguish these participants on the basis of these marker levels, and they
found elevated globotriaosylsphingosine in FD, elevated hexosylsphingosine in GD and KD, and
raised lysosphingomyelin and lysosphingomyelin-509 levels in NPC [82]. This investigation provided
reference levels for the diseases, and it demonstrated the AUROC approach to be extremely sensitive
and specific, with AUC > 0.98 in all cases, using 95% confidence intervals [82].

3. Future Prospects and Potential Limitations of Metabolomics for Monitoring of LSDs

Obtaining a sufficiently powered set of biofluid/biopsy samples is highly challenging in the case
of rare diseases. However, animal trials and smaller human clinical studies can be conducted, and
these have the potential to provide valuable biomarker information. Most patients are prescribed
a ‘cocktail’ of different medications for symptomatic management or to slow disease progression,
which can prove to be problematical for metabolomic analysis, since this mixture of medications could
interfere with metabolite determinations, or alternatively mask characteristic metabolite signatures.
In 1H NMR spectroscopy, these metabolites can be assigned and effectively removed since this
technique will simultaneously detect drugs and their metabolites, in addition to endogenous
biomolecules. Furthermore, in principle the effectiveness of these drugs, and their metabolism,
could be simultaneously monitored. Alternatively, LC-MS strategies may provide some advantages,
since a targeted metabolomics approach can be performed in view of the higher sensitivity of this
technique, i.e., observation of specific metabolites that have accumulated in each disease process.
There is; however, a clear lack of global, untargeted metabolomics approaches at present, with only
a small number of studies [16,17] justifying NMR-based metabolomics approaches. As discussed in
Ref. [83], it is not simply the specific metabolite accumulation that can be monitored, but the presence
of metabolites that are not usually detectable in biofluids, and/or a reduction in the levels of metabolites
which may not be critically considered in the study of LSDs. For example, the role of BCAAs in NPC
diseases was not recognised until more global metabolomics approaches were applied. This global
approach is slowly but surely developing, and use of a combination of bioanalytical techniques is hence
becoming more common [84]. Furthermore, although the overall statistical power of MV analysis
strategies is greater than those of univariate ones, the majority of researchers involved in this area also
apply to the latter. Indeed, combining univariate and MV analyses is highly recommended.

It is important to note that it is possible for a variable to be simultaneously statistically significant
in a univariate analysis context, and concomitantly not be ranked within the top variables of MV models
applied. Indeed, initial MV analysis strategies make use of all variables simultaneously, and therefore
they focus on simultaneous relationships (linear or otherwise) among all those available. Indeed, these
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approaches are based on covariances/correlations between these variables, i.e., they reflect the extent of
these relationships between potentially large or very large numbers of variables, unlike univariate
methods which simply consider the mean and variance values of single ones. Therefore, it is perfectly
feasible that a variable which is significant in a univariate context may also be insignificant in a MV
testing model.

However, in multidimensional metabolomics investigations, the observation of a univariately
significant variable which is also insignificant when tested in MV models is explicable by the ‘masking’
of information by relatively large numbers of uninformative variables. The difficulties that arise are
associated with the provision of reliable estimates of covariances (notably when there are large numbers
of potential predictor variables and relatively smaller sample sizes), and/or a lack of overlap between
the univariate and MV testing approaches employed [85].

Conversely, the observation of a multivariately significant variable that is not significant if
subjected to one or more univariate tests is a relatively common occurrence. Indeed, such observations
are explicable by:

(1) The complementation of independent predictor variables, i.e., separately they do not, but when
considered together they do serve to explain differences observed between two or more disease
classifications (e.g., LSD versus age-matched healthy controls) for comparison;

(2) A consistency effect, i.e., in univariate statistics, although group means of single metabolite
concentrations may differ between classifications, no overall significant difference may be observed
in view of high levels of biological and/or measurement variation. However, with the employment
of more than one independent metabolite variable to explain such classifications, both biological
and measurement variations may be averaged out by the conversion of these variables to linear
combinations of them, for example, as principal components (PCs) in Principal Component Analysis
(PCA); and

(3) Although less relevant to examples in which there are large sample sizes (for example, > 400),
and relatively low numbers of potential ‘predictor’ variables (say ≤ 20), corrections applied for
multiple univariate testings, such as that of Bonferonni, or the milder false discovery rate (FDR) one,
unfortunately enhance the risk of false negatives: a false negative, or Type II error occurs when the
null hypothesis is actually false, but the test performed on it fails to reject it.

