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Abstract: Flow cytometry nowadays is among the main working instruments in modern biology 

paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related 

diseases. The major problem for clinical applications is the detection of rare pathogenic objects in 

patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer 

development, various microorganisms and parasites in the blood during acute blood infections. All 

of these rare diagnostic objects can be detected and identified very rapidly to save a patient’s life. 

This review outlines the main techniques of visualization of rare objects in the blood flow, methods 

for extraction of such objects from the blood flow for further investigations and new approaches to 

identify the objects automatically with the modern deep learning methods. 

Keywords: imaging flow cytometry; cell sorting; deep learning; circulating tumor cells; cell labeling; 

liquid biopsy; flow cytometry data analysis 

 

1. Introduction 

The problem of detection and extraction of rare objects from the blood flow arises in a number 

of situations. This includes the search for the very rare circulating tumor cells (CTCs) at early stages 

of cancer development by liquid biopsy [1,2], the detection of microorganisms during acute blood 

infections to determine its strain very rapidly [3], early detection of malaria parasites including in 

vivo [4,5] and other pathogenic states that impose high risks to human life and well-being. In addition 

to the detection and extraction of such rare objects, a lot of developments are targeted on eliminating 

it from the blood flow by a sort of blood filtering. The current state of the art in this field is defined 

by the progress in cell imaging and sorting techniques, sample enrichment, and separation along with 

the new approaches for automatization of data analysis based on machine learning and deep learning 

methods. Here we provide an overview of different techniques designed to detect very rare objects 

in the blood flow, sort it out or filter from the bloodstream and extract for further investigation. 
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According to the statistics of the World Health Organization for 2016, around 71% of the overall 

57 million deaths are caused by noncommunicable diseases, including cardiovascular disease—31% 

and cancer—16% [6]. During 2016, 216 million cases of malaria were detected [7]. The promising 

approach to diagnose these diseases is the detection of untypical objects in blood and lymph samples. 

However, there are two significant challenges: the first one is the rarity of untypical blood elements 

[8] and the second one is the small volume of the sample [9] that has to be subjected to detailed 

analysis. The last generation of the flow cytometry systems with the possibility of object visualization 

allows verifying received data but has additional restrictions. For example, the object size is limited 

by the resolution of the cytometer optical system, and there are flow speed limits based on the 

sensitivity of detection scheme, laminarity of object flow and required quality of the image. However, 

there is no doubt that a solution to the current main medical issues is related to the detailed analysis 

of single cells, which requires their separation from ordinary objects. 

Currently, liquid biopsy is one of the most informative and broadly described analyses in 

medicine. A number of diseases could be diagnosed by detecting of untypical blood objects—emboli 

in the lymph or blood. For example, CTCs are the prognostic factor of different cancer types [10-16], 

which can be detected at early stages. Some species of Protozoa that parasitize in human (e.g., Babesia 

microti, B. divergens [17], Trypanosoma cruzi [18], Plasmodium falciparum, P. vivax, P. ovale, P. malariae, 

P. knowlesi [19], T. brucei [20]) and cause infectious diseases like babesiosis [17], Chagas disease [18], 

malaria [19], African trypanosomiasis [20], etc. can be detected in whole blood. Bloodstream 

infections [21] also can be diagnosed by the detection of microorganisms in the blood [22]. 

Theoretically, other emboli types such as a fat embolism [23] and blood clots [24] can be found by the 

analysis of a blood sample as well. 

Generally, there are two opposite approaches for the selection of target cell subpopulations from 

the entire population. The positive selection implicates the direct isolation of target objects from a 

general population. Oppositely, the negative selection means the exclusion of all objects except for 

the target [25]. Both of these methods have advantages and disadvantages. However, the negative 

approach is more efficient for untypical object analysis in lymph or blood due to the exclusion of all 

objects except for embolus. 

The significant step towards the isolation of rare blood circulating objects was the invention of 

the Fluorescence Activated Cell Sorter (FACS) by Bonner, Sweet, Hulett, Herzenberg et al. in the 60s 

of the last century [26]. Development of new fluorophores and methods of labeling different cell 

structures allowed for sorting cells according to many features and selection of small subpopulations 

and even single cells [27]. Currently, there are a number of methods based on the physical and 

biological properties of cells, allowing their sorting. 

Here we review the modern methods and approaches used for flow cytometer design, cell 

labeling, their viability evaluation, and cell sorting along with other methods to separate cell 

subpopulations and the automatic approaches for following data analysis based on machine learning 

and deep learning methods. 

2. Flow Cytometry Hardware 

The optical detection system is the main part of the flow cytometer that define the overall system 

performance and provide the quality of data (high signal-to-noise ratio, high sensitivity, good 

repeatability) at a reasonable processing speed. Typically, a flow cytometry system consists of three 

main parts: illumination subsystem, usually including one or multiple lasers of different 

wavelengths; fine-tuned optics, comprising dichroic band-pass and cut-off filters; and detection 

system, usually based on high-sensitivity photomultiplier tubes (PMTs) or camera for imaging 

systems. 

2.1. Illumination Subsystem 

Lasers are the excitation light sources for virtually every modern flow cytometer. They should 

provide stable, monochromatic, coherent light for both forward- and side scatter channels of 

detection as well as to excite various fluorescent probes containing in cells to identify them and to 
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investigate their morphology, cell cycle state, etc. [28] Although the first cytometers were based on 

lamp sources like mercury lamps, with the technology development they were replaced by the lasers 

due to their higher stability and the ability to produce highly coherent light. 

About 40 years have gone since the creation of the first 488 nm laser, nevertheless, blue-green 

argon-ion lasers are still the most frequently used because of the high variety of fluorescent labels 

excited at this wavelength: fluorescein, acridine, and their derivatives, cell viability dyes Calcein AM 

and propidium iodide, etc. [29] However, with the development of cytometry, the number of new 

fluorochromes increased, which caused further production of lasers with different wavelengths, from 

ultraviolet to infrared. Currently, the excitation of almost full UV–visible spectrum is provided by 

the combination of earlier gas sources and modern solid-state lasers [30]. Nevertheless, the 

combination of only three of them (ultraviolet, 488 nm, and red diode) in one flow cytometer could 

provide theoretically the ability to analyze up to 17 existing fluorescent labels and could also give 

access to fluorochromes previously unavailable on usual instruments. The employment of additional 

lasers, in turn, can increase the number of simultaneously measured parameters, so advanced flow 

cytometers support the introduction of up to 10 lasers with different wavelengths to maximize 

sensitivity and allow tuning of excitation conditions to the precise experiments. 

2.1.1. Laser Separation 

The choice of the laser for each cytometer is limited by a number of technical parameters that 

should be taken into account. First, the two or more excitation sources used in one flow cytometer 

must be separated to allow the interrogation of cells and stream by multiple lasers. In this case 

spatially and temporally separated laser beams could be used: each laser focuses on its own point of 

the stream when appropriate collection pinholes are aligned to the particular part of the flow channel. 

This scheme can include seven or more lasers and collection channels simultaneously. 

Another separation way is used in commercial cytometers like Accuri™/Accuri™ Plus (BD 

Biosciences, San Jose, CA, USA) and Guava®easyCyte™ (Luminex, Austin, TX, USA). There are 

several collinear lasers, temporally separated to avoid overlapping of the fluorochrome emission and 

the laser excitation light at the same wavelength, for example, in a combination of PE-Cy5 dye and 

red HeNe laser. Here the subsequent picosecond activation of each laser is used with a synchronized 

simultaneous activation of the corresponding detector. 

2.1.2. Laser Type 

There are two main groups of lasers integrated into flow cytometers, which are the earlier 

generation of gas lasers (water-cooled and then air-cooled) and modern solid-state lasers. The first 

produced 488 nm laser had the argon-ion active medium and water cooling. Since it could produce 

only a single wavelength excitation, more advanced cell sorters were equipped by krypton-ion lasers, 

which were able to generate high power signals up to several hundred mW at a number of various 

wavelengths. Further, the water-cooled lasers were replaced by air-cooled, which, however, have a 

lack of high-power output signal (10–30 mW). One of them, helium-neon (HeNe), took its place in 

many flow cytometers by generating an important red 633 nm laser line along with less powerful 

green (543 nm), yellow (592 nm), and orange (612 nm) lines. 

After the development of modern solid-state light sources: laser diodes and diode-pumped 

solid-state (DPSS) lasers they have mostly replaced the gas lasers. Direct diodes use a semiconductor 

heterostructure to directly produce a laser line when DPSS source pumps a solid-state nonlinear 

medium by an infrared laser and generates output wavelength by doubling, tripling and quadrupling 

of the initial one. 

2.1.3. Beam Shape and Quality 

Beam shape, quality, and laser noise level are critical parameters for virtually any flow 

cytometer. There are two types of laser beam profiles: a single-mode having a single circular or 

elliptical spot and a multi-mode providing multiple spots along one optical axis. Typically flow 
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cytometers require a single-mode beam with a circular Gaussian transverse electronic mode (TEM00) 

characteristic. Some flow cytometers can be equipped with optics allowing for an additional 

reshaping of the beam into an elliptical one. A single spot is easily focused on the stream while mixing 

of prisms and cylindrical lenses can provide a flat-top profile with sharper edges of the beam. This 

mode is excellently generated by gas lasers and DPSS laser sources. 

The multi-mode beam generating by a direct diode is more powerful but has a complex beam 

profile with several peak patterns. In this form, it can not be used in flow cytometry as complex beam 

handling may cause large power losses. However, the beam profile can be significantly improved if 

passed through cylindrical lenses or anamorphic prism pairs. 

Laser noise level refers to the degree of its stability in the time interval the cell passes through 

the exposed region. It should not exceed 0.5% peak-to-peak signal amplitude and can vary from 20 

kHz to 20 MHz with respect to many factors, including the laser medium, power supply, electronics, 

and laser self-regulation [30]. Although gas lasers and diodes have self-regulating light control mode, 

for the DPSS and some diode sources the temperature control is a critical issue and can influence the 

resulting laser noise. It also limits the applications of the particular laser because of the decrease in 

resolution with noise growth. However, modern low-noise flow cytometers allow us to carry out 

successfully precise measurements like DNA analysis and immunophenotyping. 

One more important parameter is laser collimation, corresponding to the degree of divergence 

of the laser beam after it leaves the output. Currently available commercial sources integrated into 

flow cytometers provide a well-collimated beam even several meters from the output that is sufficient 

for their further focusing and shaping. 

2.1.4. Laser Delivery 

The delivery of laser beam to the stream and light intersect region can occur in two ways: in free 

space, using prisms, dichroic mirrors, and long-pass filters to merge and steer multiple beams and 

focus them on the stream; and in single-mode fiber optics. Using fiber does not require any additional 

expensive optic elements, provides alignment stability and is generally safer in comparison to free 

space sources. Any defects in the beam profile can be fixed by cutting the edges of spatial distribution, 

however, this leads to losses in the resulting power. The FACSAria™ (BD Biosciences) cytometer uses 

a fiber system for laser delivery. 

However, there are some disadvantages including significant power losses for UV and violet 

laser wavelengths and the expensive fiber materials, degrading with time. Therefore, modern flow 

cytometers like Amnis® ImageStream®X Mark II (Luminex) and CytoFLEX® (Beckman Coulter, Brea, 

CA, USA) system still include free-space laser delivery. Additionally, high-quality damage-resistant 

coated dichroic mirrors are required to work in the UV range. 

2.1.5. Laser Coherence 

The spectral width of the line that laser emits is a critical parameter as well. This value does not 

exceed 1 nm for highly coherent lasers, although the light, produced by the laser diodes, has the main 

intensive part at one wavelength and slightly less intensive background at lower and higher 

wavelengths. For the application of these lasers, modern cytometers are equipped with additional 

narrow width notch filters that make laser line essentially monochromatic. 

2.2. Optical Arrangement 

Since modern cytometers provide both brightfield and fluorescence imaging of flowing objects, 

they provide identification of the single cell according to the distribution of fluorescent markers and 

the cell morphology. However, there are several optical schemes for visualization of flowing objects 

in real-time. 

The first kind of imaging optical system is realized in the Amnis® (Luminex) imaging flow 

cytometer, which was designed to enhance the fluorescent sensitivity in comparison to fluorescent 

microscopes and provide high-speed operation comparable with conventional flow cytometers (up 
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to several thousands of objects per second). The basic scheme of the optical system is presented in 

Figure 1. The light sheet illumination of cells flowing one-by-one through the illumination region 

provides scattered light (forward and side channel) and the set of fluorescent channels with different 

excitation source and detection beam path. Diffusion of light at small angles (forward scattered 

channel, FSC), where the light is collected between 0.5–8° to the optical axis, is used to determine the 

cell size [31]. At the side scatter channel (SSC), the light is collected orthogonally to the optical axis 

and represents a combination of the diffusion, reflection, and refraction components that are related 

to cell morphology, granulation, and other structural properties. A high numerical aperture objective 

lens collects either emitted fluorescence, scattered and transmitted light from the cells in a spectral 

range of 420-800 nm [32], and then relayed it to the spectral decomposition part. This part consists of 

a stack of five dichroic long-pass filters with progressively longer cut-off wavelength placed in front 

of a backing mirror. Each of them reflects a certain wavelength band towards a specific detector or 

parts of a camera sensor. As a result, signals from each cell are separated into several sub-images: 

brightfield, side scatter and the set of fluorescent images, corresponding to the different spectral 

bands. This assembly generates simultaneously six spectral fluorescent images of each cell and 

follows by the second objective lens, focusing this light at the time delay integration (TDI) camera 

and forming images in a row on the detector. Latest ImageStream®X (Luminex) systems support two 

cameras simultaneously, providing up to 12 images per object at a 60x magnification, with the 

diffraction-limited resolution of an image. The lasers are staffed correspondingly to suppress the 

cross-talk between two cameras. Although, the image resolution in currently available commercial 

cytometers is diffraction-limited, there are some new developing techniques to overcome this limit 

[33]. 

