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Abstract

:

Tacrolimus is an immunosuppressive drug with a narrow therapeutic index and larger interindividual variability. We identified genetic variants to predict tacrolimus exposure in healthy Korean males using machine learning algorithms such as decision tree, random forest, and least absolute shrinkage and selection operator (LASSO) regression. rs776746 (CYP3A5) and rs1137115 (CYP2A6) are single nucleotide polymorphisms (SNPs) that can affect exposure to tacrolimus. A decision tree, when coupled with random forest analysis, is an efficient tool for predicting the exposure to tacrolimus based on genotype. These tools are helpful to determine an individualized dose of tacrolimus.
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1. Introduction


Tacrolimus, a widely-used immunosuppressive agent that prevents acute rejection after organ transplantation. Since the therapeutic index of tacrolimus is narrow and its pharmacokinetic profile varies widely among patients, the U.S. Food and Drug Administration (FDA) recommends individual dose titration and therapeutic drug monitoring for tacrolimus [1]. Therefore, identifying factors including genetic variants that affect the pharmacokinetic variability of tacrolimus may be beneficial for its optimal use.



Several single nucleotide polymorphisms (SNPs) have been previously associated with tacrolimus metabolism [2,3,4,5,6,7]. For example, rs776746, also known as 6986A>G, encodes the nonfunctional CYP3A5*3 allele of the CYP3A5 gene. CYP3A5*3 induces alternative splicing, then protein truncation, resulting in decreased enzymatic activity of CYP3A5. In contrast, transplant patients with fully functional homozygous CYP3A5*1 alleles require a larger dose of tacrolimus to maintain its immunosuppressive effect than those having one or two CYP3A5*3 alleles [6,7,8,9].



The decision tree, a machine learning-based classification tool, is used to group input variables [10,11,12]. A decision tree provides an acyclic (i.e., tree-like classification chart), which consists of branches (or vertices) and nodes (or leaves). A branch denotes a test or set of tests to be performed on a specific property such as genotype while a node indicates a category or class such as phenotype. Decision trees adequately classify patients by their genotypes to diagnose a disease and to predict its prognosis [12,13,14]. Furthermore, random forests integrate or ensemble multiple randomly chosen decision trees, thereby forests, with each decision tree providing an independent classification prediction. The random forest predicts phenotypes from genotypes with a better accuracy than other methods [12,15,16].



We previously reported the results of two clinical studies with tacrolimus [17,18], in one of which we also performed a pharmacogenomic analysis to identify genotypes that altered the pharmacokinetics of tacrolimus [17]. In that study, the least absolute shrinkage and selection operator (LASSO) regression method was used.



In the present study, we expand our pharmacogenomic database by pooling genotype information obtained from another clinical study with tacrolimus [18] to further identify and evaluate genetic variants that could influence the pharmacokinetics of tacrolimus in healthy adult males. To this end, three machine learning algorithms are used, namely decision tree, random forest, and LASSO, and their results are compared. Additionally, in silico binding analyses are performed for the SNPs in the three prime untranslated regions (3′UTRs).




2. Results


2.1. Subjects


A total of 81 males (42 and 39 in studies A and B, respectively) were enrolled and completed the entire study as planned. The mean ± standard deviation of age, height, body weight, and body mass index in subjects were 27.1 ± 6.1 years, 173.7 ± 5.5 cm, 68.2 ± 6.9 kg, and 22.6 ± 2.1 kg/m2, respectively.




