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Abstract: Endometriosis is one of the main common gynecological disorders, which is characterized 

by the presence of glands and stroma outside the uterine cavity. Some findings have highlighted 

the main role of inflammation in endometriosis by acting on proliferation, apoptosis and 

angiogenesis. Oxidative stress, an imbalance between reactive oxygen species and antioxidants, 

could have a key role in the initiation and progression of endometriosis by resulting in inflammatory 

responses in the peritoneal cavity. Nevertheless, the mechanisms underlying this disease are still 

unclear and therapies are not currently efficient. Curcumin is a major anti-inflammatory agent. 

Several findings have highlighted the anti-oxidant, anti-inflammatory and anti-angiogenic 

properties of curcumin. The purpose of this review is to summarize the potential action of curcumin 

in endometriosis by acting on inflammation, oxidative stress, invasion and adhesion, apoptosis and 

angiogenesis. 
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1. Introduction 

Endometriosis is one of the main common gynecological disorders, which is characterized by 

the presence of glands and stroma outside the uterine cavity [1]. Between 6% and 10% of women in 

a reproductive age are affected by this disease. The primary symptoms of endometriosis are pelvic 

pain and infertility. Other symptoms are dysmenorrhea, irregular uterine bleeding, dyspareunia and 

dysuria [2,3]. Endometriotic lesions are often detected in the ovaries, fallopian tubes, the ligaments 

of the uterus, the cervical–vaginal area, the abdominal wall and umbilicus, the urinary tract and the 

rectum [4,5]. Environmental, endocrine, genetic and immunological factors have been observed in 

the initiation of endometriosis and, thus, its development [6,7]. Some findings have highlighted the 

main role of inflammation in endometriosis by acting on proliferation, apoptosis and angiogenesis 

[1]. Furthermore, oxidative stress (OS), an imbalance between reactive oxygen species (ROS) and 

antioxidants, could have a key role in the initiation and progression of endometriosis by resulting in 

inflammatory responses in the peritoneal cavity [8,9]. 

Hormone therapy, medication and surgery are used to eradicate the symptoms in endometriotic 

patients. Pain-relieving, non-steroidal anti-inflammatory drugs, aromatase inhibitors, progestins, 

combined estrogen–progestin therapy and selective progesterone receptor modulators are the main 

common recommended therapies [5,10]. Nevertheless, the mechanisms underlying this disease are 

still unclear and therapies are not currently efficient. The introduction of new agents can be effective 

in improving the condition of patients; for example, plants are promising sources of bioactive natural 

components [11]. These natural compounds could be interesting strategies in therapy. Curcumin (1,7-

bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a natural product that presents 

polyphenolic phytochemical properties from the rhizome of Curcuma longa L. [12]. Curcumin has 
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been discovered in 1815 by Vogel and Pelletier [13]. Its yellow-colored hydrophobic component is 

traditionally used in Asian countries for its several properties against pathophysiological states, 

including being anti-cancer [14]. Curcumin is a major anti-inflammatory agent. Studies have shown 

inconsistent results regarding the effects of curcumin in different diseases [15–19]; but up to now, the 

anti-oxidant, anti-inflammatory and anti-angiogenic properties of curcumin have been reported in 

several animal and human studies [20–22]. Curcumin decreases the inflammation in diseases, 

including cancers. Some studies have shown the role of curcumin in the prevention and the treatment 

of various cancers, including gastrointestinal, respiratory, lymphatic, skin and reproductive systems 

[23]. Curcumin use may have a major role in the control of inflammation, cell proliferation and 

angiogenesis [24]. The purpose of this review is to summarize the potential action of curcumin in 

endometriosis by acting on inflammation, oxidative stress, invasion and adhesion, apoptosis and 

angiogenesis. 