 

Figure 1. The optical system of an imaging flow cytometer. 

Another optical arrangement is realized in the opensource imaging cytometer SPI [34]. This 

design makes extensive use of the existing SPIM structured light imaging system [35,36] and adds 

flow cell with the appropriate fluidic system based on the syringe pump. The optical system, in this 

case, consists of a laser collimation scheme forming a light-sheet either by a Bessel beam and scanning 

it with the galvo mirror or by static arrangement where the light-sheet is formed by pair of cylindrical 

lens and objective lens. Then the usual microscopic tube is placed perpendicular to the light-sheet 

plane that consists of another objective lens with better resolution/higher numerical aperture, 

intermediate camera tube lens, and scientific camera. 
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2.3. Camera 

Most flow cytometers employ imaging systems based on charged coupled device (CCD) or 

complementary metal-oxide-semiconductor (CMOS) sensors, which have a number of differences 

[37]. Additionally, point detectors such as photomultiplier tube (PMT) or avalanche photodiode can 

be employed. Different sensor types solve the trade-off between temporal resolution and spatial 

resolution. In comparison to point detector systems, camera-based flow cytometers offer direct 

imaging of single cells along with the information on morphology and texture at a single-cell level. 

The main challenge in imaging systems is the minimization of optical blur occurred due to the high 

rate of cell movement [38]. 

CCD sensors are typically composed of a two-dimensional array of metal-oxide-semiconductor 

CCD cells where every diode provides a charge build-up during image capture. Each photodiode 

serves as a discrete sensor that corresponds to the pixels of the final image. Therefore, the size of the 

imaged object is defined by the size of the photodiode. The CCD cameras are limited by the sequential 

transfer time, which determines the rate of the image acquisition as all pixel charges must be 

transferred before a new image can be captured. In a number of commercial imaging flow cytometers 

(such as Amnis® (Luminex), IN Cell Analyzers (GE Healthcare Life Sciences, Little Chalfont, UK), 

ImageXpress® (Molecular Devices, San Jose, CA, USA) CCD sensors accompanied by wide-field 

illumination. Alternatively, ImageStream® (Luminex) and FlowSight® (Luminex) cytometers employ 

high-speed time delay integration CCD cameras [39,40]. This type of CCD sensor was designed to 

image fluorescent objects moving along one axis, which is provided by using multiple rows of sensors 

pixels that shift charge synchronously with the movement of an object along the same axis. This 

approach allows increasing the signal from each object by several orders of magnitude (from the 

microsecond scale to the millisecond scale) without an increase of noise, thus leading to high 

sensitivity of the system. 

Similar to CCD, CMOS sensors also employ a two-dimensional array of photodetectors to 

perform photoelectric conversion of detected signals. The main difference comparing with CCD is 

CMOS sensors amplify the signal at each sensor, followed by the storage of the overall information. 

This approach significantly reduces the time of single image acquisition. Additionally, each pixel acts 

as an individual amplifier increasing the pixel-to-pixel variability. Further, in 2016 Fairchild Imaging 

improved the design of the CMOS sensors resulting in low read noise and high quantum efficiency 

(up to 82%). The new design was named scientific CMOS (sCMOS) [41]. 

The choice between CCD and sCMOS cameras depends on the particular task and should take 

into account the pixel size, frame rate, quantum efficiency, spectral response, dynamic range, and 

noise of the sensor. In general, sCMOS cameras are characterized by higher frame rate, enhanced 

dynamic range, and larger field of view (up to 4–16 times larger area), while CCD provides higher 

sensitivity and uniformity over the sensor, which is important for super-resolution and multiphoton 

applications [42]. Modern electron-multiplying ССD (EM-CCD) sensors have a better low-light 

sensitivity and increased dynamic range in comparison to CCD, but they have a larger pixel size [43]. 

The sCMOS sensors also offer an option to improve imaging quality. For instance, the sCMOS sensor 

can operate in a global shutter mode (all pixels are measured simultaneously) and rolling shutter 

mode (sensor is read line by line and an only single line is active) [44]. Using a rolling shutter can 

improve contrast and increase image quality, however, it can suffer from image artifacts when 

measuring high-speed moving objects. 

Both CCD and CMOS detectors may be combined with light-sheet illumination to employ 

optical sectioning to reduce photo-induced stress of the biological samples. The light-sheet approach 

uses illumination made perpendicularly to the axis of observation [45]. The excited fluorescence from 

the light sheet is then projected onto an imaging sensor [46]. The main advantage of light-sheet is the 

relatively low irradiation of fluorescent molecules during the image acquisition in combination with 

the good resolution and image contrast that makes it very popular in imaging in vivo, measurement 

of rapidly moving and changing objects with the minimum damage [47,48]. 

On the other hand, the employment of camera-based systems may be limited by the weak 

fluorescent signal and the high speed of cell flow. To overcome this, a number of PMT-based detectors 
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are employed. PMTs are equipped with a light-sensitive photocathode that converts light into 

photoelectrons, which are further amplified by acceleration by dynodes voltage [49,50]. Although the 

quantum efficiency of PMTs is not high (about 20%), they provide sufficient amplification (up to 

thousands of times) of the detected signal. To date, multiple discrete PMT detectors are employed in 

most of confocal laser scanning microscopes (CLSM) to detect fluorescent signal from multiple 

fluorescent probes (up to five simultaneously) [51] and in imaging flow cytometers, such as Acumen® 

(LabTech, Melbourn, UK), iGeneration instruments (CompuCyte, Westwood, MA, USA), and iCyte® 

(ThorLabs, Newton, NJ, USA). These systems employ optical time-stretch imaging in order to capture 

fast objects in real-time at the rate of tens of MHz. PMTs offer higher sensitivity and higher dynamic 

range due to electron multiplication and gain adjustment within the sensor. PMT-based flow 

cytometers also demonstrate higher bandwidth with reduced noise in comparison to CCD and 

sCMOS sensors, which helps to increase throughput. However, PMT does not provide spatial 

information, which limits the number of its applications. Some systems combine PMTs with high-

speed microscopy laser scanning techniques in order to provide full information from the sample. 

For instance, Cellomics® ArrayScan® VTI (Thermo Scientific, Waltham, MA, USA), and Operetta® 

(Perkin Elmer, Waltham, MA, USA) commercial flow cytometers employ CLSM schemes. In 

conventional CLSM, single-pixel detectors or PMTs are employed to collect the signal. A specimen is 

scanned pixel by pixel over the surface by the focused spot to build an entire image [51]. Additionally, 

the so-called multi-field of view imaging flow cytometer (MIFC) method can be applied to provide 

imaging of multiple channels simultaneously, which significantly increases throughput [52]. 

Mckenna et al. developed a microfluidic flow cytometer containing 384 parallel channels with 

one-dimensional multicolor confocal fluorescence imaging to provide a collection of information 

from rare-cell samples [53]. A combination of point detector with an optoelectronic image-

encoding/decoding time-stretching method allows for reaching high image quality and increased 

throughput [54]. Mapping images into the radio frequency spectrum using conventional cameras 

provided increased readout methods comparing to usual methods [55]. The flow cytometry system 

based on precisely-defined focal spot and a line scan CMOS sensor was first developed by Heng in 

2011 and allowed the parallel collection of multiple fluorescence channels with high resolution but 

low throughput (1000 cells/s) [56]. 

3. Cell Labeling 

The most straightforward and reasonable approach to distinguish one type of cell from another 

one is the direct labeling of cells with an appropriate and well detectable label. At the moment, there 

is a number of methods used for cell labeling, based on which the separation of target cells from the 

bulk can be performed. Either fluorescent, magnetic, or acoustic properties of various tags are 

successfully applied for cell sorting. This section highlights the basic currently used cell markers. 

3.1. Fluorescent Labeling 

Fluorescent labeling is probably the most common and well-developed technique to distinguish 

one type of cell from others. Currently, a great number of fluorophores with different spectral 

properties are widely used in microbiology, cell biology, and medicine. Modern fluorescent dyes are 

used to label specific structures on the surface and inside the cell and to estimate the rate of metabolic 

processes. In addition, vector-encoded fluorescent proteins are also used for cell labeling. 

3.1.1. Fluorescent Label Conjugated Antibodies 

Attachment of fluorescent labels to cell populations of interest via antibodies is widely employed 

in cytometry and cell imaging analysis. Generally, antibodies are immunoglobulins with a similar 

structure (Figure 2) including heavy (H) and light (L) chains linked to each other by disulfide bonds 

and are composed of the variable (V) and constant (C) regions [57,58]. Polymeric immunoglobulins 

have an additional J chain responsible for polymerization [57,59]. Antibodies are able to bind with a 

variety of antigens due to V regions, which is also known as fragment antibody binding (Fab) regions, 
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at the ends of H and L chains [57,58]. Antigen-antibody interactions depend on the three-dimensional 

structure of the Fab region determined by the amino acid sequence and their charge [60]. The affinity 

of antigen-antibody binding is driven by entropic (hydrophobic) and enthalpic (Van der Waals, 

hydrogen bonding, salt bridge) effects, or by entropy-enthalpy compensation [61]. Additionally, to 

describe the mechanisms of antigen-antibody interaction two main theories (“Key-Lock” and 

“Induced Fit”) based on a conformational change of proteins were derived [61,62]. 

 

Figure 2. Sketch of an antibody structure. 

Thus, the strategy of cell labeling is based on the fact that specific cell populations express 

defined surface markers that are unambiguously identified by the corresponding antibodies 

conjugated with a fluorescent label. The main benefit of this approach is the possibility of direct cell 

labeling in vivo by the injection to the blood circulation [63-65]. A variety of fluorescent labels to 

conjugate with antibodies is available, including small-molecule organic dyes, quantum dots, 

fluorescent proteins, polymer dyes, and tandem polymer dyes. 

Small-molecule organic dyes are the simplest and most reasonable choice to conjugate to 

antibodies. They are commonly used due to relatively good photostability and ease of preparation. 

Indeed, the protein conjugation protocols are well established, and there are commercially available 

conjugation kits allowing to attach the most common dyes to the desired antibody as well as already 

conjugated antibodies that may be purchased from suppliers. There are several widely used small-

molecule organic dyes. Among them, probably the most popular are derivatives of fluorescein, 

rhodamine, and cyanine dyes. 

Fluorescein and its derivatives exhibit fluorescence due to a multi-ring π-conjugated aromatic 

xanthene structure [66]. The absorption maximum of the dye is in the region of 488–495 nm and, thus, 

can be effectively excited by the argon 488 nm laser. The maximum of emission spectra is typically 

between 512 and 525 nm with a relatively high quantum yield [67,68]. The fluorescein derivatives are 

usually prepared by the substitution of either fifth or sixth carbon of the lowest ring. Fluorescein-5-

isothiocyanate (FITC) is the most popular fluorescent label ever created. The conjugation of a protein 

molecule with the FITC label is driven by the formation of isothiourea linkage between the protein 

primary amine group and the FITC isothiocyanate group [69]. Recently, Chaganti et al. described the 

modified protein FITC labeling technique employing tandem affinity purification tags at the N- and 

C-termini of the target protein [70]. Currently, FITC is widely used for labeling various entities of 

biological nature, such as peptides [71,72], antibodies [73,74] and, polysaccharides [75]. 
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Rhodamine structure is similar to that of fluorescein except for the oxygen atoms in the outer 

rings are substituted by the nitrogen. All rhodamine-based labels are derivatives of this primary 

structure. The most widely used modification for biomolecule labeling and further fluorescent 

imaging is tetramethylrhodamine-5-isothiocyanate (TRITC) [76]. Comparing to the initial rhodamine 

molecule, TRITC has two methyl groups attached to each nitrogen atom on the outer rings and fifth 

carbon atom at the lowest ring-substituted to isothiocyanate group. The TRITC molecule has the 

spectral maximum of absorbance at 545 nm, and the emission maximum at 570 nm. The mechanism 

of TRITC conjugation with protein molecules is the same as for FITC due to the isothiocyanate 

functional group [69]. In comparison with FITC, TRITC has a smaller quantum yield, however, it is 

more photostable, and its fluorescence is less affected by an external medium. Additionally, the 

TRITC emission band is better for fluorescent imaging in vivo or in biofluids. Texas Red 

(sulforhodamine 101) is another rhodamine derivative widely used for fluorescent protein labeling 

[77]. It contains sulfonate groups in a third and fifth position of the lowest ring that can form stable 

sulfonamide bonds. Texas Red has the maximum absorption at 589 nm and the maximum of emission 

at 615 nm, along with a relatively high quantum yield. Since the maximum of absorption and 

emission are shifted to the red region, Texas Red perfectly suits the dual-mode fluorescent imaging 

combining with fluorescein dyes. 

Conventional cyanine dyes generally consist of two cationic ring structures, including nitrogen 

atoms, and one of them must carry a positive charge while the rings are linked with an unsaturated 

polymethine chain [78]. The ring structure may vary from single rings containing five or six atoms in 

the cycle to complex conjugated structures consisting of several aromatic rings. The length of the 

polymethine chain also varies and may include from one to seven carbon atoms indicating different 

subfamilies of cyanine dyes with various spectral properties. Therefore, Cy3 dyes usually absorb and 

emit light at 500 nm band, whereas Cy5 and Cy7 dyes have maximums of absorption and emission 

at 600 nm and 700 nm bands respectively. An additional modification of the ring structure allows for 

fine-tuning of spectral properties by shifting the spectral maximums to the blue or red region. 

