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Abstract: Clinically, there is an urgent need to identify new therapeutic strategies for selectively 

treating cancer cells. One of the directions in this research is the development of biocompatible 

therapeutics that selectively target cancer cells. Here, we show that novel aminated graphene oxide 

(haGO-NH2) nanoparticles demonstrate increased toxicity towards human hepatocellular cancer 

cells compared to pristine graphene oxide(GO). The applied novel strategy for amination leads to a 

decrease in the size of haGO-NH2 and their zeta potential, thus, assuring easier penetration through 

the cell membrane. After characterization of the biological activities of pristine and aminated GO, 

we have demonstrated strong cytotoxicity of haGO-NH2 toward hepatic cancer cells - HepG2 cell 

line, in a dose-dependent manner. We have presented evidence that the cytotoxic effects of haGO-

NH2 on hepatic cancer cells were due to cell membrane damage, mitochondrial dysfunction and 

increased reactive oxygen species (ROS) production. Intrinsically, our current study provides new 

rationale for exploiting aminated graphene oxide as an anticancer therapeutic. 

Keywords: cytotoxicity; genotoxicity; HepG2; nanoparticle functionalization; GO; hydroxylamine; 

haGO-NH2 

 

1. Introduction 

Recently, novel therapeutic approaches, based on different nanoparticles, have been identified 

as a promising multi-modal approach for enhancing therapeutic efficacy and reducing side effects 

associated with cancer treatment [1–3]. Nanoparticles are associated with a more targeted localization 

in tumors and cellular uptake on an active mode, making it possible to achieve controlled drug-

released delivery and when possible specific gene transfection [4,5]. 
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Graphene oxide (GO) nanoparticles are broadly used nowadays due to GO properties and 

characteristics. GO is a two-dimensional carbon nanomaterial with unique combination of physical and 

chemical properties, and great potential for use as drug carrier in targeted cancer treatment [6,7]. 

Structurally, GO presents a graphene-like sheet, laced with carboxyl groups on its edge and 

hydroxyl/epoxy groups on its basal plane [8]. The layered structure has both, a large surface area and 

abundant oxygen-containing groups facilitating functionalization of GO with bioactive molecules to 

increase loading of hydrophobic or aromatic anticancer drugs and to ease cancer-cell targeting. Cancer-

cell targeting antibodies and molecules, such as DNA, peptides, polymers, etc. are easily adsorbed onto 

the GO surface through non-covalent π–π interactions or electrostatic interactions, while the organic 

molecules, including drugs, are able to covalently conjugate with GO [9]. Additionally, the GO 

nanosheets, produced by the modified Hummer’s method, demonstrate stability in water suspensions 

and high biocompatibility [10], mainly because of the presence of hydrophilic oxygenated groups, 

which makes them ideal materials for application in drug delivery [11]. 

The toxicity of GO has been focused recently, but there is currently a lack of consistency in this 

regard. According to some authors, GO has a minor effect on the viability and morphology of 

different cancer cells [11,12], while others have proven that GO may generate oxidative stress, causing 

adverse effects on the viability of HaCaT (non-tumor skin keratinocytes) and liver cancer cells [13,14]. 

Moreover, GO treatment could lead to structural deformation of mitochondria, thus, affecting the 

mitochondrial membrane potential [15]. Many studies prove that the cellular toxicity of GO in vitro 

is closely related to its surface functionalization [16]. The latter provokes alterations in the 

physicochemical properties of GO, which impacts its application in cancer therapy. Exposure to 

COOH-functionalized GO nanoparticles, for example, can cause passive apoptosis in T-lymphocytes, 

while PEG-modified GOs cause severe hemotoxicity in the same cells by inducing membrane damage 

[17]. PEGylation reduces the non-specific binding of GO to biological membranes and improves itsin 

vivo pharmacokinetics for better tumor targeting [18,19]. In our previous study, we found that 

exposure to ammonia-modified GO NPs could induce cell cycle arrest in the G2/M phase, thus, 

significantly increasing the apoptosis rate and the generation of reactive oxygen species (ROS) in 

colorectal Colon 26 and lung A549 cancer cells, but did not influence the viability of non-tumor 

embryonic stem cells [20,21]. Our findings highlight the potential of GOs NPs to be used as anticancer 

drugs. The data prove that functionalization of GO can be used to modulate GO cytotoxicity and 

genotoxicity, and to design effective strategies for cancer therapy. Importantly, the better we 

understand the physiochemical properties of NPs, their interactions with the cells and the possible 

toxicity mechanisms, the more precisely their potential biomedical applications could be outlined. 

Therefore, further studies are warranted to fully understand the cellular toxicological mechanism of 

functionalized GO NPs. 

In view of the insignificant knowledge about the mechanisms of toxicity of aminated GO NPs, 

this study was designed to investigate the biological mechanisms of cytotoxicity of newly synthesized 

and functionalized GO NPs on human hepatocellular carcinoma (HepG2) cells. Hepatocellular 

carcinoma (HCC) is an aggressive tumor typically occurring in patients with chronic liver disease 

[22]. It is the second leading cause of cancer death in East Asia and sub-Saharan Africa and the sixth 

most common in Western countries [23,24]. The prevalence of HCC is increasing due to the increasing 

incidence of hepatitis infection, obesity, and metabolic syndrome, as well as increased survival of 

patients with liver disease [25]. Actually, the HCC is one of the biggest challenges in cancer treatment, 

due to its different molecular pathways, causing agents, and late diagnosis. Depending on the disease 

stage, there are several treatments, such as surgical resection, ablation, transplantation, 

chemoembolization, and medication with Sorafenib [26–28]. However, all treatments bring side 

effects that impair the quality of patients’ life. In addition, the high toxicity and relative non-

specificity of conventional anticancer drugs, used for the treatment of HCC, impede long-term 

application [29]. 

We have developed an easy, one-step protocol for amination of GO by hydroxylamine, which is 

much simpler than the commonly used protocols for amination of GO by ammonia. We aimed to 

study the potential cytotoxicity of pristine and hydroxylamine aminated GO (haGO-NH2) on HepG2 
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cells,focusingon the assessment of the rate of ROS production and mitochondrial dysfunction. Our 

results showed that hydroxylamine aminated GO induced cytotoxicity, oxidative stress, membrane 

leakage and mitochondrial dysfunction in HepG2 cells while DNA damage was insignificant. To the 

best of our knowledge, these data are the first that link aminated GO with potential impairment of 

the mitochondrial metabolism and will be of profound clinical significance for the development of 

aminated GO NPs, either as stand-alone therapeutics, or in combination with other anticancer drugs. 