Applying metabolomics to LSDs may serve to facilitate early stage disease diagnosis by providing
biomarkers which serve to enhance our understanding of them at the biochemical and cellular levels.
Metabolomics performed on appropriate cell extracts and cellular culture media could be performed
using 1H NMR analysis, and intact (live) cells can also be analysed using high-resolution magic
angle spinning (MAS) 1H NMR techniques both pre- and post-gene inactivation. This may provide
biomarkers and it may also provide information regarding potential drug targets, together with further
understandings of the disease mechanisms, as recently shown by [59]. Earlier detection could give
a more promising outlook, including an earlier course of gene therapy treatment prior to disease
manifestations taking effect.

Moreover, few of the above studies noted in Table 2 have applied power analysis as a tool to
estimate the number of participants/patients required to be recruited in order to satisfy statistical
significance to a level which is reproducible, in a univariate, multivariate or both contexts. Since
the number of participants undertaking such studies are relatively small, or in some cases extremely
limited (e.g., [11,50,52]), the significance of the stratification and application of results acquired could
be overestimated. Both type I (false positive) and type II (false negative) errors can occur; the latter
error can be evaluated by applying power analysis calculations in order to assess the sensitivity of the
statistical test system [8]. Statistical power can be influenced by three factors inclusive of: (i) degree of
the effect of the monitored metabolite, (ii) the statistical conditions set, and (iii) the sample size [86].
Both the sample size and the statistical condition set are defined by the analyst prior to data collection.
Power calculations are essential and generally beyond reproach, since their application ensures that
there is sufficient evidence to support a successful metabolomics investigation and data acquired
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has reproducibility (precision) [8]. Equally, if an excess of samples is acquired, an overspend on
resources would occur and this is a hindrance from an economic perspective, in addition to the ethical
implications, such as exposing a surplus of participants to selected risk factors/hazards [8,87].

Power analysis methods include MetSizeR and Data-driven Sample Size Determination (DSD) [86].
DSD is an algorithm which calculates the sample size required to identify at least one statistically
significant variable or a maximum number of such variables. The statistical recoupling of variables
(SRV) algorithm is applied first to enable data reduction prior to analysis and to focus on metabolically
significant biomolecules, followed by computing inverse cumulative density probabilities (ICDP) [86].
Kernel density estimate function or log normal distribution fitting are applied for each ICDP.
An expanded dataset is then simulated at different sample sizes, since random numbers are drawn in
the ]0, 1[ interval and as input quantiles of the ICDPs [86]. Statistical significance is then evaluated
using analysis of variance (ANOVA), and false discovery rate (FDR) values are measured using the
Benjamini-Yekutieli correction [86]. DSD produces a table with mean and SD values of statistically
significant variables for each dataset size. Based on PCA, MetSizeR does not apply a data reduction
strategy, whereas DSD uses the orthogonal partial least squares-discriminatory analysis (O-PLS-DA)
approach, and therefore the above SRV values are tested. However, MetSizeR is a targeted approach,
since it can only cope with a maximum of 375 variables, forcing the user to pre-select these; however,
DSD does not place any restrictions on the number of variables incorporated. Standard parameters are
specified in the MetSizeR guidebook [88]. This investigation used an experimental dataset of rat urine
(n = 36) in two equivalent treatment groups collected longitudinally over a 15-day period analysed by
1H NMR [88]. Both power analysis approaches confirmed that fewer than 30 samples were required for
optimum sample size in the experimental dataset of rat urine. 20 and 30 samples were determined by
the DSD and MetSizeR strategies, respectively, and hence these appeared to be reliable methodologies
for assessing the size of the experimental dataset. Other methodologies include use of SSPA from the
Bioconducter R package [89,90], which have previously been reviewed [8].