However, the most attractive cyanine dyes are those with the spectral maximum of emission in the 

near-infrared (NIR) region due to the great suitability for bioimaging applications. Thus, the structure 

of the dyes keeps being optimized to design the dyes with the enhanced properties. For instance, Li 

et al. designed a NIR frequency upconversion Cy7-NO2 probe for the detection of a nitroreductase 

enzyme based on Cy7 dye [79]. Ge and Tian reported on the fluorescent probe based on cyanine dye 

coupled with Zn-Dpa recognition units to monitor p-tau protein in a single neuron [80]. In order to 

make cyanine dyes suitable for proteins conjugation, the sulfonated groups are introduced to their 

structure. Generally, commercially available cyanine dyes have from two to four sulfonated groups 

for the optimal conjugation in aqueous solutions. 

Quantum dots (QDs) are nanosized semiconductor crystals that emit photoluminescent light 

due to electron-hole recombination [81]. QDs have several advantages comparing to conventional 

small-molecule fluorophores. First, QDs combine high quantum yield (0.1–0.9) with a large molar 

extinction coefficient (105–107 M−1cm−1) that results in a bright luminescence [82]. QDs have a broad 

absorption band and narrow symmetric fluorescence spectra (full width at a half-maximum of about 

25–35 nm) shifted from the absorption peak to 100 nm [82]. This allows to avoid spectral overlapping 

during multiplex detection experiments and thus less compensation is required between QD 

channels. The spectral maximum (“color”) of emitted light may be adjusted by the size and material 

of QD crystals [83]. Finally, QDs are much more photostable and have longer lifetimes of the excited 

state that makes them more suitable for dynamics tracking experiments [84]. Typically, QDs are 

referred to as I−VI, III−V, and IV−VI binary compounds and their core/shell structures [85]; however, 

these compositions have biocompatibility issues. With this regard, in recent years, the QDs prepared 

of carbon materials attract much attention [86,87]. 

However, the main difference between QDs and organic dyes is in protein conjugation. Small-

molecule fluorophores typically have single reactive group coupling with specific sites on a protein 

molecule [88]. The general principle is to mix the excess of the dye with the target molecules. As the 

size of fluorescent labels is comparable with the size of amino acid residues, the target protein 
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structure generally remained the same, preserving the specificity and avidity of the antibody. Unlike 

the small-molecule dyes, QDs have a much larger size and a considerable surface area that can be 

modified by the biomolecules at many different sites as well as with irregular orientation of the 

antibodies on the QD surface, which affects biological activity [89]. This makes challenging the 

conjugation of QDs with antibodies regarding effective cell labeling and sorting. However, there are 

two strategies of QD controllable conjugation. These are covalent conjugation methods and self-

assembly based techniques. The covalent conjugation implies the formation of covalent bonds 

between the target antibody and QD surface ligands. Although conventional covalent conjugation 

does not allow for the control over the number of conjugated proteins and their orientation, the recent 

advances in developing of chemoselective ligation [90,91] and bio-orthogonal [92] reactions have 

resulted in effective and controllable conjugation of QDs and biomolecules [93,94]. On the other hand, 

self-assembly based conjugation employs specific high-affinity interactions without the formation of 

covalent bonds. The typical example of this specific recognition is tightly binding between biotin 

(vitamin B7) and avidin-like proteins that are known as the strongest non-covalent bond in nature 

[95]. The basic strategy for conjugation is a modification of the QD surface with avidin-family protein 

that binds with a biotinylated molecule of interest [96]. To date, there are commercially available kits 

to attach biotin to any biomolecule as well as QDs modified with streptavidin for the following 

specific binding. However, conjugation via biotin-avidin binding is limited in control over 

conjugation valence (i.e., the number of molecules attached to a QD) [97] and orientation of 

antibodies. Currently, one of the emerging self-assembly strategies for QD bioconjugation providing 

the best overall control is the exploiting of polyhistidine tag [98]. Polyhistidine is a sequence in a 

protein molecule consisting of six histidine residues with an affinity for divalent metal cations. 

Polyhistidine tag is typically bonded with a molecule of interest and then coupled to metal atoms on 

the QD surface. The advantage of polyhistidine self-assembly is the fact that it does not require 

additional QD surface modification, employs well-established protocols and provides reasonable 

control over resulted stoichiometry [99]. Currently, the preparation of more sophisticated 

polyhistidine tags is carried out providing less steric hindrance during assembly with QDs and better 

binding affinity with biomolecules [100]. 

Fluorescent phycobiliproteins were considered as probes for immunofluorescent experiments 

since the 1980s [101]. These naturally arisen fluorophores are a part of the photosynthetic complex of 

certain cyanobacteria and algae. The main function of phycobiliproteins is to absorb and transfer the 

light energy to adjacent chlorophyll molecules for further utilization in the cell life cycle. Thus, they 

are naturally designed to have a large quantum yield (up to 0.98) and molar extinction coefficient (2.4 

× 106 M−1cm−1 at 545 nm for B-Phycoerythrin) that are far beyond of those of small-molecule dyes [69]. 

Typically, phycobiliproteins contain multiple chromophoric bilin groups that are linear tetrapyrroles 

covalently bonded to apoprotein (Figure 3). 

 

Figure 3. Chemical structure of phycoerythrin bilin chromophore. 
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Depending on the number and organization of bilin groups, there are four main types of 

pigments in phycobiliprotein structure: yellow-colored phycourobilin, red-colored 

phycoerythrobilin, blue-colored phycocyanobilin, and purple phycobiliviolin [102]. The resulted 

protein spectral properties are defined by the relative content of each pigment in the protein structure 

[103]. For instance, the two main forms of phycoerythrin employed as fluorescent labels, which are 

B-Phycoerythrin and R-Phycoerythrin, contain 34 bilin groups and have a broad absorption band 

from green to yellow region of the visible spectrum with multiple peaks and maximum of emission 

at 575–578 nm. This makes them perfect for bioimaging as their fluorescent signal is detected in a red 

and near-infrared region along with variable excitation sources. Phycobiliproteins can be conjugated 

with antibodies, avidin, biotin, and other biomolecules [104-106] without losing their fluorescent 

properties via common heterofunctional crosslinkers, including N-succinimidyl 3-(2-

pyridyldithio)propionate (SPDP), succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate 

(SMCC), and succinimidyl-4-(p-maleimidophenyl)butyrate (SMPB) [69]. The crosslinkers react with 

amine groups of phycobiliproteins producing activated sites for the coupling of sulfhydryl-

containing molecules. The targeted biomolecule can be modified with thiol groups to complete the 

conjugation. However, despite their outstanding brightness, one should consider that 

phycobiliproteins are susceptible to photobleaching and are not well suitable for long-term dynamics 

monitoring. 

Recent advances in polymer chemistry and the development of organic optoelectronic systems 

gave rise probably for the most sophisticated type of fluorescent labels that are engineered polymer 

dyes. Analogous to phycobiliproteins, polymer dyes consist of a number of optical subunits that are 

able collectively to absorb light and respond to quenching. Structurally, polymer dyes are specially 

designed π-conjugated polymers with multiple π-orbitals that can absorb and emit light due to 

electron delocalization similar to small-molecule organic dyes [107]. However, unlike small-molecule 

dyes, the absorption and emission of light by polymer dye molecule co-occurs in many sites over the 

polymer chain. This multiple impact results in relatively high quantum yield (up to 0.65) and a molar 

extinction coefficient comparable to that of QDs and phycobiliproteins (about 106 M−1cm−1). 

Furthermore, the length and structure of the polymer chain can be modified to adjust the spectral 

properties of the resulted dye. Additionally, polymer dyes are designed to be very photostable and 

absorb light only of a specific wavelength (i.e., to have a narrow excitation band) that makes them 

suitable for multiplex and long-term detection experiments [108]. Polymer dyes can be conjugated 

with antibodies via conventional conjugation protocols as they are pre-synthesized with defined 

specific binding groups providing well-controllable coupling considering both the number of 

conjugated labels and location of binding sites. The example of polymer dye is Brilliant Violet BV421 

fluorochrome. 

Additionally, phycobiliproteins and polymer dyes can be modified with other fluorophores to 

create dyes with modulated spectral properties employing fluorescence resonance energy transfer 

(FRET). The fluorophores are combined to form donor-acceptor couples so that the emission band of 

one fluorophore overlaps with the absorption band of another one. This results in extremely bright 

tandem dye structures with enhanced Stokes shift up 300 nm that can be effectively excited by two 

laser sources. Formation of tandem dye structures may be employed to shift the emission of the initial 

fluorophore to the red or near-infrared band, which is beneficial for bioimaging applications, or in 

case of low antigen density. However, one should consider that tandem dyes are quite unstable and 

have rather variable energy transfer efficiency. The examples of tandem dyes are the conjugates of B-

Phycoerythrin and Allophycocyanin phycobiliproteins; R-Phycoerythrin and Cy-5 dye; B-

Phycoerythrin and Texas Red dye; the family of Brilliant Violet dyes based on BV 421 polymer core. 

3.1.2. Cell Tracking Dyes 

Fluorescent cell labeling can be performed by using fluorescent cell tracking dyes. These dyes 

allow for analyzing cell cycle, migration, proliferation, permeabilization of the membrane, etc. by 

staining different components of the cell. Furthermore, the dyes being incorporated into the live cells 

allow for their distinguishing without affecting cell metabolic activity. Coupling of tracking dyes with 
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antibodies provides the additional possibility to carry out a phenotype analysis due to the formation 

of the dye-antibody combination. Depending on the affinity, fluorescent dyes are divided into the 

three main groups that are nucleic acid, cytoplasmic, and membrane-bound dyes. 

Nucleic acid dyes typically bind with DNA and/or RNA. They are generally used to quantify 

DNA and to observe cells distribution during the cell cycle (Propidium Iodide, 7-Aminoactinomycin 

D or 7-AAD, DyeCycle Violet, 4′,6-Diamidino-2-phenylindole or DAPI, Hoescht 33342), to estimate 

cell viability (PI, DAPI), to isolate chromosomes for sorting (Hoescht 33342, Chromomycin A3), to 

quantify apoptotic cell fractional DNA content (Acridine Orange or AO, 7-AAD), etc. [109,110] These 

dyes are frequently used for cell migration and tracking analysis due to their high retention. 

Nevertheless, DNA-binding dyes are not applicable for proliferation analysis because the content 

(and intensity) of the dye decreases after each cell cycle [111]. 

A large family of fluorochromes developed for bioimaging is prepared from “acridine 

derivatives”. The chemical structure of fluorochromes from the acridine family is performed by 

several aromatic rings forming xanthene that produces a planar configuration responsible for the 

binding to the specific target. Physico-chemical behavior is driven by the three-dimensional 

conformation of the target site. Other interactions, such as hydrogen and Van der Waals bonds, can 

enhance or reduce binding mode depending on the reaction conditions. The most widespread and 

frequently used fluorochrome is Acridine Orange (AO). This dye is appreciated due to its 

metachromatic nature: according to the microenvironment, AO can vary the emission spectrum. It 

emits green fluorescence when bound to double-stranded DNA and red fluorescence when bound to 

single-stranded DNA or RNA. The excitation/emission maximum wavelengths are 460/650 nm for 

RNA-binding and 500/526 nm for DNA-binding analysis. This fascinating property provides its 

usage for differentiation of double- and single-stranded configurations that are in detail described in 

the literature devoted to cell kinetics, damage, and apoptosis. The AO dye can be sufficiently excited 

by a 488 nm blue line of an argon laser. 

7-Aminoactinomycin D or 7-AAD is the fluorochrome that belongs to the group of dyes forming 

a complex with a guanine base (in the presence of magnesium ions). It selectively binds to guanine-

cytosine regions of DNA and provides an explicit banding pattern in polytene chromosomes and 

chromatin for chromosome banding studies. This family also includes mithramycin, chromomycin, 

and olivomycin dyes with similar chemical behaviors. The absorption maximum is 546 nm, but 7-

AAD is effectively visualized by a 488 nm flow cytometer laser line. This fluorescent intercalator 

performs spectral shift upon binding with DNA and emits light in the far-red region, having an 

emission maximum at 647 nm. It makes nucleic acid stain useful for multicolor fluorescence 

microscopy and flow cytometry. 7-AAD is used for cell cycle analysis in bioimaging, but it encounters 

some obstacles during its utilization. As well as it cannot penetrate the intact cell membrane, it is 

generally excluded from live cells and proposed for apoptotic cell death study. Nevertheless, in the 

case of fixed and permeabilized cells, the 7-AAD is applicable. 

Another group of DNA-binding fluorochromes is presented by diamino-phenylindole 

derivatives; one of those is 4′,6-diamidino-2-phenylindole (DAPI). DAPI binds to adenine-thymine 

regions of DNA. This nuclear counterstain has the absorption maximum in the ultraviolet (UV) region 

and provides blue-fluorescent emission at 470 nm. Although the spectral maximum of absorption is 

at 350 nm, DAPI can be excited by a 405 nm laser line while exhibits high quantum yield. The spectral 

properties make DAPI applicable for multicolor flow cytometry experiments, especially in 

combination with green (FITC, GFP) and red (Rhodamine, Texas Red) fluorophores. In bioimaging, 

DAPI is in common use for counting cells, estimation of apoptosis and cell viability, sorting cells 

based on DNA content due to high affinity for DNA, and as nuclear segmentation tool in imaging 

analysis. Generally, this fluorochrome can stain fixed cells because of its impermanence, but at higher 

concentrations, it is possible to use DAPI for live cells. However, one should take into account that 

DAPI has a wide emission range (96 nm at a half-maximum) and may bind non-specifically when the 

staining period is longer than in the approved protocol. 