2.2. Genetic Associations with Tacrolimus Pharmacokinetics by Decision Tree, Random Forest, and LASSO Analyses


The decision trees identified rs776746 (CYP3A5) as the most important classifying genetic variant for both Cmax (maximum plasma concentration) and AUClast (area under the concentration curve from time zero to the last quantifiable time point) of tacrolimus, followed by rs1137115 (CYP2A6) and rs1060253 (SLC7A5, Cmax only) (Figure 1A,B; Table 1) when the depth of the decision tree was set to three based on the lowest cross validated (X-val) relative error in Cmax and the second lowest X-val relative error in AUClast (Figure S1). As a result, the geometric mean Cmax and AUClast of tacrolimus were 2.36 (95% confidence interval or CI: 1.75–3.18) and 3.40 (95% CI: 2.48–4.66) times greater, respectively, in those carrying the homozygous variant allele for rs776746 and the reference or heterozygous variant allele for rs1137115 (node 3 in Figure 1B) than in those carrying the reference or heterozygous variant allele for rs776746 (node 1 in Figure 1B,C). rs776746 was also identified as the genetic variant in the random forest analysis that classified both Cmax and AUClast of tacrolimus with the highest importance (Table 2). Similar to the decision tree analysis, rs1060253 (SLC7A5) was one of the four high-importance genetic variants for Cmax in the random forest, whereas rs1137115 (CYP2A6) was identified as a genetic variant with a high importance for AUClast of tacrolimus (Table 2). Lastly, rs776746 was the only significant SNP associated with both Cmax and AUClast of tacrolimus in the LASSO models with a coefficient >0 (Table 3). However, neither rs1137115 (CYP2A6) nor rs1060253 (SLC7A5) was retained in the final LASSO models with their coefficients >0. rs1208 (NAT2) remained in the final LASSO model for Cmax, but the variant allele frequency for rs1208 was disproportionately higher in our subjects than in the 1000 Genome Projects (Table 3).




2.3. In silico Analysis of the SNPs in the 3′UTR


Of the eight SNPs identified by decision tree, random forest analysis, or LASSO regression (Table 1, Table 2 and Table 3), one SNP (i.e., rs1060253 of the SLC7A5) was located in the 3′UTR (Table 1). Eight miRNAs (miR-130a-3p, -130b-3p, -148a-3p, -148b-3p, -152-3p, -301a-3p, -301b-3p, and -454-3p) had complementary sites for rs1060253 (Figure 2 and Figure S2). Among these, two miRNAs (miR-301a-3p and -301b-3p) showed different hybrid structures between the reference and variant alleles of rs1060253 (Figure 2). In contrast, the other six miRNAs had similar hybrid structures between the reference and variant alleles of rs1060253 (Figure S2).





3. Discussion


We demonstrate that rs776746 (CYP3A5) is consistently the best predictor of exposure to tacrolimus no matter what machine learning algorithms are applied. The evidence is that rs776746 was repeatedly selected as the most influential genotype in all of the analysis methods employed in this study such as decision tree (Figure 1A,B; Table 1), random forest (Table 2), and LASSO regression (Table 3). Consequently, those carrying the homozygous variant alleles of rs776746 (i.e., C/C) had a two- to three-times higher AUClast of tacrolimus than those with wild type (T/T) or heterozygous variant alleles (C/T) (Figure 1C). rs776746 or CYP3A5*3 is located in the terminal sequence of the CYP3A5′s intron 3 (Table 1) and induces a premature termination codon. Therefore, subjects carrying rs776746 have an increased systemic exposure to tacrolimus caused by the reduced metabolism of tacrolimus by CYP3A5 as shown in the present studies [19,20,21,22,23,24].



Other SNPs had a relatively smaller and inconsistent effect on the systemic exposure to tacrolimus. Of these, however, rs1137115 in the CYP2A6 gene is noteworthy although it was not identified in our previous study [17] or by the LASSO regression in the present study (Table 3). Namely, when the reference or heterozygous allele for rs1137115 was combined with the homozygous variant allele for rs776746, the systemic exposure to tacrolimus was much higher than with the homozygous variant allele for rs1137115 (Figure 1A,B). Additionally, the C/C genotype of rs1137115 was identified as one the four high-importance genetic variants to classify AUClast (Table 2). The CYP2A6 gene plays an important role in nicotine metabolism, and rs1137115 is a regulator of alternative splicing [25,26]. rs1137115 is associated with lower mRNA expression and reduced nicotine metabolism [25]. However, the observed effect of rs1137115 on the systemic exposure to tacrolimus is mechanistically hard to explain and is most likely to be a chance finding because the effect is not consistent by the rs776746 allele (Table S1). rs3814055 (NR1I2) was significantly associated with both Cmax and AUClast in the false discovery rate (FDR)-adjusted multiple testing analysis and LASSO models in our previous study [13]. However, rs3814055 was identified as a significant genetic variant for AUClast only by the random forest analysis in the present study (Table 2). Therefore, the role of rs3814055 should be further confirmed and validated in future studies, preferably in patients. Likewise, the role of rs1208 (NAT2) is rather inconclusive because most of our subjects carried the variant allele for this SNP.