2. Results 

2.1. Structural and Biophysical Characterization of GO and haGO-NH2Nanoparticles 

Graphene oxide nanoparticles, pristine and aminated by hydroxylamine were characterized 

structurally and biophysically by subsequently evaluating their chemical composition, morphology, 

size, hydrodynamic diameter and zeta potential. X-ray photoemission spectroscopy (XPS) was 

utilized to estimate the amination of GO upon modification of GO with hydroxylamine. XPS allows 

specific characterization of GO materials through both, atomic survey scans and high-resolution 

atomic scans. Peak fitting of high resolution XPS is a powerful and commonly used tool for detection 

of specific chemical modifications of different materials. Deconvolution of high resolution N1s XPS 

provided evidence that the nitrogen is covalently attached to GO in the haGO-NH2 NPs. The N1s fit 

components were assigned to C=N and amine bonds (398.4 eV), amide or imide bonds (399.89 eV) 

and protonated amines (401.6 eV). XPS survey scans proved that haGO-NH2 contains amino groups 

because haGO-NH2 amine peak was absent in pristine GO and the peak at higher BE is much more 

pronounced (Figure 1). Additionally, the high-resolution XPS C1s and O1s spectra demonstrated an 

alteration in the percentage of bonds in GO and haGO-NH2 NPs suggesting that amination affected 

the functional groups in GO. For example, the percentage of C–O (532.65 eV) in haGO-NH2 decreased 

with 17.3%, while the percentage of C=O (531.49 eV) increased with 18.62% when compared to GO. 

Also, a peak at 1022.9 was registered in GO-NH2 NPs corresponding to the ZnO2 pointing 

contamination of the sample. 

 

Figure 1. X-ray Photoemission Spectroscopy.The elemental composition of the nanoparticles was 

analyzed by X-ray photoemission spectroscopy (XPS) on Axis DLD Ultra instrument (Kratos–

Manchester, UK). 

Transmission electron microscopy (TEM) was used to observe the general morphology of the 

GOs NPs. The micrographs of pristine and aminated GO NPs (Figure 2A) revealed a two-dimensional 

sheet-like structure, consisting of one or several layers. The transparency of GO sheets suggested the 

formation only of few layers. The GO sheets had an irregular, wrinkled shape with sharp edges. 

Compared with pristine GO, haGO-NH2 sheets were more wrinkled (the right micrograph at Figure 

2A) with no other morphological changes being detected. Similar morphologies for both, pristine and 

aminated by ammonia GO sheets have been observed in our previous studies [21], indicating that the 
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different methods of amination of GO resulted in a similar effect on GO morphology, namely 

increasing the level of crumpling of the modified GO sheets. 

 

Figure 2. Biophysical characterization of GO and haGO-NH2 nanoparticles. (A) TEM micrographs of 

GO and haGO-NH2. Images were acquired at 200 kV using Holey-carbon film on 300 mesh nickel 

grids. (B and C) Characterization of size and zeta potential of the nanoparticlesin solution, were 

performed on a Zetatrac instrument (S3500; Microtrac, Largo, FL). 

Dynamic light scattering (DLS) is a particularly important technique for determining 

nanoparticle size and size distribution in aqueous suspensions. We have implemented DLS 

measurements in aqueous solutions to elucidate the size of the studied GO and haGO-NH2 NPs 

(Figure 2B). Samples were dispersed in water (at 1 mg/mL), followed by sonication for 60 min and 

then analyzed with Zetasizer. The pristine GO was found to have very wide size distribution ranging 

from 280 nm to 6.4 µm (Figure 2B) divided in two fractions: a small fraction of 19.24 % that 

encompasses the particles ranging from 289 nm to 818 nm in size with average particle size of 515 nm 

and a main fraction of 80.76% with particles in the range of 1.64 µm to 6.54 µm with average particle 

size of 3.6 µm. Aminated GO NPs were more homogeneous and smaller in size ranging from 102 nm 

to 1.944 µm with average particle size of 594 nm. 

The zeta potential (ζ-potential) of GO and haGO-NH2 NPs was measured in order the colloidal 

stabilities of nanoparticles to be determined. Many data show that a colloidal dispersion is stable 

when a force causes the mutual repulsion of the particles [30]. In general, a particle suspension with 

a zeta potential of around −30 mV is considered as a stable dispersion [31]. The table on Figure 2C 
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contains zeta potential values for both types of pristine and aminated GO samples at room 

temperature. The zeta potential values for pristine GO samples were −33.7 mV when dispersed in 

water and increased to −12.28 mV after amination. Pristine GO suspension demonstrated higher 

colloidal stability than aminated GO. Taken together, the results from Zetasizer measurements 

suggested that amination by hydroxylamine decreased the size of haGO-NH2 NPs and their zeta 

potential, suggesting easier penetration of the nanoparticles through the cell membrane. 

2.2. Cytotoxicity of Hydroxylamine Modified GO (haGO-NH2) Nanoparticles is Increased in HepG2 Cells 

while Cell Morphology Remains Unchanged 

The biological effects of GO nanoparticles, pristine and hydroxylamine aminated, were tested 

on HepG2 cells. Cytotoxicity was measured after 24h exposure of the cells to different concentrations 

of the two types of NPs. The tested concentrations were 4, 10, 25 and 50 µg/mL f.c. The optical density 

(OD) of cells treated with GO and haGO-NH2 was spectrophotometrically measured at 450 nm 

wavelength (Figure 3). To illustrate the trend by which both types of GO NPs exert their cytotoxic 

activity on HepG2 cells we have built linear regression models (Figure 3A,B). The green dots 

represent the measured values. The R squared statistics were also included. The trend towards 

increasing the concentrations of the GO and the measured cytotoxicity is obvious (Figure 3A),butthe 

observed effect of the exposure to GO was not strong. Moreover, considering the measuring error 

(notice the rather wide variation), one can conclude that the effect of GO is almost negligible. The 

level denoted by “K” marks the values without GO. Our results showed that the pristine GO NPs 

reduced cell viability only after treatment with higher concentrations of 25 and 50 µg/mL, while the 

lower concentrations of 4 and 10 µg/mL had slight stimulating effect on cells, assumed as the so-

called hormesis effect. 