Figure 4 shows diagnostic plots arising from a power calculation performed on the above pilot
GM1 type 2 gangliosidosis dataset analysed by MetaboAnalyst 4.0, which arises from the Bioconductor R
package SSPA. This approach estimates the mean MV analysis power level for selected FDRs and was
originally developed for estimating sampling sizes for pilot gene expression profiling datasets [89].
These diagnostic plots allow us first to evaluate the normality of two sample t test statistic values
employed to prime this system, and second the availability of significant ‘between-disease classification’
mean differences for our pilot 1H NMR ISB dataset consisting of 37 samples and 83 ISBs. For this
pilot dataset, Figure 4a shows that the t statistic value histogram obtained does not appear to deviate
significantly from normality, as does the QQ plot shown in Figure 4b. Additionally, Figure 4c displays
the distribution of two-sample t-test statistic p values, also as a histogram, confirming that a large
fraction of these lie within the 0.00–0.20 range, i.e., it is left-shifted, and this distribution provides
strong evidence for a large number of significant ‘between-disease classification’ variables among the
83 ISBs tested. A plot of sorted p values against their rankings (Figure 4d), confirms a high degree of
statistical discrimination between these classifications for the ISBs considered, i.e., this plot is markedly
shifted towards the top left-hand corner.

Once a high degree of statistical certainty was ascertained, the power calculation was performed,
and Figure 5 depicts the predicted power curve based on the pilot dataset investigated, i.e., a plot of
predicted power against sample size requirement per classification. This curve shows that for an FDR
value of 0.05, a sample size approaching n = 30 per disease classification test group is required for a
satisfactory model with the ability to clearly distinguish between these, specifically one with an overall
power of 0.80. Although for our pilot blood plasma dataset this value was very nearly realised for the
healthy control group (n = 28), that for the gangliosidosis condition was only n = 9. However, limited
numbers of patient participants, and collected biofluid sample volumes, which successfully match
those of an age-matched healthy control population, are unfortunately rather commonplace in the field
of LSDs in view of their rarity.
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Figure 4. Diagnostic plots derived from a MV statistical power calculation conducted on a model
involving comparisons between the 1H NMR profiles of human blood plasma collected from healthy
humans (controls) and GM1 type II gangliosidosis patients. (a) t statistic value p value distribution
displayed as a histogram; (b) corresponding QQ plot of these t-test values (i.e., t versus qt value);
(c) left-shifted distribution of t-test statistic p values for this power analysis; (d) plot of sorted t statistic
p values versus their ranking. The dataset was constant-sum normalised, cube root-transformed and
Pareto-scaled prior to analysis.
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Figure 5. Power analysis of GM1 Type II and controls. Predicted power curve for our pilot GM1 type II
disease 1H NMR profile dataset containing n = 28 healthy controls and only 9 with this LSD. The FDR p
value for this power calculation was pre-set at a value of 0.05, and normalisation, transformation and
scaling were performed as described in Figure 3 legend.

Although the authors of Ref. [91] recently discussed some future perspectives for metabolomics
in terms of inborn errors of metabolism, these considerations could be further developed. For example,
a thorough metabolomics analysis of the effects of ERTs and SRTs on patients with LSDs could
provide vital insights into the effectiveness of these clinical approaches by observing biomarkers in a
multidimensional context, a simple example being the simultaneous observation of elevated markers
decreasing, and depleted markers rising in their biofluid concentrations. New robust, non-invasive
treatment options need to be explored for LSDs. In the case of neurological disorders, variants of
these therapies are required to successfully cross the BBB. To enhance ERT, the use of nanoparticles to
facilitate enzyme crossing the BBB is also being explored, since the nanoparticles protect the enzyme
delivered against its in vivo degradation [92]. Thus, metabolomics could play a role in ensuring
that this technology is effective and perhaps also serve to validate candidate biomarkers. Moreover,
nanoparticles are also being employed for the gene therapy trialling of non-viral vectors, and again
metabolomics could provide insightful information regarding the effectiveness of such therapies [92].
However, one major potential drawback of nanoparticles is that their long-term toxicity remains
unknown, a feature which again could be explored using metabolomics as a vital probing tool.