miRNAs are a transcriptional inhibitor, which recognizes the specific seed regions in the 3′UTR sequences [27], thereby suppressing gene expression [28]. rs1060253 (SLC7A5) is located in the 3′UTR [29,30]. Therefore, genotypic variations in rs1060253 could change the target sites for hsa-miR-301a-3p and -301b-3p in SLC7A5 3′UTR (Figure 2), which could contribute to the altered metabolism of tacrolimus. Genetic variant frequencies of rs1060253 (SLC7A5) were different between the populations included in the 1000 Genomes Project, and our frequency pattern was like that in Japanese patients as well. The ethnic differences in SLC7A5 are affected by natural selection, migration, and genetic drift, and verifying these differences will help us better understand the ethnic variations in drug susceptibility and phenotypes.



Several previous studies adopted various machine learning algorithms, such as support vector machine [12,31], neural network [32], decision tree [12], and random forest [12], to assess the effect of genetic variations on tacrolimus pharmacokinetics. In those studies, subjects with renal transplantation [12,32] or liver transplant recipients [31] were investigated. The present study is different from those previous studies. First, our subjects are healthy, not transplanted patients [6,7]. This could be beneficial in that the relationships between genetic variations and tacrolimus pharmacokinetics were not confounded by many disease-related variables, which could not be easily adjusted for in many cases as previously shown [13]. Furthermore, we demonstrate that rs776746 (CYP3A5) is consistently the best predictor of exposure to tacrolimus no matter what machine learning algorithms are used (Table 1, Table 2 and Table 3). This finding is important in that rs776746 seems to be the most important genetic variation to characterize the exposure to tacrolimus in heterogenous groups of transplant recipients in large, diverse populations.



The present study has several limitations. First, the sample size was relatively small, and all the subjects were healthy males. Therefore, any genetic variants for tacrolimus exposure found only in females or transplant patients could not be detected. Some CYP gene families, renal or hepatic transporters have different expression patterns between males and females [33]. Furthermore, the pharmacokinetics profiles of tacrolimus were slightly different between healthy individuals and transplant patients [34]. Second, although the subjects were collected as a homogenous population, some variations in age, body weight, and body mass index were not evitable, which was not considered in our analyses. Lastly, all the variants detected in this study were limited to those the DMETTM (Drug metabolism enzymes and transporters) provides. Further larger pharmacogenomic studies in transplant patients with tacrolimus are warranted to validate our findings.



In conclusion, rs776746 (CYP3A5) and rs1137115 (CYP2A6) were identified as SNPs that could affect the exposure to tacrolimus. A decision tree, when coupled with random forest analysis, is an efficient tool for classifying or predicting the exposure to tacrolimus based on genotype, which is indispensable for its optimal dose selection.




4. Materials and Methods


4.1. Clinical Studies and Subjects


Study A was a bioequivalence trial of a generic tacrolimus (Tacrobell®, Chong Kun Dang Pharmaceutical, Seoul, Korea) and its reference product (PrografTM, Astellas Pharma Korea, Seoul, Korea) [17]. Study B compared the pharmacokinetics of a new tablet formulation of tacrolimus (Tacrobell®, Chong Kun Dang Pharmaceutical, Seoul, Korea) with those of the reference capsule formulation (PrografTM, Astellas Pharma Korea, Seoul, Korea) [18]. In each study, healthy male volunteers aged 19–55 and 19–45 years, respectively, received a single oral administration of tacrolimus in different products (study A) or formulations (study B), and blood samples were intensively obtained for pharmacokinetics analysis of tacrolimus. All of the subjects in studies A and B gave written consent for further use of their data, which were also reviewed and approved by the Institutional Review Boards at Seoul National University Hospital (IRB No.: H-1307-087-505, 26 Aug 2013 and H-1412-016-631, 24 Nov 2014, respectively).




4.2. Determination of Tacrolimus Concentrations and Pharmacokinetic Analysis


Tacrolimus concentrations in whole blood were determined using a validated LC/MS/MS method [17,18,35]. In the present study, we analyzed only the tacrolimus concentrations of the reference product. The observed concentrations were used to decide the maximum concentration (Cmax) of tacrolimus. The area under the concentration curve from time zero to the latest quantifiable time point (AUClast) was calculated using the linear trapezoidal method. All the pharmacokinetics parameters were estimated using a non-compartmental analysis option in the Phoenix WinNonlin (version 6.3; Certara USA Inc., Princeton, NJ, USA).