One more popular UV-excited live cell stain is Hoechst 33342. The dye can permeate the intact 

cellular membrane and bind to DNA even of live cells without their further damaging. Thus, it is 
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employed for cell cycle analysis analogous to DAPI. The mechanism of staining is similar to DAPI, 

as well as the excitation/emission wavelengths (361/497 nm, respectively). 

Propidium Iodide (PI) and Ethidium Bromide (EB) are the two main dyes of intercalating 

phenanthridine dye family to perform analysis of proliferation and cell viability. As they are not able 

to permeate the intact membrane of live cells, they are frequently used to differentiate dead cells in a 

population. Thus, staining with these dyes requires to fix the cells or to permeabilize them for further 

DNA binding. As an acridine derivative, PI can bind both with double-stranded DNA and with 

double-stranded RNA chains due to interaction with amines within a cell to determine if the cell 

membrane is intact. The EB reacts in the same way. Furthermore, PI and EB have a specific spectral 

feature: they are almost non-fluorescent as free molecules in aqueous solution but provide highly 

increased quantum efficiency when intercalated into nucleic acids. The free molecules excited by the 

adequate light tend to dissipate the energy to the surrounding polar water molecules. In turn, the 

intercalated molecules can only disperse the energy by the light emission. The excitation maximum 

of PI is 535 nm, which is appropriate for the 488 nm argon laser line, with the spectral maximum of 

emission at 617 nm. Although the large variety of new DNA-affinitive dyes that have been developed 

in the last years, PI is still the most commonly used for cell cycle analysis and DNA/RNA detection. 

Cytoplasmic dyes have been widely used for cell migration and proliferation studies due to their 

longer retention in comparison with nucleic acid binding dyes [112-115]. However, they exhibit a 

higher level of cytotoxicity to cells as they bind to cytoplasmic proteins and therefore affect the 

cellular enzyme functions [116]. The most prevalent cytoplasmic dyes are fluorescein-based 

carboxyfluorescein succinimidyl ester (CFSE), calcein acetoxymethyl (calcein-AM), calcein violet 

acetoxymethyl (calcein violet AM), and resazurin-based alamarBlue, and CellTiter-Blue. 

The dyes of the fluorescein group can easily penetrate the intact membrane of live cells due to 

their hydrophobic properties. Afterward, the dye molecules are hydrolyzed by intracellular esterases 

that leads to sufficient enhance of the intrinsic fluorescence. Concerning calcein AM, after its 

transport into the cell, the esterases remove two acetoxymethyl groups, and non-fluorescent molecule 

converts to a green-fluorescent calcein. The intensity of the resulted overall fluorescent signal 

depends on the esterase activity that is directly proportional to the number of viable cells. In turn, the 

dead cells lack the active esterases that prevent a calcein-AM conversion to the fluorescent form. The 

spectral maximum of calcein extinction is at 495 nm, and therefore, this dye can be effectively excited 

by a flow cytometry setup equipped with 488 nm argon laser. The spectral maximum of emission 

corresponds to 515 nm. Generally, calcein is exploited for a variety of studies, including cell adhesion, 

chemotaxis, drug resistance, cell viability, apoptosis, and cytotoxicity. 

Resazurin-based dyes, for example, AlamarBlue, are the type of cytoplasmic fluorochromes, in 

which fluorescent properties are caused by the reaction of chemical reduction. Once trapped by the 

live cell, resazurin reduces by mitochondria and converts to the fluorescent form called resorufin. 

Thus, the AlamarBlue dye has a 560 nm emission wavelength maximum with another band at 590 

nm in the red region. High fluorescence signal allows us to use it in flow cytometry studies for cell 

viability, cytotoxicity and proliferation analysis. However, it should be noted that AlamarBlue 

fluorescence may overlap with the fluorescence regions of other compounds being tested. 

Additionally, it can provide a minor toxic effect on the stained cells. 

Membrane-inserting fluorochromes are represented by lipophilic dyes (dialkylcarbocyanine 

derivatives) that diffuse laterally within the cellular plasma membrane resulting in the entire cell 

staining at dye optimal concentrations. Dye molecules localize at the membrane surface anchoring to 

it by lipophilic “tails”. Carbocyanines have short alkyl tails that attached to the imine nitrogens; thus, 

they can be used both as membrane-potential sensors and as organelle stains for mitochondria and 

the endoplasmic reticulum. Those with longer alkyl tails provide long-term labeling of cells. In 

addition, this type of dye is likely to be less toxic than the previous (nucleic acid and cytoplasm-

binding) as well as it possesses longer retention [117]. 

The main dialkylcarbocyanine dyes are 1,1′-dioctadecyl-3,3,3′,3′- 

tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (DiD), 1,1′-dioctadecyl-3,3,3′,3′-

tetramethylindotricarbocyanine iodide (DiR), 3-octadecyl-2-[3-(3-octadecyl-2(3H)-
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benzoxazolylidene)-1-propenyl]-, perchlorate (DiO,) and 1,1'-dioctadecyl-3,3,3'3'-

tetramethylindocarbocyanine perchlorate (DiI). The fluorescence of these dyes is greatly enhanced 

after incorporation into membranes or binding to lipophilic biomolecules weakly fluorescent in 

water, such as proteins. Along with it, dialkylcarbocyanine derivatives perform high molar extinction 

coefficients, polarity-dependent fluorescence, and short excited-state lifetime (~1 nanosecond). This 

is an advantage for flow cytometry applications because it allows for more excitation/emission cycles 

during flow transit. Additionally, dialkylcarbocyanines are quite photostable and provide a suitable 

imaging tool for flow cytometry study of live cells due to the distinct fluorescence colors. In 

particular, DiO emits green light (abs. 484 nm/em. 501 nm), DiI emits orange light (abs. 549 nm/em. 

565 nm), DiD emits red light (abs. 644 nm/em. 663 nm), and finally, DiR emits deep red light (abs. 748 

nm/em. 780 nm). Among them, DiO can be effectively excited by 488 nm argon laser, and its 

fluorescence spectrum is comparable with that of FITC, whereas the 633 nm He-Ne laser is convenient 

for DiD. TRICT and DiI can be visualized by the same optical filter sets due to their 

excitation/emission wavelengths similarity. Lipophilic carbocyanines as membrane-bound 

counterstains have been appreciated for their use to visualize membrane fusion and cell 

permeabilization, for cell migration and proliferation studies [116,118]. 

3.1.3. Fluorescent Proteins 

One more approach to distinguish cells of interest is to make the cells fluorescent themselves 

without external labeling that might potentially affect their behavior. This is achievable through the 

modern molecular genetic methods allowing for the transfer of fluorescent protein (FP) genes into 

the cells. The FP labeling for bioimaging is one of the most widespread applications of FPs. The 

general strategy for cell labeling is to include the nucleotide sequence of FP responsible for 

fluorescence in the gene tailor the gene body of the labeled cell protein depending on its structure. In 

some cases, a flexible Gly-rich linker between the FP and the labeled protein is used in order to 

prevent potential steric conflicts [119]. The most significant advantage of FPs is the possibility to 

monitor the dynamics of the desired cell population in extremely long-term experiments as all next 

cell generations preserve bright fluorescence, even after multiple divisions. Additionally, FPs are 

suitable to study the mobility of proteins inside a cell [120], for visualization of intracellular structures 

[121], and as markers to highlight a promoter activity in gene engineering and cell biology [122]. 

Furthermore, the FPs that can shift their spectral maximum of emission in time, thereby allowing 

them to determine their expression retrospectively, are of particular interest [123]. The FPs with DNA 

and RNA binding domains are used for real-time labeling and tracking of mRNA [124], DNA, and 

various structures associated with DNA [125-128]. The creation of cell lines expressing a certain 

amount of several fluorescent proteins allows for carrying out multicolor cell labeling with more than 

100 shades. This technique is applied in immunology, neurobiology, and transplantology [121]. 

Currently, several types of FPs are available with different spectral properties determined by 

variations of their amino acid sequences [129] and, therefore, their structure (Figure 4). Generally, 

FPs are classified according to their spectral maximum of emission on the blue (BFPs; 440–470 nm), 

cyan (CFPs; 471–500 nm), green (GFPs; 501–520 nm), yellow (YFPs; 521–550 nm), orange (OFPs; 551–

575 nm), red (RFPs: 576–610 nm), and far-red (FRFPs; 611–660 nm) FPs [130]. However, despite the 

variety of “colors”, the blue, cyan, and yellow emitting FPs are mutated allelic forms of GFP, which 

was first isolated from the jellyfish Aequorea Victoria [131]. GFP contains a fluorophore group that 

includes the sequence of three amino acids: the serine, tyrosine, and glycine located at 65, 66, and 67 

sites. This group forms the imidazoline-5-one heterocyclic nitrogen ring by reacting between carboxyl 

carbon of serine and the amino nitrogen of glycine and subsequent conjugation with tyrosine 

[131,132]. The initial GFP originally isolated from the Aequorea Victoria has major and minor excitation 

peaks at 395 and 475 nm with emission peaks at 503 and 508 nm, respectively, and a quantum yield 

of 0.79 [133]. Additionally, there are several Aequorea protein derivatives with modified properties, 

such as eGFP [134], Superfolder GFP [135], YFP [136], TagCFP [137]. Furthermore, some GFPs were 

obtained from other organisms. These are Amazing green (from stony coral, Galaxeidae) [138], 
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dendGFP (from octocoral Dendronephthya sp.) [139], TurboGFP (from Pontellina plumata Copepoda) 

[140]. 

 

Figure 4. (a) Structural schemes of different chromophore groups (atom color coding: grey—carbon, 

red—oxygen, blue—nitrogen, yellow—sulfur; R/R1/R2 symbolize protein rests); (b) excitation and 

emission spectra of different fluorophores. Reprinted with permission from [141]. Copyright 2009, 

John Wiley and Sons. 

RFPs emitting light in yellow, orange, red, and far-red regions were isolated from some species 

of Anthozoa class. The first RFP was isolated from Discosoma striata and called DsRed [142]. The 

fluorophore of the DsRed protein includes glutamine, tyrosine, and glycine, located at 66, 67, and 68 

sites. The RFP has broad excitation and emission spectra with the corresponding maximums at 558 

and 583 nm [143]. Variations in the amino acid sequence of RFP, for instance, the mutation of lysine 

to methionine at location 83, is shifting its spectral maximum of emission to 602 nm [144]. After 

discovery of DsRed, many derivatives of this protein, such as a DsRed2 [145], DsRed-express [146], 

DsRed-Monomer [147], mCherry [148] were obtained. In addition, RFP may be obtained from other 

sources; for example, HcRed1 was derived from the sea anemone Heteractis crispa [148]. 

Recently, a family of photoactivatable fluorescent proteins (PAFP) attracts much attention due 

to their ability to change the fluorescent properties under treatment by light energy [149,150]. These 

include groups of reversible and irreversible PAFP [130]. Reversible PAFP can change their 

fluorescence properties through conversable alterations of their chromophore conformation 

[151,152]. Proteins of this group were obtained from the corals of the Pectiniidae family [153]. A group 

of irreversible PAFP is divided into two classes depending on the switching mechanism. The first one 

is oxidative decarboxylation that is the carboxylate group that forms a weakly fluorescent neutral 

form of the chromophore is removed under the irradiation [154]. Another possible switching 

mechanism is the β-elimination of the peptide bond between alpha nitrogen and alpha carbon of two 

amino acids participating in the formation of two different conformations of the fluorophore [130]. 

3.2. Labeling by Magnetic Beads 

The application of the external magnetic field is another reliable way of highly selective cell 

manipulation by the external force [155]. This is achievable since biological materials have a very low 

magnetic susceptibility, and thus, the cells labeled with magnetic particles or that having the intrinsic 

magnetic properties can be effectively isolated without the interference with the surrounding 

medium and objects [156]. Therefore, the essential prerequisite of the magnetic sorting is a high 
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magnetic response of the isolated objects (or its absence in case of the negative sorting). If the cells of 

interest do not possess the high magnetic susceptibility itself (for instance, as the red blood cells), one 

should consider to label them with an appropriate magnetic tag. 

