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Abstract: Tacrolimus is an immunosuppressive drug with a narrow therapeutic index and larger 

interindividual variability. We identified genetic variants to predict tacrolimus exposure in healthy 

Korean males using machine learning algorithms such as decision tree, random forest, and least 

absolute shrinkage and selection operator (LASSO) regression. rs776746 (CYP3A5) and rs1137115 

(CYP2A6) are single nucleotide polymorphisms (SNPs) that can affect exposure to tacrolimus. A 

decision tree, when coupled with random forest analysis, is an efficient tool for predicting the 

exposure to tacrolimus based on genotype. These tools are helpful to determine an individualized 

dose of tacrolimus. 
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1. Introduction 

Tacrolimus, a widely-used immunosuppressive agent that prevents acute rejection after organ 

transplantation. Since the therapeutic index of tacrolimus is narrow and its pharmacokinetic profile 

varies widely among patients, the U.S. Food and Drug Administration (FDA) recommends 

individual dose titration and therapeutic drug monitoring for tacrolimus [1]. Therefore, identifying 

factors including genetic variants that affect the pharmacokinetic variability of tacrolimus may be 

beneficial for its optimal use. 

Several single nucleotide polymorphisms (SNPs) have been previously associated with 

tacrolimus metabolism [2–7]. For example, rs776746, also known as 6986A>G, encodes the 

nonfunctional CYP3A5*3 allele of the CYP3A5 gene. CYP3A5*3 induces alternative splicing, then 

protein truncation, resulting in decreased enzymatic activity of CYP3A5. In contrast, transplant 
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patients with fully functional homozygous CYP3A5*1 alleles require a larger dose of tacrolimus to 

maintain its immunosuppressive effect than those having one or two CYP3A5*3 alleles [6–9]. 

The decision tree, a machine learning-based classification tool, is used to group input variables 

[10–12]. A decision tree provides an acyclic (i.e., tree-like classification chart), which consists of 

branches (or vertices) and nodes (or leaves). A branch denotes a test or set of tests to be performed 

on a specific property such as genotype while a node indicates a category or class such as phenotype. 

Decision trees adequately classify patients by their genotypes to diagnose a disease and to predict its 

prognosis [12–14]. Furthermore, random forests integrate or ensemble multiple randomly chosen 

decision trees, thereby forests, with each decision tree providing an independent classification 

prediction. The random forest predicts phenotypes from genotypes with a better accuracy than other 

methods [12,15,16]. 

We previously reported the results of two clinical studies with tacrolimus [17,18], in one of which 

we also performed a pharmacogenomic analysis to identify genotypes that altered the 

pharmacokinetics of tacrolimus [17]. In that study, the least absolute shrinkage and selection operator 

(LASSO) regression method was used. 

In the present study, we expand our pharmacogenomic database by pooling genotype 

information obtained from another clinical study with tacrolimus [18] to further identify and evaluate 

genetic variants that could influence the pharmacokinetics of tacrolimus in healthy adult males. To 

this end, three machine learning algorithms are used, namely decision tree, random forest, and 

LASSO, and their results are compared. Additionally, in silico binding analyses are performed for 

the SNPs in the three prime untranslated regions (3′UTRs). 

2. Results 

2.1. Subjects 

A total of 81 males (42 and 39 in studies A and B, respectively) were enrolled and completed the 

entire study as planned. The mean ± standard deviation of age, height, body weight, and body mass 

index in subjects were 27.1 ± 6.1 years, 173.7 ± 5.5 cm, 68.2 ± 6.9 kg, and 22.6 ± 2.1 kg/m2, respectively. 

2.2. Genetic Associations with Tacrolimus Pharmacokinetics by Decision Tree, Random Forest, and LASSO 

Analyses 

The decision trees identified rs776746 (CYP3A5) as the most important classifying genetic 

variant for both Cmax (maximum plasma concentration) and AUClast (area under the concentration 

curve from time zero to the last quantifiable time point) of tacrolimus, followed by rs1137115 