 

Figure 3. Cell viability and morphology of HepG2 cells treated for 24 h with GO and haGO-NH2. (A) 

and (B) WST-8 (Sigma-Aldrich Co.) was used to evaluate cell viability - linear regression models for 

both types of GO NPs cytotoxic effect on HepG2 cells. (C) A panel of micrographs with neutral red 

stained HepG2 cells taken under phase contrast microscopy after 24h of incubation of the cells with 

different concentrations of GO and haGO-NH2. Magnification 25×. 
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Figure 3B demonstrates the linear regression model for the effect of the hydroxylamine modified 

haGO-NH2. It is easily observed that, even with the lowest concentration (4 µg/mL) of the aminated 

NPs, the OD has decreased significantly down to 0.7 with variation between 0.61 and 0.76 and 

gradually decreased until 0.30, comparing the levels of “K” at zero concentration of haGO-NH2 (1.48). 

Also one can see that the trend is not linear but quadratic - the regression model has correlation 

coefficient 0.91 (Figure 3B), which demonstrates much better fit than the linear model over the same 

data from the previous example. This model also prompts saturation of the effect of haGO-NH2 at a 

concentration of 50 µg/mL. Observation of neutral red labeled hepatocytes did not show any 

significant alterations in cell morphology (Figure 3C). 

Cytotoxicity was additionally assessed by measurement of the leakage of lactate dehydrogenase 

(LDH). LDH is an enzyme, which is released into the surrounding extracellular space following cell 

exposure to cytotoxic compounds. When the cell membrane integrity is compromised, the detection of 

LDH in the culture medium can be used as a cell-death marker [32]. To evaluate the levels of LDH 

leakage after incubation with both types of GO NPs, HepG2 cells were treated with GO and haGO-NH2 

for 24 h, followed by measurement of LDH levels (Figure 4). Cells with a fully compromised cell 

membrane were obtained after treatment with Triton X-100. The LDH release values were quantified 

as a percentage of the LDH release in Triton X-100 treated cells which was taken as 100%. The obtained 

results showed that HepG2 cells exposed to 4, 10 and 25 µg/mL GO NPs displayed similar levels of 

LDH release compared to the untreated cells during the whole cultivation period (Figure 4A). 

 

Figure 4. Membrane integrity of HepG2 cells treated for 24h with pristine and aminated GO. (A) Percentage 

of LDH release fromHepG2 cells after 24h of incubation in the presenceof different concentrations of GO 

and haGO-NH2 nanoparticles. Cells treated with Triton X-100 were used as a positive control. The LDH 

release values were quantified as a percentage of the LDH release in Triton X-100 treated cells which was 

taken as 100%. Values are MEAN ± STDV from three repetitive experiments. (B) A panel of FDA-stained 

HepG2 cells taken under a fluorescent microscope after the cells were treated with increasing 

concentrations of GO and haGO-NH2 nanoparticles for 24h. Magnification 10×; bar 100 µm. 

A statistically significant increase in LDH release (p< 0.001) was noticed after 24 h of exposure of 

HepG2 cells to haGO-NH2 NPs which however was not found to be concentration-dependent. 

Interestingly, we have found a decrease in LDH levels in GO-treated cells with concentration of 50 

µg/mL. Analysis of LDH leakage revealed that only aminated GO NPs affect cell membrane integrity, 

which possibly induce cytotoxicity in HepG2 cells. 
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Cell membrane integrity after 24 h exposure to GO and haGO-NH2 NPs was qualified by FDA 

staining. FDA is a non-polar and non-fluorescent molecule, which enters the cell. Inside, it is 

hydrolyzed by intracellular cell esterases, and fluorescein is produced. This polar compound cannot 

leave the viable cell because it is unable to pass through the intact cell membrane, and accumulates 

in the cytoplasm of the cell and exhibits green fluorescence. Damaged cells, however, cannot retain 

the fluorescein, and they fluoresce very poor or are unstained. Fluorescent images on Figure 4B 

clearly show that the number of viable cells is reduced in haGO-NH2 treated samples suggesting the 

haGO-NH2 compromised in a greater degree the cell membrane than GO, which results in cell 

detachment and death. 

2.3. Elevated Oxidative Stress in HepG2 Cells Detected after Incubation with haGO-NH2 

Another possible mechanism for induction of cytotoxicity in HepG2 cells after incubation with the 

tested nanoparticles could be the elevated production of reactive oxygen species (ROS) leading to 

increased oxidative stress. ROS are by-products of biochemical reactions like mitochondrial respiration 

and cytochrome P450 enzymatic metabolism which have the potential to cause oxidative stress and 

damage in bio-molecules like lipids, proteins and DNA when ROS levels increase. Nanoparticles are 

known to initiate oxidative stress directly or indirectly through various mechanisms, thus exerting 

negative biological effects [33]. To verify the effects of tested GO NPs on oxidative stress, HepG2 cells 

were treated with both types of GO NPs for 24 h and ROS levels were then measured using enzymatic 

cleavage of DCFH-DA. As shown in Figure 5, HepG2 cells treated with both types of GOs NPs 

demonstrated a dose-dependent increase in ROS production. However, only the highest concentration 

of pristine GO (50 µg/mL) induced higher ROS production than the control cells. Inversely, all tested 

concentrations of haGO-NH2 induced production of much higher ROS levels than those measured in 

non-treated cells and in GO treated cells. This indicated that haGO-NH2 may potentially cause oxidative 

stress, which could impair normal physiological redox-regulated functions and thus induce cell death 

as detected in the previous experiments measuring cytotoxicity. 

 

Figure 5. ROS production in HepG2 cells after treatment with GO nanoparticles. The production of 

intracellular ROS was measured using 2,7-dichlorofluorescin diacetate. HepG2 cells were seeded in 

24-well plates and allowed for adherence. The fluorescence intensity of DCF was detected on a 

spectrofluorometer upon excitation at 485 nm and emission at 520 nm. 
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2.4. Both Types of Graphene Oxide Nanoparticles (GO and haGO-NH2) Trigger Mitochondrial Dysfunction 

in HepG2 Cells 

One major source of increased cellular ROS levels is dysfunctional mitochondria. The 

mitochondrial oxygen consumption rate (OCR), which is a key metric of aerobic mitochondrial 

function, and the extracellular acidification rate (ECAR), which approximates glycolytic activity, were 

analyzed simultaneously using a standard mitochondrial stress test paradigm on a Seahorse analyser. 