Generally, depending on the magnetic susceptibility, bulk materials can be classified as 

diamagnetics, paramagnetics, which have no magnetic order, and magnetically ordered materials 

like ferromagnetics [157,158]. The diamagnetics do not have magnetic dipoles in the absence of an 

external magnetic field due to the closed-shell electronic structure of the atoms [159]. These materials 

possess a very low magnetic susceptibility and a negative magnetization response that means the 

material magnetization is directed oppositely to the applied magnetic field. Ordinary, all biological 

and organic materials exhibit diamagnetic behavior. Conversely, the paramagnetic materials contain 

unpaired electrons in their atom-shell and therefore have randomly oriented magnetic dipoles that 

can be aligned with magnetic field lines [159]. This results in a positive magnetization response that 

means their magnetization vector is collinear to that of the applied magnetic field. However, the 

magnitude of their magnetic susceptibility is still very low [160]. Both paramagnetics and 

diamagnetics demonstrate the absence of spontaneous magnetization without an external magnetic 

field. On the other hand, ferromagnetic materials reveal intrinsic magnetization induced by the 

electronic shell structure of their atoms and the crystal lattice type. In these materials, the short-

distance exchange coupling between the electrons prevails over the thermal disorientation that 

results in the collective interaction of their magnetic moments (spins) leading to the long-range 

magnetic ordering of the entire material volume at the macroscale. As a result, the ferromagnetics 

have a very high magnetic susceptibility and a positive magnetization response [160]. However, the 

intrinsic bulk magnetization substantially increases the magnetostatic energy of the material. In order 

to minimize the overall internal energy, the magnetic domains are formed. The domains are groups 

of atoms where the collective magnetization vector is oriented along the easy magnetization axis and 

specifically polarized relative to the magnetization vector of the other domains. The magnetic 

domains in the bulk ferromagnetics along with a magnetic crystalline anisotropy are the main origins 

of the magnetic hysteresis that can be interpreted as a delay in magnetization response when the 

magnetic field is applied. The delay is related to the additional consumption of magnetic field energy 

for the movement of domain walls and overcoming the anisotropy barrier to align the magnetization 

vector along the magnetic field direction. However, the formation of magnetic domains is restricted 

by the material volume. To put in other words, there is a particular size threshold for a ferromagnetic 

particle, below which to support a single-domain volume magnetization is more energetically 

favorable rather than to form the domain walls [161]. This is called a single-domain state. With the 

further reduction of the single-domain particle size, the magnetic anisotropy energy of the particle 

becomes comparable with the energy of thermal magnetization fluctuations. Thus, under a certain 

ambient temperature, the magnetization vector can quickly flip over the magnetic anisotropy barrier 

separating two equivalent easy directions of magnetization and change its orientation to the opposite 

one [161]. That results in zero time-averaged or particle ensemble-averaged magnetization in the 

absence of the applied magnetic field. Controversially, when the magnetic field is turned on, the 

single-domain particle exhibits a typical paramagnetic behavior. It shows the positive magnetization 

response without magnetic hysteresis along with the tremendous magnetic susceptibility inherent to 

ferromagnetics. In this case, the particle is named superparamagnetic. The single-domain transition 

threshold varies for various materials but typically is about 1–50 nm. This perfectly suits for 

conjugation with the antibodies and immuno-responsive cell labeling. Thus, the combination of these 

properties makes the single-domain superparamagnetic nanoparticles the best and reasonable choice 

for the tags for magnetic cell manipulations. 

Generally, there are three main approaches to cell labeling for magnetic separation. The first one 

is the direct labeling of cells of interest by conjugation of the magnetic particle with the corresponding 

antibody [162]. Another possible option for magnetically driven cell sorting is related to the different 

internal absorption capacities of various cells (endocytosis) [163]. This allows for effective separation 

of monocytes with low absorption capacity from macrophages with high absorption capacity. To 

some extent, a label-free magnetic separation may be considered as a third labeling approach. The 
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label-free separation is effective to sort the cells with a natural magnetic response from the non-

magnetic ones [164]. 

3.3. Labeling by Negative Acoustic Contrast Particles 

Cell sorting can be performed as well by standing acoustic waves, produced inside microfluidic 

devices. Standing acoustic wave is an array of alternate nodes and antinodes of surrounding media 

pressure, formed in resonance conditions [165]. Depending on the object’s density and 

compressibility, cells are distributed in the pressure node and antinode regions. In the isotonic 

solutions, such as a physiological solution and phosphate-buffered saline, cells typically exhibit 

positive acoustic contrast, which leads to their distribution in pressure nodes (Figure 5a) [166,167]. 

Some polymeric materials, such as elastomers, oppositely have negative acoustic contrast [168]. This 

means that objects made from elastomers in the standing wave conditions are placed in pressure 

antinodes (Figure 5a). Therefore, bio-functionalized particles made from these polymeric compounds 

(negative acoustic contrast particles—NACPs), can be used for cell sorting by the displacement of 

positive acoustic contrast cells linked with particles in pressure antinodes (Figure 5b) [166,167]. 

Russom’s group in 2017 had demonstrated the possibility of colon carcinoma cell separation by 

microfluidic-based microBubble-Activated Acoustic Cell Sorting (BAACS) method [169]. 

 

Figure 5. Distribution of: (a) elastomeric particles and cells and (b) cells binded with elastomeric 

particles in nodes and antinodes of the acoustic standing wave. Reprinted with permission from 

[166]. Copyright 2014, American Chemical Society. 

4. The Fluidic System for Sample Preparation, Flow Cytometry Measurement, and Cell Sorting 

4.1. Sample Enrichment by Target Cells 

Diagnostics of diseases by the detection of an embolus in the whole blood still is a difficult task. 

One of the major challenges is the rarity of untypical objects, which are prognostic or diagnostic 

factors for some diseases. For example, the presence of circulating tumor cells (CTCs) is a prognostic 

factor for a number of cancers [10-16]. However, the detection frequency of these objects in relatively 

small blood volume is extremely low. For instance, the number of CTCs may vary from 0 to 23.6 cells 

per 7.5 mL of whole blood sample depending on the cancer type, stage, medication, and operative 

treatment [170]. Thus, the enrichment of the analyzed blood volume by target cells is a necessary 

prerequisite for reliable diagnostics. There are a number of methods, allowing for sample enrichment, 

such as red blood cell lysis, density gradient centrifugation, and cell filtration. 

4.1.1. Red Blood Cell Lysis 
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The red blood cell (RBC) lysis method is one of the commonly used approaches for sample 

enrichment by target cells [171,172]. This method allows for effective elimination of RBCs, the 

concentration of which in the blood is 4.5 × 106 cells/µL, thus significantly simplify observing of rear 

objects in a blood sample. The enrichment is based on soft osmotic lysis of RBC by mixing cells with 

cold water [173] or specialized RBC lysis buffer [171]. The lysis is performed in soft conditions to 

prevent significant damage to target cells and is timely stopped by adjusting the salt concentration. 

However, this method has some limitations. For example, it eliminates only RBCs and does not allow 

to exclude platelets from the sample. With this regard, the RBC lysis method is often used in 

combination with other methods to receive the appropriate results. 

4.1.2. Density Gradient Centrifugation 

Another way is the sample fractionation by the density gradient centrifugation method. This 

method is based on the distribution of objects with different density in density gradient media. This 

method is widely used to separate macromolecules, viruses, cell organelles, and different cell 

subpopulations [174]. There are a number of commercial kits based on organic, inorganic 

compounds, and nanoscale silica particles. For example, Ficoll™ [175], Histopaque® [176], 

OncoQuick® [177], Percoll® [178] are successfully used for the isolation of mononuclear and cancer 

cells from a whole blood sample. The principle of the isolation is shown in Figure 6 as in the case of 

the OncoQuick separation kit. Additionally, this method is used to select bacterial cells from the 

sample for bacteremia diagnostics [179]. The employment of several media with different density 

allows us to fractionate the blood sample accurately and prevent fraction contamination by RBC and 

platelets. 

 

Figure 6. Cell separation by gradient centrifugation method with OncoQuick separation kit. 

Reprinted with permission from [180]. Copyright 2007, Elsevier. 

4.1.3. Cell Filtration 

Cell filtration is applicable if there is a significant distinction in the size of the target and bulk 

cells. A great amount of data shows that CTCs are typically larger than the rest of the blood cells that 

allows for employing filtration for sample enrichment (Figure 7) [180,181]. The small size emboli, 

such as bacteria, also can be selected by filtration for bacteremia diagnostics [182]. To perform cell 

filtration, microfluidic devices are equipped with integrated microfilter [183], membrane microfilter 

[184] along with other variations of devices [182,185] based on this method are used. 
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Figure 7. SEM images of (a) commercial membrane filter; (b) microfabricated parylene membrane 

filter; (c) parylenemembrane filter with cells captured without SEM fixation treatment, and (d) 

parylene membrane filter with cells captured after SEM fixation procedure. Reprinted with 

permission from [184]. Copyright 2007, Elsevier. 

4.2. Sample Focusing 

To carry out flow cytometry measurements, the cells must be aligned in the focal plane of the 

optical system of the cytometer. This can be done by hydrodynamic or acoustic focusing. 

Additionally, focusing prevents capillary blockages. Both acoustic and hydrodynamic focusing is 

used in commercial flow cytometers (Figure 8), although the latter one is more widespread. 

Moreover, the flow cytometry systems with visualization option (e.g., Amnis® ImageStream® Mark 

II system) also use hydrodynamic focusing for fluorescent and brightfield imaging. The laser 

tweezers technique can be used to manipulate single objects in a flowing stream as well, yet it is not 

used for focusing in flow cytometry setups. 

 

Figure 8. (a) Hydrodynamic and (b) acoustic focusing in a microfluidic channel. 

4.2.1. Hydrodynamic Focusing 
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For the first time, hydrodynamic focusing was described by Reynolds in 1883 [31]. It implicates 

the codirectional movement of two liquid streams, one of which is the sample suspension, and the 

second one is sheath fluid. The velocity or density distinctions between the sample suspension and 

sheath fluids results in the formation of a two-layer stable flow and alignment of the objects in the 

middle of the channel [186]. Different configurations of microfluidic devices are used to perform 

hydrodynamic focusing, however, flow cytometry systems typically use configuration based on the 

coaxial laminar flow [31] (Figure 8a). 

4.2.2. Acoustic Focusing 

The acoustic focusing is based on the effect of acoustic pressure described by Kundt and 

Lehmann in 1874. However, only in 2008, the feasibility of acoustic focusing in flow cytometry was 

described by Kaduchak et al. [187] and a year later, for the first time, acoustic focusing was introduced 

in flow cytometry setup Attune® (ThermoFisher Scientific), [188]. Acoustic focusing is based on the 

redistribution of objects with different density in the nodes and antinodes of the standing acoustic 

wave (Figure 8b). The method is attractive due to its cost efficiency and applicability for biological 

objects. To perform acoustic focusing, the length of the acoustic wave should be equal width of 

microfluidic channel divided by a natural number. Currently, the multinode acoustic focusing is 

developed for parallel flow cytometry devices that allows for improving throughput comparing to 

conventional flow cytometers [189]. 

4.3. Sorting 

Isolation of specific cell types from bulk heterogeneous biological samples (i.e., blood) is a first 

and necessary step for many biomedical applications. Effective cell sorting significantly improves the 

quality of the sample analysis. Conventional cell sorting approaches implies either the separation of 

antibody conjugated cells or label-free sorting. Separation of antibody conjugated cells generally 

exploits specific cell labeling with magnetic beads or with fluorescent tags. The first one allows us to 

sort cells by a magnetic field while the second one assists in fluorescence-activated cell sorting 

(FACS). On the other hand, label-free sorting allows for cell separation with respect to their size, 

shape, and morphology through filtration, centrifugation, or sedimentation. However, modern 

tendencies require fast and automated techniques to analyze a large number of cells. In this 

perspective, microfluidic methods of cell sorting are expected to provide one with more sophisticated 

solutions to meet the modern demands in a rapid and reliable analysis. 

There are several features of microfluidic systems that are relevant to cell sorting applications 

(Figure 9). First, narrow microscale channels tend to have a laminar liquid flow that aligns the cells 

into well-ordered streamlines. Furthermore, microchannels have a flow speed gradient over the 

cross-section area that allows for employing an additional mechanism of hydrodynamic separation 

that is not possible on a macro scale. The small size of microfluidic chips enables one to apply locally 

strong gradients of magnetic, electric, and acoustic fields as well as to combine multiple chips in a 

single sorting device. 

To isolate a particular cell from the carrying fluid flow one should apply a force to this cell. 

Depending on the applied force nature, several general types of separation mechanisms in 

microsystems are available: mechanical separation by the direct contact with the structure of the 

separation system based on the cell size, shape, and morphology; employment of external field 

gradient (e.g., magnetic, electric, and acoustic field); separation by hydrodynamic force via 

introduction of secondary fluid flows. On the other hand, with respect to cell modification 

approaches, one can outline the separation of cells conjugated with fluorescent labels, cells 

conjugated with beads, and a label-free separation. Additionally, label-free separation methods can 

be divided into active and passive. 
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Figure 9. Various types of separation microfluidic mechanisms: (a) electrokinetic; (b) magnetic; and 

(c) acoustic separation. 

4.3.1. Active Separation Methods 

Electrokinetic Cell Separation 

Electrokinetic cell separation exploits various phenomena that may be activated by an applied 

electric field (Figure 9a). Typically, electrophoresis, dielectrophoresis, and electroosmosis are 

employed. Electrophoresis is a movement of a charged particle in a uniform electric field under the 

Coulomb force. Alternatively, electroosmosis is a movement of a polarizable medium in the electric 

field due to the collective action of the Coulomb force on its molecules (Figure 10) [190]. This may be 

used to separate several fluid streams. 

 

Figure 10. Schematic of conventional electroosmosis in a microchannel. Reprinted with permission 

from [190]. Copyright 2017, John Wiley and Sons. 

Finally, the application of the non-uniform electric field causes the movement of cells due to 

their polarization (Figure 11), which is called dielectrophoresis (DEP) [191]. If the cells are more 

polarizable then the medium, they will move to the regions with the highest electric field strength 

(positive DEP—pDEP) and vice versa, in case the cells are less polarizable, they will move to the 

regions with the lowest electric field strength (negative DEP–nDEP). 
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Figure 11. Scheme of the particle polarization process and dielectrophoretic response: left—positive 

DEP, right—negative DEP. Reprinted with permission from [191]. Copyright 2018, AIP Publishing. 

One of the first techniques employing an electric field for cell separation was FACS [26]. At its 

simplest, the cells of interest are labeled with a fluorescent tag via a complementary antibody. 