2. Endometriosis 

Endometriosis is a disease initiated by the growth of endometriotic glands and stroma outside 

of the uterus. Chronic pelvic pain and infertility can affect 10% of women [25]. Some symptoms, 

including dyspareunia, dysuria, dysmenorrhea and pain, characterize endometriosis. Nevertheless, 

the diagnosis of this disease remains uncommon [26]. Presence of endometrial tissue in ectopic lesions 

are associated with lymphatic/vascular metastases, celomic metaplasia and retrograde menstruation 

[27]. The underlying pathophysiology of endometriosis remains unclear. Endometriotic deposits 

have been found within the pelvis, the peritoneal surfaces of pelvic organs and within the pelvic 

peritoneum [28]. Organs affected by this disease are the uterus, ovaries, appendix, fallopian tubes, 

rectum, bladder and ureters. The deposits are named endometriomas due to old blood products. The 

pelvic ligaments, posterior cul-de-sac, rectovaginal septum and vesicouterine space can be also 

involved in endometriosis. Other deposits have been found outside the pelvis [29]. The diagnostic 

gold-standard of endometriosis remains laparoscopy, which is preferable to histologic confirmation 

[28]. Recent findings have highlighted the interest of ultrasound and MRI in the diagnosis of 

endometriosis [30]. 

3. Pathophysiology of Endometriosis 

3.1. Inflammation 

Inflammation has a main role in the progression of endometriosis [31]. The cascade of the 

different markers of inflammation leads in the upregulation of metalloproteinases, prostaglandins, 

cytokines and chemokines [4]. These mediators have been shown to be upregulated in peritoneal 

serum of endometriosis patients and in the endometrium [32–34]. In contrast, healthy cells of 

endometrium did not present this phenomenon [35]. Interlieukin-10 (IL-10, IL-6, IL-8, COX2 

(cyclooxygenase-2), VEGF (vascular endothelial growth factor) and tumor necrosis factor α (TNF-α) 

have been observed to be increased in the peritoneal fluid of endometriosis [34,36]. The stroma of the 

endometrium is associated with adhesion of extracellular matrix proteins while IL-8 and matrix 

metalloproteinase (MMP) have been increased [37]. 

In parallel, ROS production in endometriosis leads to the over-activation of the NF-κB pathway 

by stimulating angiogenesis, cell growth, inflammation and molecule adhesion [38]. Moreover, the 

initiation of endometriosis is associated with the upregulation of the NF-κB pathway, suggesting its 

role in cell growth, proliferation and apoptosis [39]. 

3.2. Oxidative Stress 

Oxidative stress (OS) occurs because of an imbalance between ROS production and antioxidants. 

ROS are molecules having an unpaired electron and that are stabilized by themselves to extract 

electrons from some molecules in the body, such as lipids, nucleic acids and proteins. 

Antioxidants are defense pathways elaborated by human to inhibit ROS production. ROS 

production presents a physiological interest in the body with respect to reproduction. Macrophages 
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and apoptotic endometrial tissue transplanting into the peritoneal cavity, possibly by retrograde 

menstruation, are thought to be inducers of OS with endometriosis in women. Endometriosis and 

cancer have some common characteristics, including a tendency to invade tissues, an uncontrolled 

growth, angiogenesis processes and an ability to avoid apoptosis [40]. The long-term survival and 

proliferation of both endometriosis lesions and cancer cells are critically reliant upon adequate blood 

supply by angiogenesis and apoptosis protection. A well-established correlation between the ROS 

production, cell proliferation and metastatic character of tumor cells has been shown in many studies 

[41,42]. In both endometriosis and tumor cells, increased ROS production is associated with an 

augmented proliferation rate. Likewise, OS-mediated damages in the pathogenesis of endometriosis 

and tumor cells are similar [41]. ROS production serves as inductor of cell proliferation [43]. Increased 

ROS production is associated with cell proliferation through the activation of the mitogen-activated 

protein kinases (MAPK) pathway. The well-described association between ROS production and 

proliferation of tumor cells points towards ROS as a major role player in the regulation of cell 

proliferation in endometriosis. 

ROS production enhances NF-κB in peritoneal macrophages leading to cell growth, 

angiogenesis and inflammation in endometriosis cells [44]. 

3.3. Angiogenesis 

Angiogenesis is characterized by the growth of new capillaries through proliferation and 

migration of preexisting differentiated endothelial cells. Angiogenesis acts in both embryonic 

initiation and postnatal life [45,46]. Numerous pathways are involved in the different angiogenesis 

processes [47]. The dysfunction of growth factors plays a major role in angiogenesis [48]. VEGF may 

be due to physiological activators, including inflammation and hypoxia [49,50]. The hypoxia-

inducible factor 1 α (HIF-1α)/VEGF pathway enhances endothelial cell proliferation and migration 

[51]. 