(CYP2A6) and rs1060253 (SLC7A5, Cmax only) (Figure 1A,B; Table 1) when the depth of the decision 

tree was set to three based on the lowest cross validated (X-val) relative error in Cmax and the second 

lowest X-val relative error in AUClast (Figure S1). As a result, the geometric mean Cmax and AUClast of 

tacrolimus were 2.36 (95% confidence interval or CI: 1.75–3.18) and 3.40 (95% CI: 2.48–4.66) times 

greater, respectively, in those carrying the homozygous variant allele for rs776746 and the reference 

or heterozygous variant allele for rs1137115 (node 3 in Figure 1B) than in those carrying the reference 

or heterozygous variant allele for rs776746 (node 1 in Figures 1B,C). rs776746 was also identified as 

the genetic variant in the random forest analysis that classified both Cmax and AUClast of tacrolimus 

with the highest importance (Table 2). Similar to the decision tree analysis, rs1060253 (SLC7A5) was 

one of the four high-importance genetic variants for Cmax in the random forest, whereas rs1137115 

(CYP2A6) was identified as a genetic variant with a high importance for AUClast of tacrolimus (Table 

2). Lastly, rs776746 was the only significant SNP associated with both Cmax and AUClast of tacrolimus 

in the LASSO models with a coefficient >0 (Table 3). However, neither rs1137115 (CYP2A6) nor 

rs1060253 (SLC7A5) was retained in the final LASSO models with their coefficients >0. rs1208 (NAT2) 

remained in the final LASSO model for Cmax, but the variant allele frequency for rs1208 was 

disproportionately higher in our subjects than in the 1000 Genome Projects (Table 3). 



Int. J. Mol. Sci. 2020, 21, 2517 3 of 10 

 

 

 

 

 

Figure 1. Simplified (depth: 3) decision tree for the maximum plasma concentration (Cmax, μg mL−1, 

A) and the area under the concentration curve from time zero to the last quantifiable time point 

(AUClast, h μg mL−1, B) of tacrolimus. The rectangles denote the branches, which contain the gene 

name, the single nucleotide polymorphism (SNP) accession number, proportion (%), and frequency 

of subjects, and the classifying alleles. The rounded rectangles represent the final nodes, in which the 

mean values of Cmax and AUClast, the percentage, and number of subjects are shown. (C) Mean 

concentration time profiles of tacrolimus by node for AUClast as identified in (B). Subjects in node 3 

had the highest values of Cmax and AUClast. 

Table 1. Genetic variants associated with tacrolimus Cmax and AUClast identified by decision tree. 

Gene SNP Location 
Reference 

Allele 

Variant 

Allele 

Reference Allele 

Frequency 
Variant Allele Frequency 

1000 

Genomes * 

Our Data 

** 

1000 

Genomes * 

Our Data 

** 

CYP3A5 rs776746 
Splice 

acceptor 
T C 0.379 0.253 0.621 0.747 

CYP2A6 rs1137115 Exon T C 0.239 0.136 0.761 0.864 

SLC7A5*** rs1060253 3′UTR G C 0.698 0.370 0.302 0.630 

Abbreviations: Cmax, maximum plasma concentration; AUClast, area under the concentration curve 

from time zero to the last quantifiable time point; SNP, single nucleotide polymorphism. The allele 

frequency was calculated using the 1000 Genomes Project * data and our data **. SNP data were 

retrieved from dbSNP. *** Cmax only. 

 



Int. J. Mol. Sci. 2020, 21, 2517 4 of 10 

Int. J. Mol. Sci. 2020, 21, 2517; doi:10.3390/ijms21072517 www.mdpi.com/journal/ijms 

Table 2. Top four genetic variants for tacrolimus Cmax and AUClast identified in the random forest analysis. 

Gene SNP and Genotype Location Reference Allele Variant Allele 
Reference Allele Frequency Variant Allele Frequency 

Importance 
1000 Genomes * Our Data ** 1000 Genomes * Our data ** 

Cmax 

CYP3A5 rs776746 Splice acceptor T C 0.379 0.253 0.621 0.747 0.28524489 

SLCO3A1 rs2190748 Intron G A 0.517 0.525 0.483 0.475 0.14800742 

ADC1 rs1049793 Exon C G 0.627 0.358 0.373 0.642 0.13512953 

SLC7A5 rs1060253 3′UTR G C 0.698 0.370 0.302 0.630 0.11857793 

AUClast 

CYP3A5 rs776746 Splice acceptor T C 0.379 0.253 0.621 0.747 1.5377314 

SLCO3A1 rs2190748 Intron G A 0.517 0.525 0.483 0.475 0.3333521 

CYP2A6 rs1137115 Exon T C 0.239 0.136 0.761 0.864 0.1921316 

NR1I2 rs3814055 Exon C T 0.678 0.710 0.322 0.290 0.1419874 

Abbreviations: Cmax, maximum plasma concentration; AUClast, area under the concentration curve from time zero to the last quantifiable time point; NA, not applicable. 