Afterward, the FACS device analyzes the fluorescent signal from the cell streamline. Additionally, 

FACS devices can analyze the light side- and forward scattered by the cells in order to get the 

information on their morphology and size. The conventional FACS devices are equipped with a 

vibration stream channel to form the liquid droplets containing the cells at the outlet and a ring 

charger to charge the droplets with the cells of interest if the fluorescence was detected. The charged 

droplets are isolated in a separate streamline by the oppositely charged electrode and collected [192]. 

However, the necessity to form water droplets is the significant drawback of conventional FACS 

systems that was successfully overcome by the introduction of microfluidic devices. 

At resent years, DEP and its modifications have become the most commonly used method of 

electrokinetic cell separation in microfluidic platforms [193]. Generally, the DEP force acting on the 

cell is determined by the cell volume and dielectric properties along with the permittivity of the 

medium and the strength of the applied field [194]. Thus, the essential benefit of DEP is the possibility 

of both label-free and immunoaffinity cell isolation depending on their size and dielectric properties 

regardless of the initial cell surface charge. For instance, in the last few years, various DEP setups 

were shown to be effective for the isolation of circulating tumor cells (CTCs), which are known to 

have a neutral charge[195] from the healthy blood cells. Bulfoni et al. demonstrated DEP isolation of 

epithelial-like and mesenchymal-like breast tumor cells from the blood samples obtained from the 

clinical patients with a commercially available DEPArray system [196]. Kim et al. used DEP for 

effective isolation of separate cancer cells with a very high efficiency followed by an intracellular 

enzymatic assay at the single-cell level [197]. Later, the same group proposed a microfluidic DEP 

setup that allows for precise localization of rare CTCs in the desired area along with a reduction of 

the sample volume for further molecular analysis [198]. Alazzam et al. fabricated the DEP device for 

continuous separation of CTCs, from a heterogeneous mixture of cancer and healthy blood cells 

employing one-sidewall displacement of the electrodes in the microchannel [199]. The resulted non-

uniform electric field acted on the MDA-MB-231 human breast cancer cells with pDEP force whereas 

the nDEP force acted on the healthy cells leading to almost 100% sorting efficiency (Figure 12a). Li et 

al. demonstrated continuous high-throughput selective capture of CTCs by DEP at arrays of wireless 

bipolar electrodes [200]. Noticeable feature of this setup is an easy increase of separation area that 

can significantly improve the volume rate of processing samples. 
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Figure 12. (a) Example of dielectrophoretic cell separation in the microfluidic device. Reprinted with 

permission from [199]. Copyright 2017, John Wiley and Sons. (b) Schematic of contactless 

dielectrophoretic (cDEP) device with the electromagnetic forces acting in the microfluidic channel. 

Reprinted with permission from [201]. Copyright 2010, the Royal Society of Chemistry. 

Another important DEP application is the isolation of stem cells. It is currently attracting much 

attention due to its high potential in clinical applications and regenerative medicine. Sun et al. 

reported on microfluidic DEP device with self-assembled ionic liquid electrodes for continuous cell 

separation [202]. The device was successfully employed for the separation of human adipose-derived 

stem cells (ADSC) from MDA-MB-231 human breast cancer cells via pDEP with an accuracy of about 

85%. Yoshioka et al. employed pDEP for the isolation of human bone marrow-derived mesenchymal 

stem cells (UE7T-13) [203]. Moreover, the important result of their study was that pDEP effects on 

UE7T-13 cell gene expression of the surface differentiation marker due to mechanical deformations 

caused by separation. Additionally, recent studies demonstrated that DEP could be employed for the 

separation of heterogeneous populations of stem cells with respect to their biological fate. For 

instance, neural stem and progenitor cell (NSPCs) heterogeneous populations contain both neuron 

and astrocyte progenitors that give rise to neurons and astrocytes respectively. The separation of 

neuron and astrocyte progenitors is crucial to improve the purity of transplanted stem cells in clinical 

therapy. Adams et al. demonstrated that these subpopulations could be effectively separated by the 

alternate current (AC) DEP due to the different electrophysiological properties of the cell membranes 

(whole-cell membrane capacitance) revealing at a certain stage of the cell differentiation [204]. 

Previously, El-Badawy et al. examined the electrophysiological properties of adipose stem cells 

(ASCs) and bone-marrow mesenchymal stromal cells (BM-MSCs) with AC DEP [205]. They found 

out the differences in cell traveling and rotation speed that potentially may be exploited for cell 

separation. 

The realization of conventional DEP implies a fabrication of metal electrodes in the microfluidic 

channel that is potentially harmful to the contacting cells. This leads to the development of DEP 

modifications to avoid the direct contact of the analyzed cells with the metal electrode surface. For 

instance, in insulator-based DEP (iDEP), the DEP force originates due to the polarization of dielectric 

structures placed into the microfluidic channel by applying an external electric field [206]. The metal 

electrodes are typically placed in the inlet and outlet ports of the device and do not contact with the 

microchannel interior. First, iDEP was shown to be effective in the separation of live and dead 

bacteria E.coli [207] and later on the separation of different types of live bacteria [208]. As a more 

recent example, Lewpiriyawong et al. demonstrated the iDEP setup run by the DC-biased AC electric 

field [209]. The AC controls iDEP force for the cell isolation whereas the DC field generates 

electroosmotic motion of the liquid through the channel. The combination of AC and DC electric 

fields was shown to be effective for the cell capturing at the liquid flow rate up 5 mL/min. 

Further development of DEP approaches reveals the contactless dielectrophoresis (cDEP) 

technique. The main idea of cDEP is an exploiting of microchannels filled with high-conductive 

liquids as so-called liquid electrodes (see Figure 12b). Generally, the liquid electrodes are separated 

from the main sample-carrying microchannel with an insulating membrane minimizing the contact 

between the electrodes and analyzing cells [210]. This results in a significant reduction of 

contamination of biologicals samples, electro-induced heating, electrochemical effects, and bubbles 

formation. The inhomogeneity of the intrinsic electric field required for DEP separation is achieved 



Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 24 of 60 

 

through the corresponding geometry of the side liquid-electrode channels and placing of the 

dielectric elements inside the sample-channel. Shafiee et al. first reported on a successful selective 

separation of live human leukemia cells from dead ones by cDEP basing on their dielectric properties 

[201]. Later, Henslee et al. first demonstrated the ability of cDEP isolation of the target MDA-MB-231 

human breast cancer cells from the heterogeneous cell mixture [211]. The same group employed cDEP 

to analyze the area-specific membrane capacitance of red blood cells, macrophages, breast cancer, 

and leukemia cells [212], which is an important prerequisite for the AC electrokinetic separation. 

More recently, Hanson and Vargis described the cDEP setup combined with Raman spectrometer for 

cell isolation and identification on a single device [213]. Rahmani et al. proposed a flow microfluidic 

cDEP device for continuous bioparticles enrichment employing platinum electrodes separated from 

the sample-channel with PDMS layer [214]. The employment of metal electrodes instead of liquid 

ones allows for effective separation with much lower operating voltage due to higher conductivity of 

the metal compared to the ionic liquid. 

However, the production of micro-scale electrodes for microfluidic systems remains quite 

challenging and requires delicate and complex fabrication processes. To overcome this issue, an 

optically induced DEP (oDEP) approach was introduced. In oDEP devices, a photoconductive layer 

on a plate electrode is used to induce the non-uniform electric field inside the microchannel. When 

the photoconductive layer is illuminated with light passed through a defined pattern, the light-

exposed areas become much conductive than the dark areas and therefore form “virtual electrodes” 

inducing the non-uniform electric field [215]. This allows for avoiding the fabrication of patterned 

microelectrode structures and makes the separation more adjustable. Chiou et al. first demonstrated 

the potential of oDEP to be exploited for cell manipulation with the technique permitting a high-

resolution patterning of electric fields on the photoconductive surface [216]. The described device 

enabled a simultaneous manipulation of 15,000 particle traps with an optical intensity 105 times less 

than that of optical tweezers. Later on, Hwang et al. described the oDEP based technique to 

discriminate normal and starved abnormal oocytes [217]. In further oDEP development, Huang et al. 

first characterized the operating conditions for the manipulation of CTCs of prostate cancer (PC-3) 

and human oral cancer (OEC-M1) and leukocytes with a minor cell aggregation [218]. More recently, 

Chiu et al. described the oDEP microfluidic system using T-shape microchannel for CTCs isolation 

and operating with a light bar to manipulate with leukocytes and light circles to capture and isolate 

PC-3 cancer cells [219]. Further, the same group proposed four-the cascade oDEP CTCs isolation 

scheme employed after the conventional CTCs manipulation process [220]. This allows for applying 

up to four isolation conditions simultaneously and implementing a higher-resolution separation. As 

the most recent example, these authors proposed the microfluidic oDEP device for high-purity 

isolation of CTC clusters based on their size and preserving clusters integrity for further analysis 

[221]. Furthermore, oDEP was shown as a versatile tool to determine the cell electrophysiological 

parameters. They are not only relevant biomarkers to characterize cellular phenotype and state but 

also the important prerequisites for cell sorting. Liang et al. described a theoretical background to 

figure out the cell membrane capacitance and conductance with a shell-core polarization model [222]. 

Afterward, they studied the response of four different cell types to positive and negative oDEP forces 

with a motion-tracking technique in liquid media of various conductivity. This non-invasive 

approach is advantageous to get statistically important data from the individual cells to contribute a 

number of biomedical applications including stem cell differentiation. 

Additionally, DEP may be successfully combined with other separation approaches like inertial 

force microfluidic separation [223], fluid flow fractionation [224], and field-modulated electroosmotic 

flow separation [225]. 

As a final remark of this section, we refer to some recent reviews devoted to electrokinetic cell 

manipulations in microfluidic devices. Adekanmbi and Srivastava have given a deep insight review 

of DEP manipulations on diseased cells [226]. This includes an overview of DEP techniques and 

devices, the theoretical background of DEP cell separation, and DEP applications for isolation of 

various types of cancer cells along with malaria, anthrax, and dengue. More recently, Chan et al. have 

reviewed microfluidic platforms employing DEP with respect to a particular cancer cell type [191]. 
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Furthermore, this review also introduces the basics of DEP theory and CTCs formation. Menachery 

et al. have reviewed microfluidic label-free methods for stem cell isolation including those based on 

electrical cell characteristics [227]. Li and Anand have reviewed approaches of dielectrophoretic cell 

manipulation combined with a single cell analysis including both on-chip and off-chip realizations 

[228]. Nuchtavorn et al. have described a different separation approaches and devices employed for 

microchip electrophoretic manipulations with various biomedical analytes like drugs, nucleic and 

amino acids, peptides, proteins, antibodies, antigens, cells, and cell components [229]. 

Magnetic Cell Separation 

The application of the external magnetic field is one more reliable way to induce the forces 

responsible for highly selective cell manipulations. This is achievable since biological materials have 

a very low magnetic susceptibility, and thus, the cells labeled with magnetic particles or having their 

natural magnetic response can be effectively isolated without the interference of the surrounding 

medium (see Figure 9b) [156]. Therefore, the essential prerequisite of the magnetic sorting is a high 

magnetic response of the objects to be isolated (or its absence in case of the negative sorting). If the 

cells of interest do not possess the high magnetic susceptibility itself (for instance, as the red blood 

cells), one should consider to label them with an appropriate magnetic tag. 

Since superparamagnetic nanoparticles have a natural magnetic polarization, a non-uniform 

magnetic field (or a magnetic field gradient) is required to move them by magnetophoretic force 

analogous to the dielectrophoretic separation. Thus, all magnetic separation methods employ the 

structures creating local inhomogeneity of the magnetic field acting as trapping or deflecting sites for 

the cells labeled with magnetic particles. This was successfully realized by Miltenyi et al., who first 

proposed in 1990 a parallel cell separation technique for routine use in laboratory currently known 

as a conventional magnetic-activated cell separation or MACS [230]. They used a separation column 

filled with ferromagnetic steel wool placed between the poles of a permanent magnet. The steel wool 

fibers disrupt the uniform magnetic field between the magnet poles whereas the dense wool packing 

reduced the distance between the cells and the magnetic field source. These two factors induced a 

high local magnetophoretic force that effectively captured the labeled cells. The cells of interest were 

labeled with the fluorescent tag and superparamagnetic nanoparticles by streptavidin-biotin 

coupling. 

Zborowski’s group has suggested an alternative way for continuous flow magnetic separation 

developing a quadrupole magnetic flow sorting approach (QMS) [226,227]. Generally, QMS exploits 

an annular flow channel with a spherical section placed in the radial gradient of the quadrupole 

magnetic field oriented from the core to the walls of the channel (Figure 13). 

 

Figure 13. (a) Cross-sectional field map of the magnetic field of a quadrupole magnetic flow sorting 

(QMS) magent; (b) axial section diagram of the separation column contained within the quadrupole 

magnet assembly. Reprinted with permission from [231]. Copyright 2018, John Wiley and Sons. 
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The main benefit of the quadrupole field is the fact that magnetophoretic force acting on the 

particle is finely defined by the particle position over the channel cross-section. The QMS separation 

concept is based on the cell magnetophoretic mobility that is the velocity of the cell per unit of the 

magnetic force. Passing through the channel, the cells labeled with magnetic nanoparticles are 

deflected to the channel walls, whereas less mobile unlabeled cells remain near the core rod forming 

two outflows separated by a flow splitter. The inlet flow of the initial cell mixture is also separated 

from the channel wall by the flow splitter to avoid the non-labeled cells pass near the magnet and 

come to the positive outflow with the magnetically isolated cells. To date, QMS has been successfully 

employed for positive selection of magnetically labeled CD34+ blood progenitor cells from blood 

circulation [232]; depletion of immunomagnetic labeled T-cells for clinical allogeneic bone marrow 

transplants [233]; separation of magnetically labeled porcine islets of Langerhans for further 

transplantation in diabetes treatment [234,235]; and isolation of intrinsically magnetic, deoxygenated 

RBCs from the whole blood [231]. 