The Seahorse analyzer permits to measure oxidative phosphorylation in a more physiologically 

relevant context. We estimated OCR and ECAR in HepG2 cells, treated with pristine and aminated 

graphene oxide NPs, for 24 h. Initially, we measured the basal respiration, and then, respiration after 

sequential injection of oligomycin, FCCP and antimycin. Oligomycin blocks ATP synthase activity and 

enables mitochondrial ATP production to be evaluated. FCCP is a powerful OxPhos uncoupler, which 

uncouples ATP synthesis from the ETC to dissipate the mitochondrial membrane potential and assess 

maximal mitochondrial activity independently of ATP production. Antimycin blocks residual 

mitochondrial activity to account for non-mitochondrial oxygen consumption. Measuring the change 

in concentrations of oxygen (O2) and free proton (H+), in the extracellular media over a prescribed time 

frame, provides data about the oxygen consumption rate (OCR, pmol/min) and extracellular 

acidification rate (ECAR pmol/min). As shown in Figure 6A, the mitochondrial respiration of HepG2 

cells was compromised by both types of GO NPs. The toxic effects of GO and haGO-NH2 on HepG2 

cells resulted in a decreased basal OCR, ATP-linked respiration, proton leakage and maximal 

respiration in comparison to the non-treated controls. Both types of GO NPs demonstrated a dose-

dependent effect on basal OCR, ATP-linked respiration and proton leakage. However, our results show 

that they influenced the components of OCR differently and the effect of haGO-NH2 on mitochondrial 

functions was stronger compared to pristine GO NPs. GO and haGO-NH2 NPs decreased 

mitochondrial respiration of HepG2 cells even at the basal state (Figure 6B). Treatment of HepG2 cells 

with 4 and 10 µg/mL of GO and haGO-NH2 had small effect on basal respiration, while the highest 

concentrations of 25 and 50 µg/mL reduced basal respiration significantly compared to the control 

samples. In general, the basal OCR is composed of respiration linked to ATP production and proton 

leakage. ATP-linked respiration (Basal OCR - Oligomycin response) was significantly lower (p< 0.05) in 

both, 25 and 50 µg/mL GO and haGO-NH2 treated groups: 30 and 17.85 pmol/min as well as 29 and 25 

pmol/min versus both controls 57.75 and 49 pmol/min. Proton leak (Antimycin A and Rotenone 

response - Oligomycin response) was reduced in a greater degree in 50 µg/mL GO and haGO-NH2 

treated samples: 15, and 20 pmol/mL, respectively versus 28 and 31 pmol/mL for the controls, in a lower 

degree in 4, 10 and 25 µg/mL haGO-NH2-treated samples. However, in 4 µg/mL GO-treated cells, it was 

similar to the normal level (31 versus 28 pmol/ min). Changes in the proton leak pathway affect 

respiration rate - the increased proton leak uncouples oxidation and phosphorylation, i.e., decreases 

coupling efficiency. We found that the coupling efficiency decreases in both cases - after GO (from 68 

to 54%) and after haGO-NH2 treatment (from 73 to 61%) (Figure 6B). This uncoupling very possibly 

reduced ATP production. 
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Figure 6. Metabolic studies of HepG2 cells treated with GO and haGO-NH2 NPs by Seahorse analyses. 

(А) Mitochondrial oxygen consumption rate (OCR) of HepG2 cells treated with pristine and aminated 

GO NPs for 24 h in real time under basal conditions and in response to mitochondrial inhibitors (O, 

oligomycin; F, FCCP; A, antimycin). (B) Mitochondrial parameters of cells treated for 24 h with GO 

and haGO-NH2. (C) Representation of the ratio between the basal OCR and ECAR where the OCR 

was measured at the same time as ECAR for HepG2 cells after treatment with both types of NPs. 

The maximal respiratory capacity was estimated by an FCCP-stimulated respiration and the 

observed decrease was a strong indicator of potential mitochondrial dysfunction. The experiments, 

conducted with both GO types, indicated that GO and haGO-NH2 caused perturbations in 

mitochondrial respiration. In GO-treated cells, the maximum respiration decreased in a dose-

dependent manner, while in HepG2 cells-treated with 4, 25 and 50 µg/mL haGO-NH2 had a similar 

effect. However, in cells treated with 10 µg/mL haGO-NH2, an even weaker stimulating effect was 

observed. The cell spare respiratory capacity (SRC), however, was not impaired after 24 h-treatment 

with GO and haGO-NH2 NPs. The mitochondrial SRC is regarded as an important aspect of the 

mitochondrial function and is calculated by the difference between maximal and basal cellular OCR. 

When cells are subjected to stress, energy demands increase, with more ATP required to maintain 

cellular functions. A cell with a larger spare respiratory capacity can produce more ATP and 

overcome stress more effectively, which indicates that this could estimate the cells’ ability to cope 

with large increases in ATP turnover [34]. Consequently, GOs exposure, which negatively affects 

mitochondrial function, possibly exerts negative effects on the ability of cells to cope with other stress. 

Finally, the addition of a potent respiratory chain inhibitor, such as antimycin A, allows the 



Int. J. Mol. Sci. 2020, 21, 2427 10 of 20 

 

estimation of non-mitochondrial OCR. In GO-treated samples, non-mitochondrial oxygen 

consumption decreased with increasing of GO concentrations, but without statistical significance. 

While, the effect in haGO-NH2 treated cells was exactly the opposite. There was a slight increase in 

this parameter with the increase of NPs concentrations, statistically significant only in cells treated 

with the highest concentrations of 50 µg/mL haGO-NH2 (Figure 6B). 

Additionally, we have used the extracellular acidification rate (ECAR) as a proxy to evaluate 

glycolytic activity. We have calculated the rate between OCR and ECAR and have found that cells 

treated with both types of NPs had a lower basal OCR to ECAR ratio than the control cells (Figure 

6C), suggesting that they rely on glycolysis rather than on OxPhos for ATP production. 

2.5. Pristine and Aminated GO (GO and haGO-NH2) Prove Non-Genotoxic for HepG2 Cells 

In order to dissect the mechanism of cytotoxicity of the tested pristine and aminated graphene 

oxide NPs on HepG2 cells we have performed Comet Assay, also called single-cell gel electrophoresis 

(SCGE). The Comet Assay sensitively detects damages in DNA [35–37]. HepG2 cells were treated 

with increasing concentrations of GO and haGO-NH2 (4, 10, 25 and 50 µg/mL) for 24 h at optimal 

conditions and were subjected to Comet Assay. HepG2 cells treated with 5mM H2O2 for 30 min at 37 

°C were used as a positive control for genotoxicity. Genotoxicity was further quantified by the 

software program CometScore and results are shown on Figure 7. “Comet Length” is a parameter in 

SCGE data analysis that gives representative and precise estimation of the level of genotoxicity of the 

tested substances. HepG2 cells treated with pristine GO showed very faint almost insignificant 

presence of DNA damage when incubated for 24 h. On the contrary, the haGO-NH2 displayed slightly 

higher genotoxicity effect on the cells but surprisingly this was detected at the lowest used 

concentration of 4 and 10 µg/mL.The given trendline (red dotted line on Figure 7) represents the 

moving average values for Comet length measured for all probes, including the positive control for 

genotoxicity - HepG2 cells treated with 5mM H2O2. It displays the presence of very faint genotoxic 

potential of GO and haGO-NH2 on HepG2 cells, pointing out the mechanisms by which graphene 

oxide GO NPs exert their biological activities are not centered on the stability and maintenance of 

genome integrity. 