Urine samples are yet to be analysed to the same extent as blood plasma/serum and CSF in these
patients, and donations of this biofluid obviously constitutes a less invasive collection procedure.
Although all biofluids and tissues have been probed in these works, plasma appears to be the biofluid
of choice for such studies. Interestingly, no metabolomics study has been performed on human saliva.
Such a study would be advantageous for virtually non-invasive sampling purposes. In principle, saliva
also has the potential to represent the full physiological status of the human body, just as blood serum
or plasma samples can. It should be noted that many fully characterised, established blood plasma
markers are often present in saliva at much lower concentrations [70]. Salivary biomarkers have been
found using metabolomics in diseases such as cancer and diabetes [70]. However, the disadvantage of
saliva for such investigations is that it may easily be compromised, i.e., influenced by external factors
such as poor oral health/hygiene, and eating or drinking episodes prior to sampling, Hence, these
investigations should be carried out with extreme care, particularly careful sample collection [93].
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Moreover, very few studies have been performed on brain tissue from living participants in view
of the inability to retrieve such samples. However, murine brain has been analysed as described
above [15,54,72]. However, several biofluids, tissues and cells that can be investigated for LSDs,
e.g., urine and CSF in KD remain unexplored. NPC and FD have been investigated by MS- and
NMR-linked metabolomics investigations thoroughly, with a total of 24 and 17 publications arising
from the study of these diseases, respectively. Less metabolomics research has been performed on KD
and GD, however, with only four and five publications targeting each disease, respectively at the time
of this report, and very little has been completed on gangliosidoses. These are areas which could be
further investigated. It would also be interesting to explore metabolic correlations of both biomarker
and non-biomarker variables between differing sub-classes of the same disorder, i.e., NPA, NPB and
NPC, and any similarities they may have with GD and gangliosidosis. Metabolic correlations have
shown to be extremely useful in other investigations to establish the specificity of the marker [82].

Lack of uniform studies across all LSDs is evident within this review in terms of experimental
design and statistical approach, not to mention the bioanalytical strategies and techniques employed for
these purposes. More systematic metabolomics studies will provide a wealth of information regarding
the significance of the current biomarkers identified, and also enable expedient cross-validation of
metabolites. Larger scale studies are also required, since they aim to provide many more representative
dataset profiles. The study of Reference [27] is a good example of this. As discussed above, it is
also important to use a biomarker or combination of biomarkers which are rigorous enough to avoid
misdiagnosis, as demonstrated by Ref. [26,28].

LC-MS-MS shows promise for the detection of NPC disease, demonstrating an elevated level of
blood plasma cholestane-3β5α6β-triol. However, there is a need for such developments to be integrated
into clinical practice, perhaps in combination with one or more specific biomarker for potentially
confounding sterol disorders, or for NPC disease itself. A combination of the phenome, metabolome,
and genome could translate the research in metabolomics into practice to modernise medicine; however,
for metabolomic applications to operate effectively, method development and validation are also
crucial [4]. One of the major disadvantages of translating MV NMR datasets into medical practices is
that the spectroscopic instruments, such as NMR and LC-MS, have both high purchase and maintenance
costs, and require specialist training for use, interpretation and subsequent data analysis. However,
NMR technology is also showing some promise in benchtop instrumentation, such that it could be
relevant for ‘point-of-care’ clinical applications, especially with the advent and development of water
suppression sequences and automation now possible [94]. NMR approaches may prove to be invaluable
as substantial technological advancements are being made in this field, with technologies such as
hyperpolarisation increasing instrumental sensitivities. Computational tools are becoming an integral
part of metabolomics applications, and artificial intelligence technology could effectively simplify and
distinguish normal from unusual patterns of results acquired by metabolomics-based instrumentation.

Another area of metabolomics research which is yet to be explored in depth is neonatal and
prenatal testing for LSDs. Some investigations have been performed on paediatric patients, and to
date this testing protocol offers some opportunities for further developments within this field [33,95].
These diseases are often overlooked in view of their rarity, and hence diagnosis and prognosis are not
established until later in the lifespan of the patient. Notwithstanding, currently available reports have
emphasised that early detection of these diseases is a highly beneficial patient requirement, and hence
early testing and diagnosis could indeed represent a life-saving process.