The allele frequency was calculated using the 1000 Genomes Project* data and our dataset**. 

Table 3. Genetic variants with a coefficient >0 for tacrolimus Cmax and AUClast in the least absolute shrinkage and selection operator (LASSO) models. 

Gene SNP Location 
Reference 

Allele 

Variant 

Allele 

Reference Allele Frequency Variant Allele Frequency 

Coefficient 
1000 Genomes * 

Our Data 

** 
1000 Genomes * 

Our Data 

** 

Cmax 

CYP3A5 rs776746 Splice acceptor T C 0.379 0.253 0.621 0.747 0.13331 

CBR1 rs3787728 Intron T C 0.270 0.519 0.730 0.481 0.07863 

NAT2 rs1208 Exon G A, T 0.323 0.025 0.677 0.975 0.07224 

AUClast 

CYP3A5 rs776746 Splice acceptor T C 0.379 0.253 0.621 0.747 0.36133 

Abbreviations: Cmax, maximum plasma concentration; AUClast, area under the concentration curve from time zero to the last quantifiable time point. The allele frequency 

was calculated using the 1000 Genomes Project* data and our dataset**.
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2.3. In silico Analysis of the SNPs in the 3′UTR 

Of the eight SNPs identified by decision tree, random forest analysis, or LASSO regression 

(Tables 1–3), one SNP (i.e., rs1060253 of the SLC7A5) was located in the 3′UTR (Table 1). Eight 

miRNAs (miR-130a-3p, -130b-3p, -148a-3p, -148b-3p, -152-3p, -301a-3p, -301b-3p, and -454-3p) had 

complementary sites for rs1060253 (Figures 2 and S2). Among these, two miRNAs (miR-301a-3p and 

-301b-3p) showed different hybrid structures between the reference and variant alleles of rs1060253 

(Figure 2). In contrast, the other six miRNAs had similar hybrid structures between the reference and 

variant alleles of rs1060253 (Figure S2). 

 

Figure 2. Duplexes identified by in silico analysis between a microRNA (miR) and rs1060253 of the 

SLC7A5 (left: reference allele; right: variant allele) for hsa-miR-301a-3p (top) and miR-301b-3p 

(bottom). The shades denote the seed region of miR-301a-3p and -301b-3p. The circles represent the 

reference and variant nucleotides of rs1060253. 

3. Discussion 

We demonstrate that rs776746 (CYP3A5) is consistently the best predictor of exposure to 

tacrolimus no matter what machine learning algorithms are applied. The evidence is that rs776746 

was repeatedly selected as the most influential genotype in all of the analysis methods employed in 

this study such as decision tree (Figure 1A,B; Table 1), random forest (Table 2), and LASSO regression 

(Table 3). Consequently, those carrying the homozygous variant alleles of rs776746 (i.e., C/C) had a 

two- to three-times higher AUClast of tacrolimus than those with wild type (T/T) or heterozygous 

variant alleles (C/T) (Figure 1C). rs776746 or CYP3A5*3 is located in the terminal sequence of the 

CYP3A5′s intron 3 (Table 1) and induces a premature termination codon. Therefore, subjects carrying 

rs776746 have an increased systemic exposure to tacrolimus caused by the reduced metabolism of 

tacrolimus by CYP3A5 as shown in the present studies [19–24]. 
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Other SNPs had a relatively smaller and inconsistent effect on the systemic exposure to 

tacrolimus. Of these, however, rs1137115 in the CYP2A6 gene is noteworthy although it was not 

identified in our previous study [17] or by the LASSO regression in the present study (Table 3). 