 

Figure 7. SCGE for testing the genotoxicity potential of pristine and aminated GO nanoparticles on 

HepG2 cells. Graphical representation of the parameter “Comet length” as quantified by the software 

CometScore. Data are represented as MEAN±STDV, where n=100. Additionally, the given trend 
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represents the moving average values for Comet length measured for all probes including the positive 

control for genotoxicity - HepG2 cells treated with 5 mM H2O2. 

3. Discussion 

In this work, we studied the efficacy of newly synthesized aminated (haGO-NH2) and pristine 

graphene oxide nanoparticles as potential new anticancer agents for treating hepatocellular 

carcinoma cells. We developed a new protocol for amination of GO with hydroxylamine, which 

proved to be simple, cost and time-effective, and moreover, quite successful, as proven by the 

physico-chemical characterization of the new materials. In our previous research, we investigated 

commercially available aminated by ammonia graphene oxide nanoparticles (GO-NH2) as anticancer 

agents for colorectal cancer cells. We found that GO-NH2 NPs trigger stronger cytotoxic and 

genotoxic effect than pristine GO by induction of ROS, DNA damage and apoptosis in Colon 26 cells 

[20]. In order to continue with the analysis of the biological effects of aminated GO nanoparticles on 

other cell types, and to investigate, in detail, the mechanism of nanoparticle action, we developed a 

new protocol for the synthesis of GO-NH2 NPs using hydroxylamine as a new reducing agent. The 

physicochemical characterization of the newly-synthesized hydroxylamine modified haGO-NH2 NPs 

demonstrated that amination by hydroxylamine has a similar modification effect as ammonia on the 

size and morphology of GO NPs. Both methods of amination led to increased wrinkling of the 

nanosheets and decreased size of the particles. We have summarized data from physico-chemical 

characterization together with the biological activity of aminated GO NPs, by both methods in the 

table below (Table 1). As demonstrated in the table, both aminated types of NPs had very similar size 

of 560nm for GO-NH2 versus 594 nm for haGO-NH2. However, a difference in respect to the 

measured zeta potential between both types of aminated GO NPs was observed. Тhe aminated by 

hydroxylamine haGO-NH2 had a negative charge (−12.28 eV), while the commercially available GO-

NH2 had a positive charge of at 38.5 eV. We suggest that this difference could be referred to as the 

difference in the total amount of nitrogen in both samples, i.e. 1.86% in hydroxylamine-aminated 

haGO-NH2 versus 3.47% in ammonia-modified GO-NH2 NPs and could result in different 

interactions with cells. When compared the biological activity of haGO-NH2 and ammonia-modified 

GO-NH2 we have established a reduced cell adhesion ability after exposure to 50 µg/mL NPs, similar 

in both studied cell types - 21% in HepG2 cells and 22.5% in Colon 26 cells. The effect of haGO-

NH2nanoparticles on cell adhesion was stronger than that of ammonia-modified GO-NH2 NPs when 

compared to GO, because in haGO-NH2 –treated HepG2 cells adhesion was 21% versus 63% in GO-

treated cells while in ammonia-treated Colon 26 cells adhesion was22.5% versus 42.6% in GO-treated 

Colon 26 cells. A greater reduction in the inhibitory concentration, IC50, of haGO-NH2was also found, 

suggesting that amination by hydroxylamine is more effective than amination by ammonia. It should 

be kept in mind however the different type of the studied cells as well as the different tests used for 

calculating the % of cell adhesion on which the calculation of IC50 is based. The case based on Colon 

26 cells is based on counting the number of attached cells by an automated cell counter (Countess, 

Invitrogen), while for HepG2 cells, the assay of WST-1. 
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Table 1. Comparison between different types of GO and aminated GO NPs studied in this study and 

in Krasteva et al., 2019 [20]. 

Sample Mean size ZP (mV) ± SE Polarity 
N1sTO

T.(%) 

IC50 

HepG2 

IC50 

Colon26 

GO 

(ref. 20) 

250 ±68 nm 
−24.5 ± 0.4 mV negative -0.99  

1.71 ± 0.2 

µg/mL 1.5 ± 0.7 µm 

(this study) 
515 ± 50 nm 

-33.7 ± 0.4 mV   
62.97 ± 10 

µg/mL 
 

3.6 ± 0.5 µm 

GO-NH2 

(ref. 20) 
560 ± 300 nm 38.5± 2.8 mV positive 3.47  

1.26 ± 0.1 

µg/mL 

haGO-NH2 

hydroxylamine 

modified 

(this study) 

594 ± 270 nm −12,28±0.6 mV negative 
1.86 

 

3.4 ± 0.7  

µg/mL 
 

Biological activities of the newly synthesized aminated GO NPs were first assessed by evaluating 

HepG2 morphology and viability by means of Neutral Red staining and WST-1 assay. Generally, cell 

morphology together with cell viability are essential signs of the physiological status of the cells as both 

are important indicators for cytotoxicity. In our study, we found that the rate of survival of HepG2 cells, 

treated with pristine and aminated GO NPs, decreased with the increase in the concentrations of both 

types of nanomaterials, and dropped down to 80% after treatment with the highest concentration 

used,i.e.,50 µg/mL, especially in the case with haGO-NH2. This suggests high cellular toxicity, especially 

of the aminated GO NPs. The morphological observations under the light microscope did not disclose 

any significant differences in cell morphology. This is in contrast to other studies, including ours [20,38], 

that report pronounced morphological alterations, and the appearance of apoptotic-like morphology 

when GO and GO-NH2 were used to treat macrophages and colorectal carcinoma cells. The difference 

in the results could be related to the different types of cells used in the experiments, and further to the 

different protocols for modification of the graphene oxide nanomaterials. Further, we measured LDH 

leakage in the cell culture medium and found an increased amount of LDH after exposure of HepG2 

cells, only to haGO-NH2 NPs, thus, suggesting damage in plasma membrane structural integrity. LDH 

is a relatively stable intracellular enzyme which can leak out only when the cell membrane is broken. 