The impact of multivariate metabolomics analysis in healthcare, particularly for diagnostic
purposes, offers much potential for lysosomal storage disorders. Indeed, for these disorders, available
literature has revealed the availability of multiple clinical biomarkers, which may provide much
valuable information regarding the status of an array of metabolic pathway disturbances simultaneously.
Its advantages over other diagnostic tools, such as genetics or enzymatic probes, is that such multianalyte
approaches are able to provide a virtually complete metabolic ‘snapshot’ of the pathological status
of living systems at particular points in time. Although this is a valuable approach for longitudinal
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prognostic or therapeutic intervention studies, the authors thoroughly recommend the repeated
collection of two or more biofluid samples within narrow or longer diurnal timepoints for diagnostic
purposes in order to evaluate the repeatability of profiles acquired. Moreover, all possible steps to
avoid potential interferences arising from demographical or other covariables should be taken.

Hence, genomic and metabolomic assessments, along with appropriate enzyme assays are
considered complimentary to each other. In turn, carefully designed metabolomics approaches
can provide insights into treatment outcomes, successful or otherwise. Therefore, combining a
metabolomics probes with other tests, such as the assessment of cognitive and organ functions, would
provide an improved overall patient overview. Indeed, established and carefully validated biomarkers
can be simultaneously informative in diagnosis, prognosis, and treatment options, and could therefore
provide much improved outcomes for patients by developing a more robust understanding of the
molecular, cellular and tissue networks involved concomitantly. This removes reliance on symptomatic
networks, and moves towards the more pro-active diagnosis of patients, rather than ‘reactive’ diagnosis
which is-based solely on patient symptoms.

In summary, despite some progress, metabolomics approaches have yet to influence diagnosis
and monitoring of LSDs in clinical practice. Clinical diagnosis is dominated by PCR-based genetic
testing and enzyme assays, and hence using metabolomics to diagnose LSDs is still in its infancy.
Nevertheless, future opportunities in this area remain, especially in an era in which personalised
medicine is becoming more common. Future developments required for LSDs include (1) systematic
sample collection and handling; (2) further validation of at least some of the potential biomarkers
suggested via the rigorous monitoring of their biofluid levels along with simultaneous co-ordinated
assessments of clinical responses to treatment(s); (3) detailed correlations of biomarker concentrations
with disease severity, and also demographic variables such as age, gender and diet, etc.; and (4) a further
detailed review in order to ensure that biomarker(s) identified are solely specific to particular LSDs.

4. Conclusions

The multicomponent analysis of biofluids, tissues, cells and/or corresponding cell culture media
using high-resolution NMR, LC-MS, and LC-MS-MS platforms, when coupled with MV data analysis
techniques, is an extremely powerful means of probing the biochemical basis of human disease
aetiologies, such as those featured in LSDs. This strategy clearly offers major research advantages,
especially in view of the relatively limited amount of biomolecular information derivable from the
direct computer-visual examination of multicomponent spectral or chromatographic profiles acquired
(including the determination of many individual biomolecule levels) by trained, expert staff, a process
which is extremely costly, labour-intensive and time-consuming.

To date, metabolomics techniques have only scratched the surface in terms of their applications to
the lipidoses; however, they have provided some promising diagnostic and prognostic information
for NPC1 disease. Similar, more extensive investigations could be performed for other LSDs such as
GD, KD and Gangliosidoses. In addition, more global experimental design and bioanalysis strategies
may provide more valuable information, rather than limiting research to that focused only on a
limited number of biomarkers as in pre-targeted methodologies. However, such metabolomics-based
investigations remain somewhat limited in view of the limited number of biofluid or solid biopsy
samples available from humans suffering from these debilitating conditions. Although this is not a
problem experienced with animal models of LSDs. Therefore, the authors thoroughly recommend
the performance of MV power analysis of pilot data prior to the design of experiments for these
diseases, as demonstrated here in Figures 3 and 4. Additionally, carefully planned meta-analysis
studies involving MV adjustments may also offer support for both targeted and untargeted LSD
biomarker research.
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