Namely, when the reference or heterozygous allele for rs1137115 was combined with the 

homozygous variant allele for rs776746, the systemic exposure to tacrolimus was much higher than 

with the homozygous variant allele for rs1137115 (Figure 1A,B). Additionally, the C/C genotype of 

rs1137115 was identified as one the four high-importance genetic variants to classify AUClast (Table 

2). The CYP2A6 gene plays an important role in nicotine metabolism, and rs1137115 is a regulator of 

alternative splicing [25,26]. rs1137115 is associated with lower mRNA expression and reduced 

nicotine metabolism [25]. However, the observed effect of rs1137115 on the systemic exposure to 

tacrolimus is mechanistically hard to explain and is most likely to be a chance finding because the 

effect is not consistent by the rs776746 allele (Table S1). rs3814055 (NR1I2) was significantly associated 

with both Cmax and AUClast in the false discovery rate (FDR)-adjusted multiple testing analysis and 

LASSO models in our previous study [13]. However, rs3814055 was identified as a significant genetic 

variant for AUClast only by the random forest analysis in the present study (Table 2). Therefore, the 

role of rs3814055 should be further confirmed and validated in future studies, preferably in patients. 

Likewise, the role of rs1208 (NAT2) is rather inconclusive because most of our subjects carried the 

variant allele for this SNP. 

miRNAs are a transcriptional inhibitor, which recognizes the specific seed regions in the 3′UTR 

sequences [27], thereby suppressing gene expression [28]. rs1060253 (SLC7A5) is located in the 3′UTR 

[29,30]. Therefore, genotypic variations in rs1060253 could change the target sites for hsa-miR-301a-

3p and -301b-3p in SLC7A5 3′UTR (Figure 2), which could contribute to the altered metabolism of 

tacrolimus. Genetic variant frequencies of rs1060253 (SLC7A5) were different between the 

populations included in the 1000 Genomes Project, and our frequency pattern was like that in 

Japanese patients as well. The ethnic differences in SLC7A5 are affected by natural selection, 

migration, and genetic drift, and verifying these differences will help us better understand the ethnic 

variations in drug susceptibility and phenotypes. 

Several previous studies adopted various machine learning algorithms, such as support vector 

machine [12,31], neural network [32], decision tree [12], and random forest [12], to assess the effect of 

genetic variations on tacrolimus pharmacokinetics. In those studies, subjects with renal 

transplantation [12,32] or liver transplant recipients [31] were investigated. The present study is 

different from those previous studies. First, our subjects are healthy, not transplanted patients [6,7]. 

This could be beneficial in that the relationships between genetic variations and tacrolimus 

pharmacokinetics were not confounded by many disease-related variables, which could not be easily 

adjusted for in many cases as previously shown [13]. Furthermore, we demonstrate that rs776746 

(CYP3A5) is consistently the best predictor of exposure to tacrolimus no matter what machine 

learning algorithms are used (Tables 1–3). This finding is important in that rs776746 seems to be the 

most important genetic variation to characterize the exposure to tacrolimus in heterogenous groups 

of transplant recipients in large, diverse populations. 

The present study has several limitations. First, the sample size was relatively small, and all the 

subjects were healthy males. Therefore, any genetic variants for tacrolimus exposure found only in 

females or transplant patients could not be detected. Some CYP gene families, renal or hepatic 

transporters have different expression patterns between males and females [33]. Furthermore, the 

pharmacokinetics profiles of tacrolimus were slightly different between healthy individuals and 

transplant patients [34]. Second, although the subjects were collected as a homogenous population, 

some variations in age, body weight, and body mass index were not evitable, which was not 

considered in our analyses. Lastly, all the variants detected in this study were limited to those the 

DMETTM (Drug metabolism enzymes and transporters) provides. Further larger pharmacogenomic 

studies in transplant patients with tacrolimus are warranted to validate our findings. 

In conclusion, rs776746 (CYP3A5) and rs1137115 (CYP2A6) were identified as SNPs that could 

affect the exposure to tacrolimus. A decision tree, when coupled with random forest analysis, is an 
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efficient tool for classifying or predicting the exposure to tacrolimus based on genotype, which is 

indispensable for its optimal dose selection. 