Our results suggest that haGO-NH2 penetrates through the plasma membrane and probably disrupts 

the phospholipid bilayer unlike GO NPs. The last could be due to the fact that pristine GO NPs are 

larger in size, which possibly hinders penetration through the cell membrane. The results are in 

agreement with Chang et al. [39] who have measured a lower LDH leakage in A459 cells, treated with 

GO nanoparticles, with concentrations 50 µg/mL and above, compared to the control. A study by 

Sasidharan et al. compared carboxyl-functionalized graphene with pristine graphene, and found that 

no LDH leakage was observed at concentrations as high as 300 µg/mL in Vero cells [40]. Moreover, 

Zhang et al. [41] observed that graphene aggregates were attached to the surface of rat PC12 cells and 

caused an increase in LDH leakage only at the highest exposure concentration (100 µg/mL). On the 

contrary, Liao et al. demonstrated that both, pristine graphene and GO sheets were able to disrupt the 

plasma membrane of erythrocytes [42]. The discrepancy in the results might be explained with the 

different types of the cells used, different types of GO, as well as the different experimental design. It 

should be considered also the different mechanism of toxicity induced by NPs, and that LDH release is 

a marker of necrotic cell death [43,44]. Therefore, if the GO NPs induced apoptotic cell death without 

cell membrane damage, then LDH is not released in cell culture medium, and thus, cannot be measured. 

Little is known about the mechanisms by which aminated graphene oxide nanoparticles induce 

toxicity. Some authors hypothesize that induction of cellular oxidative stress is considered as one of 

the mechanisms underlying nanomaterial toxicity in general. Commonly, oxidative stress results 

from the imbalance between oxidative and antioxidative defense systems of cells and tissues, and a 

result of overproduction of oxidative-free radicals and ROS. An outcome of excessive levels of ROS 

is the modification of the structure and function of cellular proteins and lipids, leading to cellular 

dysfunction, including impaired energy metabolism, altered cell signaling and cell cycle control, 
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impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation 

and inflammation [45–47]. Therefore, we measured the generation of ROS by studying the 

mechanisms of detected hepatotoxicity-induced by GO NPs. In our study, GO and haGO-NH2 

nanoparticles were observed to induce generation of intracellular ROS in a concentration-dependent 

manner. In addition, GO and haGO-NH2 ROS production seemed to follow different trends. For GO, 

maximum ROS levels were reached after exposure to 50 µg/mL after 24 h of exposure of the cells to 

the nanoparticles. In cells treated with lower GO concentrations (between 4 and 25 µg/mL), 

intracellular ROS levels were kept even lower than the control and eventually reached levels 

comparable to those measured for the control (especially at a concentration of 25 µg/mL). On the 

contrary, 24 h of exposure to the increasing concentrations of haGO-NH2 (4–25µg/mL) resulted in 

significant increment in ROS levels while at the highest concentration of 50 µg/mL, the detected ROS 

levels declined. Regarding the oxidant-generating potential of haGO-NH2, the obtained results are 

consistent with our previous observations for colorectal cancer cells where a bell-shaped curve of 

ROS production was shown for both types of GO (pristine and aminated) [20]. A possible explanation 

could be that GO particles have high adsorption potential, which may cause quenching of the signal 

by depleting the fluorophore, and thus, producing false signals. This very possibly could result in 

reduced ROS production at the highest concentrations of GO and GO-NH2. Our results in respect of 

ROS production, induced by pristine GO NPs in HepG2 cells, are in accordance with those reported 

by other authors like Yuan et al. [48] who did not detect any significant increase in the intracellular 

ROS levels in HepG2 cells, exposed to 1 µg/mL of single-layered GO. Based on the obtained results 

here, and those in our previous study on ROS production in colon cancer cells, we conclude that the 

effect of GO on ROS formation is rather cell-specific. These conclusions are also supported by 

literature data on the ability of GO to induce the generation of intracellular ROS in other cell lines. 

A549 cells exposed to 10 µg/mL GO for 24 h, in comparable ROS levels to those determined in this 

study [49]. In human skin fibroblasts, however, no significant increase with respect to the control 

could be detected after 24 h of exposure to concentrations as high as 25 µg/mL [50]. The discrepancy 

between the results obtained in this study and those stated above (including ours) might be due to 

differences in the lateral size of the nanoparticles tested (>1 µm), the suspension protocol (serum-free 

medium), the assay protocol (loading of the cells with the dye DCFH-DA was carried out prior to 

treatment), not only due to the sensitivity of the used cell lines. To the best of our knowledge, no data 

on the oxidant-generating ability of haGO-NH2 have been reported in the scientific literature. The 

fact that GO and haGO-NH2-induced ROS generation displayed different kinetics suggests that the 

underlying ROS generating mechanisms are distinct. The exact mechanism(s) by which a 

nanomaterial exerts oxidative stress is relatively difficult to be identified, and still remains to be 

elucidated for most nanomaterials, including graphene and its derivates. An integrative 

consideration of the results obtained by different assays can assist in obtaining the first indication on 

the possible mechanisms involved. In general, there are two possible mechanisms for ROS induction: 

Direct and indirect. Direct ROS generation typically involves processes that are independent of the 

presence of biological systems (namely acellular ROS generation), i.e., are solely a function of the 

nanomaterial’s physico-chemical properties. Indirect ROS generation, on the contrary, typically 

involves cellular (i.e., biochemical) processes that were triggered by the nanomaterial beforehand 

[51]. 