Angiogenesis is defined by many steps: blood vessel breakdown, basement membrane 

degradation, surrounding extracellular matrix (ECM), endothelial cells migration and new blood 

vessels formation [52]. 

From existing vessels, new blood vessels are formed by the dissolution of aspects of native 

vessels. Angiopoietin-1 and 2 (ANG-1 and ANG-2) are major endothelial growth factors acting 

through TIE-2 receptor tyrosine kinase (RTK) expressed in endothelial cells. Under physiological 

conditions, ANG-1 links TIE-2 to induce an association between pericytes and endothelial cells, to 

stabilize the vasculature [53,54]. ANG-1 operates as a stimulator ligand for TIE-2 while ANG-2 

downregulates TIE-2 phosphorylation, even in the presence of ANG-1 [55,56]. TIE-2 is a key factor of 

the physiological vascular development [57]. TIE-2 is a main factor of the mature vasculature 

homeostasis. ANG-2 is an antagonist of TIE-2 phosphorylation, which leads to destabilizing the 

structure of blood vessels [56,58]. In the presence of ANG-2, VEGF promotes migration and 

proliferation of endothelial cells and stimulates the growth of new blood vessels [59]. 

The angiogenesis process is composed of the dysregulation of the vessel basement membrane 

and the surrounding ECM [60]. The MMP enzymes family degrade components of ECM by 

collagenases, gelatinases, stromelysins and membrane-associated MMPs. Gelatinase-A (MMP-2) and 

gelatinase (MMP-9) are present in blood vessels. MMP-2 and MMP-9 have synergistic effects on the 

basement membrane degradation [61]. 

Angiogenesis has been reported in endometriosis whereas its underlying processes are still 

unclear in this disease [62]. 

3.4. Adhesion and Invasion 

In endometriosis, molecule adhesion enhances the attachment of endometrial-like tissues to 

ectopic sites [63]. Numerous findings suggest that ectopic endometriotic cells have the ability to 

invade their surrounding environment and can metastasize in lymph nodes and in the abdominal 

cavity [64]. 
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3.5. Apoptosis 

Homeostasis maintenance of tissue is mainly regulated by cell death. A balance between cell 

proliferation and cell apoptosis maintains homeostasis in cells against diseases. Some studies have 

shown that apoptosis increases during the menstrual cycle to retain cell homeostasis to remove aged 

cells from the functional layer of the endometrium [65,66]. The reduction in cell death in 

endometriosis could be causal for the initiation of this disease [67,68]. The rate of apoptosis is 

decreased in endometrial cells of women endometriosis [69]. Moreover, the activated NF-κB pathway 

in endometriosis is associated with cell proliferation and apoptosis [70,71]. 

3.6. Circadian Dysregulation 

Few studies have focused on the important role of the circadian clock in endometriosis. Period 

2, a clock gene, can control the expansion of human endometrial stromal cells [72]. Period 2 is a main 

marker of the transition from oscillatory receptivity to the non-oscillatory decidual endometrium 

[73]. Its inhibition is marked by a transitional phase with increased ROS production, an altered redox 

pathway and increased expression of decidual marker genes [74,75]. The modification of Period 2 

expression is a response to hormonal dysregulation [76,77]. Period 2 binds estrogen receptor-alpha 

and inhibits estrogen-dependent proliferation in breast cancer cells [78,79]. Period 2 can promote or 

inhibit the cell cycle progression by a dependent hormonal regulation [72]. 

4. Curcumin 

The use of dietary supplements and nutraceuticals has gained popularity over the few decades 

due to the increased role of, and thus interest in, natural products [80]. Curcumin, defined as bis-α, 

β-unsaturated β-diketone, is a natural component well documented since 1815. Curcumin is the 

active compound of turmeric or Curcuma longa L. and presents a surprising wide range of beneficial 

properties, such as anti-cancer features [81]. Curcumin presents some therapeutically potential roles 

as anti-inflammatory, anti-cancer and anti-aging [82]. In 1815, curcumin has been isolated by Vogel 

and Pelletier from the rhizomes of C. longa [83]. For the first time, in 1842, Vogel Jr purified curcumin. 