4. Materials and Methods 

4.1. Clinical Studies and Subjects 

Study A was a bioequivalence trial of a generic tacrolimus (Tacrobell®, Chong Kun Dang 

Pharmaceutical, Seoul, Korea) and its reference product (PrografTM, Astellas Pharma Korea, Seoul, 

Korea) [17]. Study B compared the pharmacokinetics of a new tablet formulation of tacrolimus 

(Tacrobell®, Chong Kun Dang Pharmaceutical, Seoul, Korea) with those of the reference capsule 

formulation (PrografTM, Astellas Pharma Korea, Seoul, Korea) [18]. In each study, healthy male 

volunteers aged 19–55 and 19–45 years, respectively, received a single oral administration of 

tacrolimus in different products (study A) or formulations (study B), and blood samples were 

intensively obtained for pharmacokinetics analysis of tacrolimus. All of the subjects in studies A and 

B gave written consent for further use of their data, which were also reviewed and approved by the 

Institutional Review Boards at Seoul National University Hospital (IRB No.: H-1307-087-505, 26 Aug 

2013 and H-1412-016-631, 24 Nov 2014, respectively). 

4.2. Determination of Tacrolimus Concentrations and Pharmacokinetic Analysis 

Tacrolimus concentrations in whole blood were determined using a validated LC/MS/MS 

method [17,18,35]. In the present study, we analyzed only the tacrolimus concentrations of the 

reference product. The observed concentrations were used to decide the maximum concentration 

(Cmax) of tacrolimus. The area under the concentration curve from time zero to the latest quantifiable 

time point (AUClast) was calculated using the linear trapezoidal method. All the pharmacokinetics 

parameters were estimated using a non-compartmental analysis option in the Phoenix WinNonlin 

(version 6.3; Certara USA Inc., Princeton, NJ, USA). 

4.3. DNA Extraction and Genotype Analysis 

Genomic DNA was extracted from whole blood using QuickGene-mini80 (Fujifilm, Tokyo, 

Japan). Pre-amplified multiplex PCR samples were put into the DMETTM Plus assay flow system 

(Affymetrix, Santa Clara, CA, USA), which generated nucleotide signals in the Affymetrix GeneChip® 

Targeted Genotyping System (Affymetrix, Santa Clara, CA, USA). These nucleotide signals were 

converted to genotypes using the Affymetrix DMETTM Console software (Affymetrix, Santa Clara, 

CA, USA) by DNA Link (Seoul, Korea). A total of 1876 out of 1946 genetic markers in the DMETTM 

Plus microarray were successfully assayed (>95% genotyping calls), and the same variants were 

excluded, resulting in 567 genotypes for analysis. In addition, we calculated the proportions of 

reference and variant alleles for identified genotypes in subjects, and compared them with the results 

from the 1000 Genomes Project [36]. 

4.4. Statistical Analysis and Machine Learning Application 

We used three machine learning algorithms: decision tree, random forest, and LASSO. First, the 

classification and regression trees (CART) algorithm was used to classify subjects based on the 567 

genetic variants involved in tacrolimus metabolism and transport. The CART algorithm is helpful for 

partitioning the data space, then fitting a prediction model within each partition [37]. The partitions 

were designed as a binary decision tree. The number of splits in the decision trees were predicted by 

the different complexity parameter and its corresponding cross validated (X-val) relative errors. The 

X-val relative errors were calculated by 10-fold cross validation [38]. Second, a random forest analysis 

was performed using 1000 bootstrap samples from the original data set with 43 splitting variables, 

which was determined as the elbow point in the replicated training processes with 950 predictors of 

81 samples. Then, we derived Gini Importance for each classifying genotype. Gini Importance, 

defined as the total decrease in node impurity averaged over individual decision trees in the random 
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forest, is a measure of each variable’s importance for estimating a target variable [39]. Lastly, a LASSO 

regression model was fit, and the tuning parameter was decided to minimize the 10-fold cross-

validation errors [40]. To obtain an appropriate lambda value of the LASSO regression model, we 

performed 1000 repetitions, the mode of which was selected. 

The decision tree, random forest analyses, and LASSO regression were performed using the R 

packages rpart, randomForest and glmnet, respectively (version 3.5.1, R Development core team, 

Vienna, Austria). 

5. Conclusions 

We revealed that rs776746 (CYP3A5) and rs1137115 (CYP2A6) can affect exposure to tacrolimus 

in healthy Korean males using three machine learning algorithms (decision tree, random forest, and 

LASSO regression). A decision tree and random forest analysis were an efficient tool for predicting 

the exposure to tacrolimus based on genotype. These methods could be applied to determine an 

individualized dose of tacrolimus. 
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