4.3. DNA Extraction and Genotype Analysis


Genomic DNA was extracted from whole blood using QuickGene-mini80 (Fujifilm, Tokyo, Japan). Pre-amplified multiplex PCR samples were put into the DMETTM Plus assay flow system (Affymetrix, Santa Clara, CA, USA), which generated nucleotide signals in the Affymetrix GeneChip® Targeted Genotyping System (Affymetrix, Santa Clara, CA, USA). These nucleotide signals were converted to genotypes using the Affymetrix DMETTM Console software (Affymetrix, Santa Clara, CA, USA) by DNA Link (Seoul, Korea). A total of 1876 out of 1946 genetic markers in the DMETTM Plus microarray were successfully assayed (>95% genotyping calls), and the same variants were excluded, resulting in 567 genotypes for analysis. In addition, we calculated the proportions of reference and variant alleles for identified genotypes in subjects, and compared them with the results from the 1000 Genomes Project [36].




4.4. Statistical Analysis and Machine Learning Application


We used three machine learning algorithms: decision tree, random forest, and LASSO. First, the classification and regression trees (CART) algorithm was used to classify subjects based on the 567 genetic variants involved in tacrolimus metabolism and transport. The CART algorithm is helpful for partitioning the data space, then fitting a prediction model within each partition [37]. The partitions were designed as a binary decision tree. The number of splits in the decision trees were predicted by the different complexity parameter and its corresponding cross validated (X-val) relative errors. The X-val relative errors were calculated by 10-fold cross validation [38]. Second, a random forest analysis was performed using 1000 bootstrap samples from the original data set with 43 splitting variables, which was determined as the elbow point in the replicated training processes with 950 predictors of 81 samples. Then, we derived Gini Importance for each classifying genotype. Gini Importance, defined as the total decrease in node impurity averaged over individual decision trees in the random forest, is a measure of each variable’s importance for estimating a target variable [39]. Lastly, a LASSO regression model was fit, and the tuning parameter was decided to minimize the 10-fold cross-validation errors [40]. To obtain an appropriate lambda value of the LASSO regression model, we performed 1000 repetitions, the mode of which was selected.



The decision tree, random forest analyses, and LASSO regression were performed using the R packages rpart, randomForest and glmnet, respectively (version 3.5.1, R Development core team, Vienna, Austria).





5. Conclusions


We revealed that rs776746 (CYP3A5) and rs1137115 (CYP2A6) can affect exposure to tacrolimus in healthy Korean males using three machine learning algorithms (decision tree, random forest, and LASSO regression). A decision tree and random forest analysis were an efficient tool for predicting the exposure to tacrolimus based on genotype. These methods could be applied to determine an individualized dose of tacrolimus.
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Figure 1. Simplified (depth: 3) decision tree for the maximum plasma concentration (Cmax, μg mL−1, A) and the area under the concentration curve from time zero to the last quantifiable time point (AUClast, h μg mL−1, B) of tacrolimus. The rectangles denote the branches, which contain the gene name, the single nucleotide polymorphism (SNP) accession number, proportion (%), and frequency of subjects, and the classifying alleles. The rounded rectangles represent the final nodes, in which the mean values of Cmax and AUClast, the percentage, and number of subjects are shown. (C) Mean concentration time profiles of tacrolimus by node for AUClast as identified in (B). Subjects in node 3 had the highest values of Cmax and AUClast. 
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Figure 2. Duplexes identified by in silico analysis between a microRNA (miR) and rs1060253 of the SLC7A5 (left: reference allele; right: variant allele) for hsa-miR-301a-3p (top) and miR-301b-3p (bottom). The shades denote the seed region of miR-301a-3p and -301b-3p. The circles represent the reference and variant nucleotides of rs1060253. 
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Table 1. Genetic variants associated with tacrolimus Cmax and AUClast identified by decision tree.
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Gene