In 1910, Melabedzka et al. presented the structure of curcumin as diferuloylmethane, or 1,6-

heptadiene-3,5-dione-1,7-bis (4-hydroxy-3-methoxyphenyl)-(1E,6E) [83]. In 1913, Lampe and 

Melobedzka have shown a method to synthesize curcumin [84]. In 1953, Srinivasan showed, by 

chromatography separation and quantification, the different components of curcumin [85]. 

The health benefits of curcumin are limited by its poor oral bioavailability that could be 

attributed to poor absorption, high metabolism rate and rapid systemic increase in the body. 

Curcumin is converted into its water-soluble metabolites and then excreted in the urine. This 

metabolism consists of two stages. First, a reduction in the metabolism dependent on NADPH, 

including the reduction of the double bonds of the heptadiene-3, 5-dione structure catalyzed by 

curcumin reductase dependent on NADPH. Secondly, a conjugation process was observed with 

monoglucuronide via a glucuronidase. These mechanisms are responsible for the low solubility and 

rapid metabolism of curcumin. 

Although some studies have found that curcumin pharmacokinetics have shown low 

bioavailability [86], strong pharmacological and clinical applications have been reported [87]. 

Nevertheless, some of the possible ways to overcome this poor bioavailability can be counteracted by 

these aspects. Strategies can improve this bioavailability, such as phospholipid complexes, liposomes 

and nanoparticles. Some polymers have been used to prepare nanoformulations for curcumin 

administration to improve its biological activity [88]. Biocompatible and biodegradable polymers are 

used in drug delivery systems because of their low toxicity risk [89]. Advances in liposome 

formulations have resulted in improved treatment of drug-resistant tumors and reduced toxicity [90]. 

Liposomes are made by phospholipid bilayer shells and watery nuclei, resulting in the encapsulation 

of curcumin by both hydrophobic and hydrophilic components. Other curcumin delivery systems 

are used, such as nanogels [91], peptide and protein formulations [92] and cyclodextrin complexes 

[93]. 
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5. Actions of Curcumin in Endometriosis 

5.1. Curcumin and Inflammation (Table 1) 

In endometriosis cells, the NF-κB pathway, one of the main markers of inflammation, can 

regulate the proliferation, apoptosis and inflammation processes observed [94]. In normal 

endometrium, the NF-κB pathway is downregulated [95] whereas its expression is increased under 

the various endometriosis stages [96]. An activated NF-κB pathway leads to the formation of the 

complex NF-κB–IkappaB to activate its nuclear translocation [97]. This complex activates IL-6 and IL-

8 in endometriosis [94] while its inhibition could be associated with the reduction of endometriosis 

development [98]. In endometriosis, NF-κB pathway activation is associated with better cell survival, 

growth and inflammatory processes [99]. 

Many studies have shown the value of curcumin in inflammation [100,101]. Curcumin 

administration can reduce the activity of the NF-κB pathway [102]. In parallel, curcumin can 

downregulate the expression of TNF-α, COX-2, IL-6 and TGF [103]. Curcumin has been shown to 

decrease inflammation by inhibiting the expression of inflammatory factors, such as the NF-κB 

pathway, TNF-α, IL-1, IL-6 and IL-8, in mice macrophages [104,105]. 

Moreover, NF-κB activation is inhibited by curcumin through the blockage of I-κB 

phosphorylation [106] and the inactivation of the I-κB kinase complex [107]. AP-1 controls the 

expression of pro-inflammatory factors and antioxidant genes. The inhibition of AP-1 could be due 

to an action of curcumin with AP-1 and due to the inhibition of its components c-Jun and c-fos [22]. 

Activation of COX-2 is associated with cell proliferation and the suppression of apoptosis [108]. 

Some studies have shown that curcumin can inhibit COX-2 expression in animal models and cell 

cultures [109–111]. Curcumin can target the TNF-α expression to improve the growth differentiation 

factor-9 (GDF-9) expression in peritoneal fluid of women with endometriosis [112]. A recent study 

has shown that curcumin can be an interesting treatment of endometriosis by abrogating the aberrant 

activation of chemokines, cytokines and the NF-κB pathway [113]. 

Table 1. Effects of curcumin on inflammation, oxidative stress, angiogenesis and invasion. 