However, modern tendencies in magnetic cell separation are mostly related to the development 

of microfluidic sorting systems. The employment of the microfluidics allows for the relatively simple 

generation of local high gradient magnetic fields in the desired area of the microchip and preparation 

of microfluidic channels of various shape and geometry by well-established microfabrication 

techniques. Additionally, microfluidic systems significantly reduce the required volume of the 

analyzed sample. Novel microfluidic platforms for magnetic cell separation are constantly 

developed, numerically simulated, and tested for continuous-flow separation of magnetic beads (for 

instance, [236-240]). Furthermore, these systems were shown to be effective for the isolation of 

magnetically labeled cells including rare circulating cells from blood samples. As a recent example, 

Shi et al. successfully isolated HCT-116 human colorectal cancer CTCs selectively labeled with 

magnetic nanoparticles from the whole blood samples by a wavy-herringbone structured 

microfluidic device with a capture efficiency of 81%–95% [241]. The specific wave structure of the 

microchannels creates turbulence in the liquid flow increasing the colliding probability with the 

channel walls and improving the effectiveness of the cells capturing. Later, Zhang et al. employed 

the microfluidic device with a twin-layered herringbone structure for immunomagnetic isolation of 

Hep3B CTCs from blood samples with a capture efficiency of about 90% at the clinical relevant tumor 

cell density in blood [242]. The specific structure of the microfluidic channel was also exploited by 

Jung et al.[243] They combined magnetic separation device with slanted ridge array creating 

advective rotational flows delivering magnetically labeled cells precisely to the area where high 

magnetic forces are formed. This enables us to separate the cells dispersed in whole blood at flow 

rates up to 0.6 mL/h with an efficiency of about 90%. Shen and Park described a microfluidic magnetic 

separation system that can separate subpopulations of macrophage Raw 264.7 cells depending on 

their absorption capacity [163]. Xu et al. developed a microfluidic setup for high purity isolation of 

CTCs from the whole blood [244]. They demonstrated effective immunomagnetic labeling of MCF-7 

human breast cancer, SGC 7901 human gastric cancer, Hela human cervical cancer, and PC3 human 

prostate cancer cell lines with magnetic composite particles along with isolation from RBCs and 

leucocytes. Droz et al. demonstrated an effective approach for isolation of the cells expressing 

proteins of interest employing automated microfluidic setup [245]. This approach deals with some 

issues related to the realization of automated cell sorting like homogeneous dispersion of magnetic 

nanoparticles in the microchamber for effective cell labeling, various rates of the protein secretion by 

the cells, and effective isolation of monoclonal cell populations. Lee et al. successfully isolated CTCs 

from the blood samples of cancer patients by one-step negative enrichment of white blood cells 

labeled with magnetic nanoparticles [246]. They exploit a microfluidic multi-vortex mixing module 

in the microfluidic setup for effective white blood cell labeling. An analogous approach was used by 

Bhagwat et al. to pre-enrich rare circulating cells from the whole blood by in-line magnetic particle-

based leukocyte depletion prior to flow cytometry analysis [247]. Huang et al. designed a microfluidic 

microwell device that allows for immunomagnetic single-cell trapping for further cellular analysis at 

a single-cell level [238]. Green et al. described a microfluidic magnetic sorting device that allows for 

the effective capturing of CTCs and dividing them into subpopulations according to levels of protein 
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surface expression [248]. The analysis of subpopulations of CTCs that exhibit different biochemical 

and functional phenotypes may be useful to figure out if the CTCs acquire the metastatic potential 

by undergoing the epithelial-to-mesenchymal transition (EMT). 

An important aspect of magnetic cell sorting is the isolation of the cells with an inherent 

magnetic moment. There are several reasons to exploit the label-free separation of intrinsically 

magnetic cells rather than utilize labeling approaches. One of them is purifying biological samples 

from an excess of RBCs for diagnostic or therapeutic applications. For instance, isolation of RBCs 

form stem cells is desirable at bone marrow transplantation [249]. Additionally, it is known that blood 

transfusion may be associated with increased side effects due to the damage of RBCs after long 

storage [250,251]. Another critical issue is the isolation of RBCs for further analysis. Therefore, it is 

highly desirable to avoid additional contamination of the cells with antibody-conjugated magnetic 

particles. Melville et al. and Owen performed the first experiments devoted to RBCs magnetic 

isolation from the whole blood confirming their paramagnetic properties and proving the concept of 

label-free RBCs separation from the whole blood by applying high gradient magnetic field [252,253]. 

Takayasu et al. described continuous flow magnetic separation of RBCs from the whole venous blood 

in a glass tube [254]. Later on, magnetic separation of RBCs was redesigned with respect to 

microfluidic techniques (for instance, Han and Frazier [255] and Qu et al. [256]). As a more recent 

example, Myklatun et al. developed a setup for microfluidic sorting of intrinsically magnetic cells 

under visual control [164]. The setup was shown to be effective for contamination-free isolation of 

intrinsically magnetic cells (magnetotactic bacteria) with the possibility of automated quantification 

of the separated cells. Zborowski and Chalmers with co-workers also have studied the separation of 

intrinsically magnetic cells. They figured out the difference in magnetophoretic mobility of 

oxygenated and reduced RBCs [257], developed a theoretical model of microfluidic RBCs sorting 

[258] that was used as a basis for QMS device for continuous RBCs sorting [231]. 

Furthermore, the development of continuous flow magnetic isolation of infected RBCs is of great 

importance with respect to malaria treatment. Malaria is an infectious disease caused by Plasmodium 

parasites affecting host RBCs. During the life cycle, the parasites metabolize most of the cellular 

hemoglobin to hemozoin exhibiting paramagnetic properties in contrast to oxygenated hemoglobin, 

which is diamagnetic [259]. Moreover, recent research reported on the superparamagnetic behavior 

of hemozoin nanocrystals [260]. This difference in the magnetic response of healthy and parasite 

affected RBCs can be employed for magnetic separation. Thus, a decent number of separation 

approaches were developed. Paul et al. first reported on the batch separation of malaria-infected 

erythrocytes from whole blood using a high-gradient magnetic separation [261]. Moore et al. studied 

the magnetophoretic mobility of infected RBCs and demonstrated that their magnetic properties 

change with respect to the development stage of the parasite [262]. Further, Nam et al. developed a 

microfluidic device for continuous-flow separation of malaria-infected RBCs in various stages of 

development [263]. They reported on up to 99% efficiency of the separation of the late-stage infected 

cells and the possibility to isolate early-stage developed parasite-infected cells. As for more recent 

results, a number of works are performed [264-266], devoted to numerical simulation of microfluidic 

devices to magnetically isolate malaria-infected RBCs. However, a possible way to make magnetic 

separation to meet the demands in clinical scale blood purifying system is a building up of a new 

efficient high-throughput mesoscale separation devices as reported by Martin et al. [267] They 

described a continuous flow high-gradient magnetic separation device for isolation of infected 

erythrocytes from the whole blood without a need for shear flow or blood dilution. In this design, 

the blood can be taken directly from the patients and afterward returned upon purification. This 

system is reported to be about 380 times more efficient comparing microfluidic systems. To complete 

this passage, we refer to a recent review of Kasetsirikul et al. covering malaria diagnostic methods 

along with techniques for malaria detection and infected RBCs separation including DEP and 

magnetophoretic approaches [268]. 

Despite the current popularity of microfluidic approaches for magnetic cell separation, these 

methods have a considerable drawback that is a small volume of processing blood samples and thus 

the separation of rare circulating objects (e.g., CTCs). Although microfluidic isolation can almost 
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completely remove the target objects (with efficiency about 90%–95%), a typical sample volume for 

microfluidic investigation is about 5–10 mL, and this can only contain a tiny amount of rare blood 

biomarkers that is insufficient for adequate analysis and reliable diagnosing [269]. Therefore, 

alternative approaches for fast processing of large blood volumes including in vivo analysis, are being 

developed. Vermesh et al. described an immunomagnetic cell enrichment method for the isolation of 

CTCs in vivo [270]. This implies the immunomagnetic CTCs labeling with antibody-conjugated 

magnetic beads injected directly to the bloodstream and capturing of the labeled cells with a flexible 

magnetic wire that was inserted and removed through a standard intravenous catheter. Although 

the capturing efficiency of the system in a model experiment in vivo was shown to be only 8%, it was 

able to capture from 2500 to 10,000 cells per minute and these are 10 to 80 times more efficient 

comparing to microfluidic platforms. 

Finally, we refer to some recent reviews covering various issues related to magnetic cell sorting. 

Plouffe et al. have reviewed the application of magnetic particles for cell isolation [157]. This includes 

an overview of biomedical applications utilizing magnetic separation and various cell separation 

approaches; a theoretical background of magnetic phenomena and nanoparticle properties that can 

be employed for the cell separation, including synthesis methods of appropriate magnetic particles; 

and examples of the setups for manipulation with the cells conjugated with magnetic nanoparticles. 

Huang et al. have reviewed progress in magnetic manipulation with particles and cells in 

microfluidic chips including their separation, concentration, capture, arrangement, and assembly 

[271]. The review also includes the theoretical background of particle and cell manipulation in a 

microfluidic environment. Munaz et al. have reviewed advances in magnetophoresis with respect to 

microfluidic systems, including fundamental and theory of magnetophoresis and its applications for 

mixing, separation, and trapping of particles and cells [272]. Pezzi et al. have evaluated five different 

types of commercially available magnetic beads with respect to various aspects of cell labeling and 

isolation [273]. They have tested antibody binding, and surface density, target cell capture efficiency 

and purity, the release of conjugated antibodies and captured cells, an impact of magnetic beads on 

further cell imaging and analysis, and the possibility of integrating magnetic beads cell isolation with 

standard nucleic extraction methods. This work may be used as a comprehensive guide to choosing 

the most suitable magnetic beads for cell manipulations depending on the requirements and 

possibilities of a particular investigation. 

Acoustic Separation of Cells 

Acoustophoresis is an application of the acoustic field for cell sorting (see Figure 9c). Acoustic 

waves in the ultrasound range are applied in a number of microfluidic devices [165] allowing for 

separation of cells according to their size, density, and compressibility (Figure 14) [274]. 

Acoustophoresis operates with an acoustic power and an ultrasound frequency similar to those of 

ultrasound imaging, and, therefore, does not influence significantly the cell viability [275,276] that 

opens prospects to use this technique for cell sorting. 

 

Figure 14. Acoustofluidic manipulations with particles and cells with a positive (a) and negative (b) 

acoustic response in a bulk acoustic standing wave. (c) The schematic of an surface standing acoustic 
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waves (SSAW) device with interdigital transducers (IDTs) focusing the cells along well-defined 

streamlines. (d) The cross-section of an SSAW device with four pressure nodes. Reprinted with 

permission from [165]. Copyright 2015, Royal Society of Chemistry. 

Ultrasound waves used for acoustophoresis can be divided into standing and traveling waves 

[277]. In turn, standing waves can be classified on bulk acoustic waves (BAW) [278] and surface 

acoustic waves (SAW) [279]. The raveling acoustic waves occur when ultrasound propagates in the 

medium with more or less uniform acoustic impedance. The pulses of traveling surface acoustic 

waves may be employed for isolation of single cells from the main sample stream and divert them in 

another outlet of the microfluidic chip. This was shown to effective for the isolation of fibroblasts, 

keratinocytes, and melanoma cell lines [280,281]. 

The standing acoustic waves occur under resonance conditions. To perform acoustophoretic 

sorting with standing BAW, ultrasound is typically applied transversely to the cell flow direction. 

The standing BAWs will occur in a microfluidic channel if the ultrasound wavelength matches the 

channel width [165]. This kind of wave is used to redirect cells from the main streamline toward the 

pressure node to the special outlet. Currently, microfluidic chip technology combined with bulk 

acoustic waves is used for separation of different mammalian cell subpopulations, such as red blood 

cells, white blood cells, platelets [282,283], and cancer cells like neuroblastoma [283]; breast cancer 

[284,285], prostate cancer [278], pancreas cancer [286]. Moreover, this approach allows for separating 

of other types of blood emboli like a lipid embolus [287] and bacterial cell [288]. In turn, standing 

SAWs are formed in the microfluidic channel when ultrasound propagates through the longitudinal 

direction [289]. Standing SAWs may be applied for isolation of either normal cell lines like white 

blood cells [290], platelets [291], and muscle cells [292] or cancer cells like breast cancer [279,292], 

melanoma [280,281], and alveolar basal epithelial adenocarcinoma [292]. Furthermore, the tilted-

angle standing surface acoustic waves are used for white blood cell sample washing from cell debris 

formed during red blood cell lysis procedure [293]. 

At present day, there are microfluidic devices employing both standing and traveling surface 

acoustic waves for the selection of cancer cells from the blood. This multi-stage sorter used standing 

waves for cell focusing in the central part of the channel and traveling waves for displacing of target 

cells to the desired outlet [294]. 

4.3.2. Passive Cell Separation Methods 

The sorting approaches described above include active particle or cell separation techniques. 

There are also passive methods developed for the separation, isolation, or enrichment of particles and 

cell populations based on typical differences in their size, shape, or morphological parameters. 