Mitochondria perform essential functions in generating most of the cellular energy through the 

oxidative phosphorylation system and important metabolic intermediates in various pathways, such 

as amino acids, fatty acids and carbohydrates. It is known that mitochondria play compelling roles 

in carcinogenesis via altered energy metabolism, resistance to apoptosis, increased production of ROS 

and mtDNA (mitochondrial genome) changes [52–56]. ROS produced by nanoparticle-induced 

damage of the respiratory chain, likelyby disturbing mitochondrial membrane permeability. When 

we investigated the nanomaterials’ effect on cellular respiration in mitochondria, we found that the 

exposure to GO and haGO-NH2 nanoparticles resulted in the suppression of most of the phases of 

cellular respiration. Mitochondrial dysfunction is known to be associated with oxidative damage of 

mitochondrial macromolecules including mtDNA, lipids and proteins. [55]. Damage of 
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mitochondrial functions can be provoked directly, i.e., by physical interaction of the nanomaterials 

with the mitochondrial membrane, or indirectly, e.g., by inducing damages through interactions with 

cell membrane protein receptors [57–60]. It is known that DNA is a critical target of ROS. A higher 

production of intracellular ROS may lead to the oxidative damage of DNA, including base and sugar 

lesions, DNA–protein crosslinks, single- and double-strand breaks, and the formation of alkali-labile 

sites [29]. In our previous studies, we have shown that ammonia-modified GO NPs have the potential 

to induce DNA damage and apoptosis in Colon26 cancer cells. Hence, we have analysed here the 

newly synthesized haGO-NH2 NPs and their ability to destroy DNA in HepG2 cells. We found that 

hydroxylamine aminated GO induced only slight DNA damage, although caused ROS generation 

and mitochondrial dysfunction. This suggest that the mechanisms by which haGO-NH2NPs exert 

their biological activities are not centered on the stability and maintenance of the genome integrity, 

but rather in mitochondrial metabolism and oxidative damage. The latter is in contrast to the 

observed DNA damage in ammonia-modified GO in colon cancer cells. 

4. Materials and Methods 

4.1. Amination of Graphene Oxide Particles 

GO was purchased from Graphenea(C1576, San Sebastian, Spain) as a water suspension with a 

concentration of 4 mg/mL. Amination was achieved by the addition of 2 mLhydroxylamine (50% 

solution, Merck, Darmstadt, Germany) to 20 mLGO solution and was kept under continuous stirring 

on magnetic stir for 5 h at 80°C. Unreacted materials were removed by three times washing with 

deionized water by centrifugation at 3000 rpm for 30 min. The supernatant was removed and 

deionized water was added to the sediment up to 20 mL. The optical density of the resulting product 

was measured at 270 nm wavelength in order to get the desired concentrations of aminated GO NPs. 

Immediately before cell experiments, particle stock suspensions were sonicated in an ultrasonic 

water bath (50 Hz, UM-2, Unitra-Unima, Olsztyn, Poland) for 1 h. The desired final concentrations of 

NPs (4, 10, 25, and 50 µg/mL, respectively) were achieved by adding certain volume of the 

nanoparticles from the stock solutions directly into the culture medium. 

TEM (JEM-2100, JEOL, Tokyo, Japan) images were acquired at 200 kV using Holey-carbon film on 

300 mesh nickel grids. Prior to TEM imaging GO and GO-NH2 suspensions were sonicated for 60 min. 

Dynamic light scattering (DLS) for characterization of size and zeta potential of the nanoparticles 

in solution, was performed on a Zetatrac instrument (S3500; Microtrac, Largo, FL, USA). Samples were 

examined after dilution of nanoparticle to a stock solution of 100 mg/mL suspensions in DI water, and 

sonicated for 1 h, then 1 mL was transferred to a Zetatrac instrument for DLS measurement. 

4.2. Cell Culture 

HepG2 cells were grown in MEM culture medium supplemented with 10% fetal bovine serum 

(FBS, Sigma-Aldrich, Germany) and an antibiotic–antimycotic solution (Sigma-Aldrich, Germany). 

The cells were grown in a humidified environment with 5% CO2 and 95% atmosphere at 37°C. For in 

vitro experiments, the pre-confluent cells were detached using a mixture of 0.05% trypsin and 0.02% 

EDTA (Sigma-Aldrich, Germany) and were seeded at a density of 2×104 cells/well in a 24-well plate 

or 1×105 cells/well in 6-well plates depending on the protocol. Cells were cultivated for 24 h before 

exposure to increasing concentrations of GO and GO-NH2 nanoparticles. After adding the 

nanoparticles, the cells were incubated for another 24, 48 or 72 h and after that were processed 

according to the protocol. Control cells were processed in the same way as tested samples, but in the 

absence of nanoparticles. 

4.3. Phase-Contrast Light and Fluorescent Microscopy 

Phase-contrast light and fluorescent microscopy observations were done in order to evaluate 

alterations in cell morphology after 24 h of exposure to both types of GO NPs and the integrity of the 

cell membrane, respectively. The phase-contrast micrographs were taken at magnifications of 25x 

with a Leitz microscope equipped with a digital camera after staining of cells with neutral red (Sigma-
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Aldrich, Germany), while fluorescent micrographs were taken at magnification 10x,with an inverted 

microscope Axiovert 25 (Carl Zeiss, Germany), equipped with a digital camera after staining of cells 

with 0.001% fluorescein diacetate (FDA), as previously described [20]. 

4.4. WST-1 Assay 

WST-1 (Sigma-Aldrich Co., Germany) was used to evaluate cell viability after 24 h exposure to 

GO NPs. It is a sensitive colorimetric assay using a water-soluble tetrazolium salt WST-1 (2-(2-

methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) 

to quantify the number of live cells by producing an orange formazan dye upon bio-reduction in the 

presence of an electron carrier. Briefly, the WST-1 solution was added directly to the cells in ratio 

1:10. After 4 h of incubation at 37°C, at dark, the amount of the formazan produced was measured by 

absorbance at 450 nm. Cell viability is demonstrated as a graph with the measured optical density 

(OD) values, where values represent the MEAN ± STDV of three repetitive experiments. 

IC50 values were calculated by means of GraphPad Prism 7 (GraphPad Software, San Diego, CA, 

USA) based on the data obtained from WST-1 assay – for HepG2 cells and from the number of 

attached cell, calculated by an automated cell counter (Countess, Invitrogen, USA) for Colon26 cells 

4.5. LDH Assay 

Membrane integrity was assessed by measuring extracellular lactate dehydrogenase (LDH), 

using a commercially available kit (LDH cytotoxicity detection kit, Roche Diagnostic, IN, USA). 

Cytosolic LDH is released from the cells into the culture medium if the integrity of the cell membrane 

deteriorates in case of irreversible cell death. Briefly, HepG2 cells were seeded in 24-well plates at a 

density of 2×104 cells/mL culture medium. After 24 h of seeding, the culture medium was replaced 

with fresh one and the tested NPs with increasing concentrations were added to the wells. The plates 

were then incubated for 24 h at 37°C under 100% humidity and 5% CO2. Cell-free culture media was 

collected. LDH activity was measured at 490 nm by UV-Visible absorbance microplate reader. 