	
SNP

	
Location

	
Reference Allele

	
Variant Allele

	
Reference Allele Frequency

	
Variant Allele Frequency




	
1000 Genomes *

	
Our Data **

	
1000 Genomes *

	
Our Data **






	
CYP3A5

	
rs776746

	
Splice acceptor

	
T

	
C

	
0.379

	
0.253

	
0.621

	
0.747




	
CYP2A6

	
rs1137115

	
Exon

	
T

	
C

	
0.239

	
0.136

	
0.761

	
0.864




	
SLC7A5 ***

	
rs1060253

	
3′UTR

	
G

	
C

	
0.698

	
0.370

	
0.302

	
0.630








Abbreviations: Cmax, maximum plasma concentration; AUClast, area under the concentration curve from time zero to the last quantifiable time point; SNP, single nucleotide polymorphism. The allele frequency was calculated using the 1000 Genomes Project * data and our data **. SNP data were retrieved from dbSNP. *** Cmax only.
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Table 2. Top four genetic variants for tacrolimus Cmax and AUClast identified in the random forest analysis.
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Gene

	
SNP and Genotype

	
Location

	
Reference Allele

	
Variant Allele

	
Reference Allele Frequency

	
Variant Allele Frequency

	
Importance




	
1000 Genomes *

	
Our Data **

	
1000 Genomes *

	
Our data **






	
Cmax




	
CYP3A5

	
rs776746

	
Splice acceptor

	
T

	
C

	
0.379

	
0.253

	
0.621

	
0.747

	
0.28524489




	
SLCO3A1

	
rs2190748

	
Intron

	
G

	
A

	
0.517

	
0.525

	
0.483

	
0.475

	
0.14800742




	
ADC1

	
rs1049793

	
Exon

	
C

	
G

	
0.627

	
0.358

	
0.373

	
0.642

	
0.13512953




	
SLC7A5

	
rs1060253

	
3′UTR

	
G

	
C

	
0.698

	
0.370

	
0.302

	
0.630

	
0.11857793




	
AUClast




	
CYP3A5

	
rs776746

	
Splice acceptor

	
T

	
C

	
0.379

	
0.253

	
0.621

	
0.747

	
1.5377314




	
SLCO3A1

	
rs2190748

	
Intron

	
G

	
A

	
0.517

	
0.525

	
0.483

	
0.475

	
0.3333521




	
CYP2A6

	
rs1137115

	
Exon

	
T

	
C

	
0.239

	
0.136

	
0.761

	
0.864

	
0.1921316




	
NR1I2

	
rs3814055

	
Exon

	
C

	
T

	
0.678

	
0.710

	
0.322

	
0.290

	
0.1419874








Abbreviations: Cmax, maximum plasma concentration; AUClast, area under the concentration curve from time zero to the last quantifiable time point; NA, not applicable. The allele frequency was calculated using the 1000 Genomes Project * data and our dataset **.
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Table 3. Genetic variants with a coefficient >0 for tacrolimus Cmax and AUClast in the least absolute shrinkage and selection operator (LASSO) models.






Table 3. Genetic variants with a coefficient >0 for tacrolimus Cmax and AUClast in the least absolute shrinkage and selection operator (LASSO) models.





	
Gene

	
SNP

	
Location

	
Reference Allele

	
Variant Allele

	
Reference Allele Frequency

	
Variant Allele Frequency

	
Coefficient




	
1000 Genomes *

	
Our Data **

	
1000 Genomes *

	
Our Data **






	
Cmax




	
CYP3A5

	
rs776746

	
Splice acceptor

	
T

	
C

	
0.379

	
0.253

	
0.621

	
0.747

	
0.13331




	
CBR1

	
rs3787728

	
Intron

	
T

	
C

	
0.270

	
0.519

	
0.730

	
0.481

	
0.07863




	
NAT2

	
rs1208

	
Exon

	
G

	
A, T

	
0.323

	
0.025

	
0.677

	
0.975

	
0.07224




	
AUClast




	
CYP3A5

	
rs776746

	
Splice acceptor

	
T

	
C

	
0.379

	
0.253

	
0.621

	
0.747

	
0.36133








Abbreviations: Cmax, maximum plasma concentration; AUClast, area under the concentration curve from time zero to the last quantifiable time point. The allele frequency was calculated using the 1000 Genomes Project * data and our dataset **.
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