Action Model Effect Reference 

Inflammation 

Nx rats Reduction of NF-kappaB [102] 

Rat liver TNF-α, COX-2, IL-6 and TGF-beta [103] 

Mice macrophages 
NF-κB pathway, TNF-α, IL-1, IL-6, and 

IL-8 
[104,105] 

Human eutopic 

endometrial stromal 

cells 

chemokines, cytokines and NF-κB 

pathway 
[113] 

Human myeloid ML-

1a cells 
Blockage of I-κB phosphorylation [106] 

 
Intestinal epithelial 

cells 
the inactivation of I-κB kinase complex [107] 

Oxidative stress 

Mice 
Reduction of ROS serum and lipid 

peroxidation 
[114] 

Mice 
Lipid peroxidation and protein 

oxidation 
[115] 

Nx rats Regulation of NrF2-Keap1 [102] 

Mice macrophages Diminution of NO synthase expression [116] 

lymphocytes 
Increase of glutathione and superoxide 

dismutase 
[117] 

Angiogenesis 
Ectopic endometrium Reduction of VEGF [118] 

Ovarian cancers Reduction of VEGF [119] 
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Invasion and 

Adhesion 

Serum mice with 

endometriosis 

Reduction of MMP-2, MMP-3 and 

MMP-9 expression 
[120,121] 

Human endometriotic 

stromal cells 

Reduction of ICAM-1 and VCAM-1 

expression 
[94] 

Endometriotic lesions Reduction of TIMP-1 expression [115] 

Fibrosarcoma cells Reduction of MMP-2 and MMP-9 [122] 

Apoptosis 

BALB-mice 
Increase ratio Baw/Bcl-2, increase 

cytochrome c and caspase 9 
[121] 

Rat experimental 

models 

Decrease of weight and volume of 

endometriotic tissues 
[118] 

Endometriotic cells of 

mice 

Diminution of Bcl-2 expression, 

diminution of mRNA and protein 

expression of Bcl-2 

[123] 

5.2. Curcumin and Oxidative Stress (Table 1) 

OS is considered as one of the main determinants of the endometriosis process [124]. Some 

studies have shown that prevention of endometriosis could be done by administration of antioxidants 

[125]. OS damages observed in endometriosis cells are localized in the proliferation process [126]. 

Superoxide dismutase activity is higher in endometriosis cells compared to healthy cells [127]. In 

endometriosis cells, OS can enhance the proliferation process [43] through the activation of 

MAPK/extracellular signal-regulated kinase (ERK), which acts on the proliferation and survival cell 

process. The ERK pathway is activated by ROS to enhance the proliferative response [128]. 

In endometriosis, there are few reports on the role of curcumin in OS. Nevertheless, 

administration of Letrozole–curcumin has been associated with a reduction of ROS serum and lipid 

peroxidation in mice [114]. Moreover, therapy by curcumin in endometriosis mice can prevent 

against lipid peroxidation and protein oxidation [115]. Curcumin treatment can diminish OS by 

regulating the Nrf2-Keap1 pathway [102]. 

Some evidence suggests that the curcumin antioxidant activity is comparable to vitamins C and 

E [129]. Curcumin can scavenge free radicals, such as ROS and nitrogen dioxide radicals [129–131]. 

Curcumin can inhibit lipid peroxidation in animal models [132] and the expression of nitric oxide 

(NO) synthase in mice macrophages [116], and can increase glutathione and superoxide dismutase 

in lymphocytes [117]. 

5.3. Curcumin and Angiogenesis (Table 1) 

Experimental studies have shown an interest in using anti-VEGF factors to inhibit the growth of 

endometriosis without impacting ovarian function [133]. VEGF activation involves the stimulation of 

the PI3K/Akt pathway [134]. This activated pathway contributes to the initiation of angiogenesis and 

inhibition of apoptosis [135]. By activating HIF-1α and cyclin D1, the PI3K/Akt pathway makes 

angiogenesis without hypoxia possible [135,136]. The downregulation of NME1 in the endometrium 

leads to activation of the PI3K/Akt pathway and to an increase in the expression of VEGF and IL-8, 

inducing production of new vascular cells in ectopic endometrial lesions [137]. The elevation of the 

PI3K/Akt pathway in endometriosis could be associated with NOS expression and OS [138]. By 

maintaining the fibrotic environment of endometriosis, the PI3K/Akt pathway activates the ERK 

pathway [139]. Moreover, the PI3K/Akt pathway activates the NF-κB pathway, a main activator of 

VEGF, to stimulate cell proliferation and angiogenesis in endometriosis [140]. 