Background and negative controls were obtained by LDH measurement of assay medium, and 

untreated cell medium, respectively. Total cellular LDH activity (positive control) was measured in 

cell lysates obtained by treatment with TritonX-100 solution. The OD490nm of the cells permeabilized 

with Triton X-100, was accepted as 100% of LDH release. The percentage of LDH release in the cells 

treated with nanoparticles was calculated as a percentage and presented in a graph. Three repetitions 

of the experiment have been done and values are MEAN±STDV. 

4.6. DCFA-DA Analysis 

The production of intracellular reactive oxygen species (ROS) was measured using 2,7-

dichlorofluorescin diacetate (DCFH-DA, Sigma-Aldrich, Germany) as described before [20,49]. The 

DCFH-DA is a non-fluorescent compound, which passively enters the cell and reacts with ROS to 

form the highly fluorescent compound dichlorofluorescin (DCF). In brief, HepG2 cells (3×104) were 

seeded in 24-well plates and allowed for adherence. Following respective exposure, the cells were 

washed twice with PBS and incubated for 30 min in dark in FBS-free culture medium, containing 

DCFH-DA (20 µM). Then, the DCFH-DA containing medium was removed, the control (untreated) 

and the treated cells were rinsed twice with PBS, and the fluorescence intensity of DCF was detected 

on a spectrofluorometer upon excitation at 485 nm and emission at 520 nm. The results are presented 

as graph, where by the bars represent the MEAN values ±STDV of three experiment repetitions. 

4.7. Single-Cell Gel Electrophoresis (SCGE) 

SCGE was performed as previously described [29]. Briefly, 1 × 103 cells were mixed with 0.7% 

(f.c.) of low-gelling agarose (Sigma-Aldrich, Germany) and were layered as microgels on microscopic 

slides. The slides were then lysed in 146 mM NaCl, 30 mM EDTA, pH7, 10 mM Tris-HCl, pH-7 and 

0.1% N-lauroylsarcosine (NLS, Sigma-Aldrich, Germany) at 10°C for 20 min and were 

electrophoresed for 20 min at 0.46 V/cm. The results were visualized under a fluorescent microscope 
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after staining of gels with SYBR green (Molecular probes, Invitrogen). The results were quantified by 

Comet Assay specialized software CometScore. HepG2 cells treated with 5mM H2O2(Sigma-Aldrich, 

Germany) for 30 min at 37 °C were used as a positive control for genotoxicity. After treatment the 

cells were washed in 1xPBS buffer (2.68 mM KCl, 1.47 mM KH2PO4, 1.37 mM NaCl, 8 mM Na2HPO4), 

pH 7 and subjected to Comet Assay. Comet Assay data analysis was done by the software 

CometScore and results are presented as a graph on which the MEAN values of the parameter Comet 

length ±STDV are given as bars. 

4.8. Mitochondrial Stress Analysis 

The mitochondrial oxygen consumption rate (OCR) and the extracellular acidification rate 

(ECAR) were analyzed simultaneously using a standard mitochondrial stress test paradigm on the 

Seahorse Bioscience XFp analyzer (Agilent Technologies, CA, USA). The cells were assayed for OCR 

and ECAR measurements following the manufacturer’s instructions. Briefly, before analysis, cells 

were washed with unbuffered assay media (Seahorse XF DMEM, pH-7.4) without phenol red 

supplemented with glucose (10mM), sodium pyruvate (1mM) and glutamine (2mM), and incubated 

for 1 h in a CO2-free incubator at 37°C. After the initial measurement of basal OCR and ECAR, the 

inhibitors of mitochondrial activity were injected sequentially in the ports on the cartridges. First, the 

inhibitor of ATP synthase oligomycin (1µM) was added to determine both parts of basal respiration 

- one, that is used to drive the ATP production and the other – independent proton leakage across 

the inner mitochondrial membrane. Next, the uncoupler of mitochondrial oxidative phosphorylation 

carbonyl cyanide-4-(trifuoromethoxy) phenylhydrazone (FCCP, 0.125µM) was added. It induces a 

collapse of the inner membrane gradient, driving the mitochondria to respire at their maximal rate. 

Finally, the complex III inhibitor, antimycin A (1µM) together with complex I inhibitor rotenone 

(1µM), an inhibitor of mitochondrial NADH dehydrogenase, were added to determine non-

mitochondrial respiration. Basal respiration or acidification was calculated using the mean of the 

three OCR or ECAR measurements, before the first injection. ATP-production, proton leak, as well 

as maximal respiration were calculated as the mean of three OCR measurement cycles after 

oligomycin, or FCCP injection, respectively. Maximal acidification was calculated as the mean of 

three ECAR measurement cycles after oligomycin injection. The OCR data were corrected for non-

mitochondrial oxygen consumption under rotenone and antimycin A [60]. Two repetitions of the 

Seahorse experiments were performed for data quantitation. 

4.9. Statistical Analysis 

Data in this article were statistically analyzed by the Microsoft Excel software in which bars 

represent the MEAN values of the calculated parameters ± STDV. Additionally,Student’st-test, where 

the probability levels of 0.05 were considered as statistically significant. Additionally, linear 

regression models were calculated for WST-1experiments for evaluation of cytotoxicity of the tested 

NPs on HepG2 cells. 

5. Conclusions 

In the present study, we developed a simple, effective, cheap and time-saving protocol for 

amination of GO by hydroxylamine. Hydroxylamine-aminated GONPs (haGO-NH2) were 

characterized by XPS, TEM, and Zetasizer. The results demonstrated that amination of GO by 

hydroxylamine decreased the size and zeta potential, but increased the wrinkles of the GO sheets. 

The cytotoxic responses to the newly synthesized aminated GO and the underlying mechanisms were 

investigated in hepatocellular carcinoma HepG2 cells. We observed that exposure to haGO-NH2 

significant induced cytotoxicity (reduced cell viability in a dose-dependent manner and cell 

membrane damage) and oxidative stress (increased ROS production and mitochondrial dysfunction) 

in HepG2 cells. No significant alterations in cell morphology,nor substantial DNA damage, were 

detected, compared to pristine GO and the control group. In conclusion, ROS production and 

extracellular acidification rate in mitochondria of haGO-NH2 treated cells could be a potential 
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mechanism for cytotoxicity of hydroxylamine modified GO nanomaterials. These findings provide 

toxicological and mechanistic information that could enrich knowledge on molecular mechanisms 

exerted by pristine and modified GO nanomaterials in different biological systems. Their potential 

use as anticancer drugs and as vector delivery systems in cancer cells remains to be further elucidated. 
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