Platinum(IV) complexes of *trans*-1,2-diamino-4-cyclohexene: prodrugs affording an oxaliplatin analogue that overcomes cancer resistance.

Paride Papadia,^{*a*} Katia Micoli,^{*b*} Alessandra Barbanente,^{*b*} Nicoletta Ditaranto,^{*b*} James D. Hoeschele,^{*c*} Giovanni Natile,^{*b*} Cristina Marzano,^{*d*} Valentina Gandin,^{*d*} Nicola Margiotta^{*b*,*}

^aDepartment of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; ^bDipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; ^c Department of Chemistry, Eastern Michigan University, 48197 Ypsilanti, MI (USA);

^d Dipartimento di Scienze del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy.

Figure S1. ¹H-NMR spectrum (700 MHz, ¹H) of 1 in D₂O. * marks solvent residual peaks.

The amino proton signals are not visible due to the rapid exchange with D_2O . The singlet falling at 5.53 ppm was attributed to vinyl H_f protons while the signals relating to methynic H_c protons resonate to lower fields (3.23 ppm) compared to DMSO-d₆ (2.80 ppm). Methylenic protons He resonate at 2.81 ppm and H_d protons at 2.51 ppm. The deshielding of these signals could be attributed to the improved solvation properties of water molecules relative to DMSO.

Figure S2. ¹³*C-NMR spectrum (176.05 MHz, ¹³C) of* **1** *in* DMSO-d₆*.* * *marks solvent residual peaks.*

Figure S3. ¹³C-NMR (176.05 MHz, ¹³C) spectrum of **2** in DMSO-d₆. * marks residual solvent peak. # marks an impurity (methanol) in the sample

Figure S4. ¹³*C*-*NMR* (176.05 MHz, ¹³*C*) spectrum of *3* in acetone-d₆. * marks residual solvent peak.

Figure S5. ¹*H-NMR spectrum (700 MHz,* ¹*H) of* **4** *in Acetone-d*₆*.* * *mark solvent residual peaks.*

Figure S6. ¹*H-NMR* spectra (700 MHz, ¹*H*) of **4** in DMSO-d₆ recorded after 10 minutes (top) and 1 day (bottom). * marks solvent residual peaks.

Figure S7. ¹³*C*-*NMR* (176.05 MHz, ¹³*C*) spectrum of **4** in acetone-d₆. * marks residual solvent peak.

Figure S8. ¹³C-NMR (176.05 MHz, ¹³C) spectrum of 5 in CD₃OD. * mark residual solvent peaks.

Figure S9. ¹*H-NMR (700 MHz,* ¹*H) spectrum of complex* **6** *in CD*₃*OD.* * *mark residual solvent peaks.*

Figure S10. ¹³C-NMR (176.05 MHz, ¹³C) spectrum of 6 in CD₃OD. * mark residual solvent peaks.

Complex	Axial ligand 1	Axial ligand 2	Ep ^c (V)	χ _{A(T)} ¹	χ Α(T) ²	average $\chi_{A(T)}$
1	ОН	ОН	-1.05	3.99	3.99	3.99
2	AcO	AcO	-1.03	4.04	4.04	4.04
3	BzO	BzO	-0.99	4.06	4.06	4.06
4	Cl	Cl	-0.72	4.23	4.23	4.23
5	AcO	Cl	-0.82	4.04	4.23	4.14
6	ОН	Cl	-0.48	3.99	4.23	4.11

Table S1. Cathodic reduction potential for complexes **1-6**, with the corresponding ligand total electronegativity $\chi_{A(T)}$, and relative averages.

Figure S11. Scatterplot of the average $\chi_{A(T)}$ values vs. the cathodic reduction potential for the complexes **1-5**. The dashed line represents the best linear fit: Ep^c (V) = -7.13 +1.52 · $\chi_{A(T)}$ (Adjusted R² = 0.94698, *p*-value < 0.01).

Figure S12. Correlation between $log P_{o/w}$ and cellular uptake (a) and reduction potential (b)