Few studies have focused on the role of curcumin on angiogenesis in endometriosis. Curcumin 

reduces VEGF expression in ectopic endometrium but not in eutopic endometrium [118]. However, 

curcumin can reduce the expression of VEGF in ovarian cancers [119]. Curcumin administration is 

associated with the decrease of HIF-1α in tumors cells [135,141]. 

5.4. Curcumin and Invasion and Adhesion (Table 1) 
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The endometriotic peritoneum of women presents an overproduction of MMP, especially MMP-

1, 2, 3, 9 and 11, and cellular adhesion molecules, including ICAM-1, integrins and cadherins. 

Molecules adhesion plays a main role in tissue attachment and, then, in the invasion of ectopic 

lesions. MMPs have a major role in implant progression and angiogenesis [120,142]. MMPs are 

implicated in numerous reproductive processes, including menstruation, ovulation and embryo 

implantation [143,144]. MMP endometrial expression is low in the proliferative step, it declines in the 

early secretory step, but increases in the late secretory step. Progesterone is one of the major inhibitors 

of MMP expression while MMPs are controlled by different hormones, cytokines and growth factors. 

Progesterone can regulate the MMP expression by the plasminogen activator pathway that enhances 

the levels of plasminogen activator inhibitor (PAI)-1 and decreases the plasmin-mediated expression 

of latent MMP [145–147]. The production of retinoic acid and transforming growth factor-β (TGF-β) 

enhances the expression of tissue inhibitors of metalloproteinases (TIMPs). MMP activity is the initial 

mediator of maintenance and survival of lesions [148]. 

Curcumin action on cell invasion has been shown in several studies [100]. Curcumin 

administration can decrease MMP-2, MMP-3 and MMP-9 in serum mice presenting endometriosis 

[120,121]. Curcumin can downregulate the expression of mRNA and proteins expressing intracellular 

adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in a dose-dependent 

manner [94]. In endometriosis lesions, curcumin inhibits MMP-9 expression and can attenuate TIMP-

1 expression [115]. In parallel, MMPs expressions are inhibited by curcumin in several cell types 

[22,149]. Curcumin decreases the activity of both MMP-2 and MMP-9 in human fibrosarcoma cells 

[122]. Curcumin can diminish MMP-9 expression in human intestinal epithelial cells [150], 

orthotopically implanted pancreatic tumors [109], ovarian tumors in nude mice [119] and can inhibit 

the production of MMP-3 in primary human colonic myofibroblasts [151]. Some studies have 

suggested that curcumin can decrease the expression of adhesion molecules, such as endothelial-

leukocyte adhesion molecule 1 (ELAM-1), ICAM-1, and VCAM-l in endothelial cells and in 

orthotopically implanted pancreatic tumors in mice to reduce cell adhesion and invasion [109,152]. 

5.5. Curcumin and Apoptosis (Table 1) 

The PI3K/Akt pathway is activated in endometriosis cells [153] and leads to apoptosis [154]. A 

vicious circle operates between NF-κB and PI3K/Akt to stimulate apoptosis [155]. The NF-κB 

pathway inhibits the antiapoptotic role of the PI3K/Akt pathway [156]. X-linked inhibitor of apoptosis 

protein (XIAP) operates as caspase-3 and caspase-9 inhibitors and regulates the Bax-cytochrome c 

pathway leading to an apoptosis mechanism through the inhibition of caspase-9 [157]. The PI3K/Akt 

signaling pathway involves the stimulation of both XIAP and B cell lymphoma extra-large (Bcl-xL) 

expressions. Moreover, Bcl-xL is activated by the PI3K/Akt pathway [158,159]. In ectopic 

endometriosis tissue, B-cell lymphoma 2 (BCL-2) presents some modulatory roles in apoptosis and 

cell proliferation [160]. Bcl-2 can induce antiapoptotic features [161]. In normal conditions, activation 

of ERK1/2 stimulates the cell proliferation and the promotion of angiogenesis [162,163]. ERK1/2 

stimulation can downregulate the expression of Bcl-2, leading to dysregulate mitochondrial-

dependent cell death [164]. The PI3K/Akt and MAPK pathways lead to anti-apoptosis action in 

endometriosis [153,165]. 

A crosstalk operates between the ERK pathway and PI3K/Akt pathway [166,167]. The inhibition 

of the PI3K/Akt pathway leads to the activation of the ERK pathway [168] and the reciprocity is 

verifiable [169]. Some studies have shown the interest of co-targeting these two pathways in 

endometriosis [43]. 

Recent studies have shown that curcumin decreases the number of endometriosis stromal cells 

and the process of cell growth in a dose-dependent manner [170]. In BALB-mice, curcumin 

administration is associated with the reduction of endometriosis progression and the activation of 

apoptosis [121]. Curcumin administration leads to an increase in the ratio of pro-apoptotic factor 

Baw/anti-apoptotic factor Bcl-2, the induction of cytochrome c and caspase 9 and tumor suppressor 

protein p53 [121]. Moreover, curcumin decreases the weight and volume of endometriotic tissues in 

a dose-dependent manner in experimental rat models [118]. Nevertheless, it induces no effect in 
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human endometriotic stromal cells [94]. In a dose-dependent manner, curcumin decreases the 

expression of the anti-apoptotic factor Bcl-2 [123] and diminishes the expression of mRNA and 

protein expression of Bcl-2 in endometrial cells of mice [171]. In parallel, curcumin inhibits cell 

proliferation and activates apoptosis in endometrial tumor cells [172]. Moreover, curcumin 

modulates the expression of VEGF [173], releases cytochrome c, stimulates caspase-8 expression and 

reduces Bcl-2 and cyclin-D1 expressions [104,174–177]. 

5.6. Curcumin and Melatonin 

Some studies have shown that endometriosis is associated with low levels of melatonin [178]. 

Moreover, endometrial biopsies have presented variations in the expression of melatonin receptors 

(MR1A and B) depending on the ectopic tissue site [179]. The use of melatonin in endometriosis 

reverses the lipoperoxidation and decreases antioxidants activities observed after pinealectomy of rat 

models [180]. Melatonin leads to the reduction in endometriotic foci and histopathologic scores with 

increased levels of SOD [181]. SCID animals which received melatonin present a reduction in 

endometriosis lesions in oophorectomized rats [182]. This melatonin-induced decrease in 

endometriotic lesions is correlated with the downregulation of COX-2 levels [183]. Activities of SOD 

and TIMP-2 are higher after melatonin treatment while VEGF and MMP-9 levels are reduced [184]. 

Melatonin can lead in the regression of apoptosis through the caspase-3 pathway [185]. Moreover, 

treatment by melatonin results in the reduction of plasma levels of luteinizing hormone and estradiol, 

the promotion of differential regulation of estrogen, progesterone and androgen receptors [186]. 

Melatonin receptors have been observed in rat uterine endometrium, which suggests that melatonin 

can have a major role in the physiology of this disease [187]. The proliferation of endometrial cells 

can be downregulated by MT1 receptor-targeting by melatonin [188]. 

Few studies have focused on the potential interaction of curcumin and melatonin in 

endometriosis. However, recent findings have shown that co-treatment of melatonin and curcumin 

can decrease COX-2 expression and can repress the NF-kappaB pathway [189]. Moreover, this 

combination can inhibit MMP-2, MMP-9 and TIMP-2 expression [189]. Curcumin can activate sirtuin 

1 (SIRT1) [134]. SIRT1 regulates the circadian rhythms. SIRT1 indirectly controls the circadian clock 

by downregulating the NF-κB pathway [190], inhibiting the nuclear localization of Per2 [191] and the 

binding to Clock/Bmal1 [192]. 

6. Conclusion 

Curcumin can downregulate inflammation and OS in endometriosis. Moreover, curcumin can 

direct act on invasion, adhesion, apoptosis and angiogenesis in endometrial lesions. The use of 

curcumin could be interesting in dietary prevention and disease management for women. 

Nevertheless, the limited number of studies focusing on the different interactions of curcumin in 

endometriosis restricts its clear and immediate use in a therapeutic strategy. Future clinical trials are 

needed to better investigate and highlight the role of curcumin in endometriosis. 
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IL interleukin  

MMP matrix metalloproteinase 
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RORs retinoid-related orphan receptors 
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TNF tumor necrosis factor 
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