Inertial forces, hydrodynamic propagation, and deterministic lateral displacement are applied to sort 

different objects [295,296]. 

Inertial Focusing in Microfluidic Channels 

One of the commonly used approaches for label-free passive cell separation is inertial focusing 

in microfluidic channels. The theoretical background and detailed description of the separation 

process were summarized by Di Carlo [297]. Briefly, the inertial focusing of the cells or particles can 

be achieved when the liquid flow in the microchannel is still laminar, but inertia becomes valuable. 

This flow mode depends on the geometry of the channel and liquid velocity and viscosity and usually 

observed from very low Reynolds number Re (Stokes flow, inertia is negligible) to ~2000 (lower range 

limit of turbulence flow). The cells moving in the flow are affected by drag and lift forces and 

therefore aligned in a defined equilibrium position along the main flow direction (Figure 15a). The 

equilibrium position is defined by the ratio of the drag and lift forces and varies with the third power 

exponent of the particle/cell diameter [298]. In this way, kinetic and equilibrium separation can be 

realized. The kinetic separation is based on the different equilibration times for the cells of various 

size whereas the equilibrium separation implies different equilibrium positions for different cells. 
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Figure 15. (a) Formation of the hydrodynamic equilibrium position of a cell moving in the liquid flow 

and affected by the drag and lift forces; (b) formation of re-circulating secondary flow (Dean flow) in 

the curved microchannel; (c) separation of the cells depending on their size employing secondary 

flow in curved microchannel; (d) the shift of the equilibrium position due to the superposition of 

inertial lift and Dean flow in a curved microchannel. Adapted with permission from [297] Copyright 

2001, the Royal Society of Chemistry. 

The curved microchannels may be employed to produce inertial forces. Considering the laminar 

inertial flow, the liquid flowing through the curved channel results in the re-circulating secondary 

flows that are formed due to a mismatch of the liquid velocity in the channel center and near-wall 

regions (Figure 15b). These re-circulating flows create a pressure gradient in the radial direction of 

the channel and form two symmetric vortices inducing secondary flow. The dimensionless number 

describing the secondary flow was first established by Dean and, therefore, called the Dean number, 

while the secondary flow itself is called the Dean flow. Thus, the cells in curved channels are affected 

both by inertial migration and Dean flow. This results in the movement of equilibrium line from the 

channel center that allows improving cell collection; to reduce the channel length required for 

focusing and separation; to enable an additional equilibrium separation modality for the cells of 

various sizes (Figure 15c,d). 

As recent practical examples, Nathamgari et al. used curved microchannel to isolate single stem 

cells from cell clusters after dissociation from the initial tissue [299]. Son et al. employed inertial 

separation in the curved microchannel to purify sperm cells from RBCs and leukocytes [300,301]. 

Schaap et al. first demonstrated the microfluidic separation of three specimens of algal cells of various 

sizes and shapes, including non-spherical ones [302]. Lee et al. used inertial separation in the curved 

channel for mesenchymal stem cell enrichment from a tissue-digested mouse bone marrow cell 

mixture [303]. The further development of inertial focusing is related to the preparation of more 

sophisticated microchannels and the integration of curved channels with other separation techniques. 

For instance, Shen et al. demonstrated spiral microchannel with series of micro-obstacles inside 

allowing for the linear acceleration of the secondary flow (Figure 16a) [304]. The acceleration can be 

tuned employing various geometry of the obstacles and degree of confinement. This results in 

increased efficiency and throughput of separation. Nivedita et al. combined the spiral channel with 

a lateral cavity acoustic transducer [305]. The microchannel provided a passive separation of non-

target cells while the acoustic transducer is used for further active enrichment of the purified cell 

sample. Ramachandraiah et al. developed the method for effective isolation of leucocyte 

subpopulations from the unprocessed whole blood samples based on the combination of inertial 

microfluidics and cell lysis. The reported device allows for complete removal of the RBCs by osmotic 

lysis along with the separation of the nucleated cells depending on their size in the curved 

microfluidic channel. Zhou et al. designed an asymmetric reverse wavy microchannel and 

successfully employed it for the isolation of cancer cells from a blood sample (Figure 16b) [306]. This 

channel geometry induces periodically reversible Dean flow leading to effective size-depended 
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particle and cell separation. Syverud et al. demonstrated the microfluidic device with «Labyrinth» 

patterned curved channels [307]. The device was shown to be effective for the isolation of myogenic 

cells from the enzymatically processed muscle tissue cell mixture and for the purification of them 

from cell aggregates and debris. Wang et al. developed a microfluidic separation device consisting of 

a wavy microchannel structure followed with a sheet flow-focusing section [308]. The introduction 

of the sheet flow-focusing area allows for more precise control over particle/cell position and even 

control the spacing between the separated objects. Furthermore, the concept of multisectioned 

devices can be extended for preparation of automated integrated microfluidic devices containing 

several focusing and separation areas. Zhang et al. described the example of the device containing 

flow regulatory and two focusing areas in consequently connected microfluidic chips (Figure 16c) 

[309]. The focusing was performed in spirally shaped microchannels. The device was also equipped 

with a set of operational and control units to carry out fully automated cell manipulations and was 

shown to be capable of efficient separation of cancer cells from human blood. 

However, the preparation of curved and wave-shaped microchannels might be challenging, and, 

for some applications, the straight microchannels are preferable due to the ease of preparation and 

parallelization. Thus, one of the possible approaches to improve inertial separation with straight 

channels is the employment of the channels with an asymmetrical cross-section. For instance, 

Moloudi et al. investigated the possibility of particle separation in a trapezoidal straight microchannel 

[310]. They figured out that size-dependent particle separation could be effectively controlled by the 

slope of the channel wall and the speed of the carrying fluid. Another issue that may be addressed 

with straight microchannels is the isolation of small pathogens and blood components like fungi or 

exosomes. However, the conventional inertial focusing of such small bioparticles requires the 

significant length of the microchannel and a significant amount of time for processing. For this 

purpose, the concept of oscillatory inertial focusing in the practically infinite channel was proposed. 

In particular, the direction of liquid flow in a symmetrical microchannel is switched to the opposite 

one with a high frequency. Due to the symmetry of the velocity field, the particles preserve their 

motion direction, which allows for continuous separation like in infinite channels. For instance, 

Mutlu et al. demonstrated the successful isolation of submicron particles and Staphylococcus aureus 

bacteria exploiting this approach [311]. 

 

Figure 16. (a) Principal scheme of the device employing Dean-like secondary flow acceleration 

induced by micro-bars in the spiral microchannel. Reprinted with permission from [304]. Copyright 

2017, The Royal Society of Chemistry. (b) Asymmetric reverse wavy microchannel inducing 

periodically reversible Dean flow. Reprinted with permission from [306]. Copyright 2018, Springer 

Nature. (c) Design of the separation device employing Dean flow with multiple separation areas. 

Reprinted with permission from [309]. Copyright 2001, The Royal Society of Chemistry. 
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Deterministic Lateral Displacement 

One more separation approach that can be employed to separate particles or cells in continuous 

flow mode is deterministic lateral displacement (DLD). DLD is a method that utilizes an array of 

posts placed in the microchannel in a defined manner that is every following raw is shifted latterly 

toward the previous one at a set distance [312]. This leads to the formation of separate laminar 

streamlines that follow through the structure in a certain path. If the particle size (Reff) is more than a 

critical radius (Rc), the particle moving around the post will be deflected to the neighbor streamline 

[313]. This action repeats in the vicinity of every post that results in the displacement of the particle 

from the initial trajectory with a displacement angle determined by the row shift (“bumping” mode). 

Otherwise, the particles smaller than RC remain in the same streamline and keep following a “zigzag” 

but eventually straight path (see Figure 17a). The critical particle radius is defined by the post 

diameter, the distance between the posts, and the raw shift [313]. 

First, DLD was introduced as a separation technique by Huang et al. [314] They demonstrated 

effective isolation of two types of fluorescent beads passing through the post array depending on 

single bead critical size based on the fixed gap between the posts. Additionally, they have shown the 

possibility to resolve the spectrum of particles from 0.8 to 1 µm by passing through the separation 

device containing several separate sections with various gaps. Later, Inglis et al. provided an 

extended theory of DLD separation supported by experimental measurements for a range of particles 

from 2.3 to 22 µm [313]. Further, the same group employed DLD for blood cell separation [315]. The 

authors described two types of DLD separation devices, allowing for separation of blood cells 

depending on their size or preparation of blood plasma i.e., to remove the cells from the whole blood 

completely. DLD was shown to be effective for isolation of lymphocyte subpopulations [316], 

nucleated RBCs from the peripheral blood of pregnant women [317], T. cyclops parasites from RBCs 

in whole blood [318], and cardiomyocytes form heterogeneous cell mixture [319]. Further 

development of DLD was related to the improvement of throughput of DLD devices to extend the 

volume of the processed sample per time to unite and enable the rapid enrichment of rare circulating 

objects like CTCs. For instance, Liu et al. proposed the DLD microfluidic device to isolate CTCs from 

the peripheral blood with a throughput of up to 2 mL/min [320]. They figured out that the CTCs 

isolation efficiency depends on the shape of the post. The triangle posts induce less shear stress and, 

therefore less effect on the cell hydrodynamic radius compared with the round ones. Thus, the cells 

keep moving through the streamlines as defined by the DLD pattern that improves the separation 

efficiency. Moreover, the same group demonstrated that the purity of the isolated cells could be 

further improved if DLD is combined with affinity-based separation techniques [321]. Previously, 

Loutherback et al. demonstrated the DLD device composed of triangle posts that can be run with a 

throughput of 10 mL/min and isolate CTCs from the whole blood with an efficiency of 85% [322]. 

However, the increase of the flow rate may lead to undesired side effects in the DLD array. One of 

the most significant is the clot formation when processing the blood samples. Although Loutherback 

et al. reached the significant flow rate in their device, the volume of the processed blood was limited 

by 200 µL per DLD array due to the clogging. D’Silva et al. carried out the study of clot formation in 

DLD arrays under various conditions and pointed outed how the clots can affect the DLD 

performance [323]. The clots increase the fluid resistance, capture the cells passing through the post 

array, and alter the paths of the fluid streamlines. According to D’Silva et al., clogging in DLD array 

may be induced by two factors: platelet the activation and coagulation that can be suppressed by 

inhibiting the action of thrombin and chelating of calcium ions respectively. Additionally, the authors 

demonstrated that shear-induced platelet activation is an important factor of clogging in microfluidic 

systems. This issue can be addressed by optimization of DLD array configuration, in particular in the 

injecting area. For instance, Mehendale et al. proposed the design of DLD device with a radial 

arrangement of round posts (RAPID) of various size combined in 3 separation zones [324]. This 

design was shown to be effective for continuous separation of spectrum of particles with respect to 

their size with throughput of 3 mL/min. The clogging was avoided due to preferential isolation of the 

largest particles while the rest of the particles can follow multiple parallel paths through the device. 

Further, they adapted the device for processing of whole blood [325]. Without any pre-processing, 
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the device was able to operate with the whole blood for 6 h and rich almost 60-fold enrichment of the 

platelets as model target cells. 

Another issue is that DLD, as other microfluidic passive separation approaches, implies a 

laminar fluid flow with Re less than 1. This is the pre-requisite for the formation of the defined 

laminar streamlines and a predictable movement of the particles through the post array. This results 

in a relatively low fluid flow rate and restricts the separation performance. On the other hand, the 

increase of the fluid velocity at high flow rates leads to the domination of inertial forces that alter the 

streamlines, which resulted in the formation of the vortices in the wake of the posts. The vortices 

increase the hydrodynamic radius of the posts reducing the critical radius of the particles. Recently, 

Dincau et al. reported on the numerical simulation and experimental evaluation of the performance 

of the DLD device operating in the high-Re mode (10 < Re < 60) [326]. They figured out that the 

vortices appear around Re = 25 and are fully developed under Re = 50, reaching the half-size of the 

post. Thus, the same particle can move through the DLD array in a “zigzag” mode under Re = 0.1 

and in a “bumping” mode under Re = 25, which leads to lateral displacement. This may be employed 

for the development of DLD devices with an adjustable gap between the posts with the separation 

threshold tuned by the fluid flow rate. Further studies revealed that the main mechanism responsible 

for switching the displacement mode is associated with the compressing of streamlines under high-

Re [327]. This was shown by the separation of vortex formation and streamline compression using 

the posts of a symmetric airfoil shape that does not produce the vortices even under Re = 100. 

Additionally, DLD may be employed for separation of particles and cells by their shape 

involving two types of phenomena: differences in length scale and differences in transport properties 

[328]. For instance, Beech et al. combined size-based sorting with the isolation of cells regarding their 

susceptibility to shear stress (Figure 17) [329]. Further, Kabacaoğlu and Biros theoretically and 

experimentally studied the deformability-based sorting of same-size RBCs via DLD [330]. They 

provided an extended theory of RBC separation based on their deformability in DLD array and 

figured out that the deformability of RBCs is defined by their membrane stiffness and interior fluid 

viscosity, which in turn depends on the dimensionless capillary number and viscosity constant. 

Zeming et al. demonstrated complete isolation of RBCs to a focused stream employing an array of I-

shaped pillars inducing continuous rotational movement of the cells that results in a greater effective 

separating size [331]. Au et al. designed the two-stage DLD device for the separation of CTC clusters 

with respect to their size and shape asymmetry [332]. The first stage of the device isolates the large 

CTC clusters with a size of 30 µm or higher from the whole blood moving through the conventional 

DLD array with the round posts. The second stage processes the product coming from the outlet of 

the first stage that includes small CTC clusters and blood cells using the array of asymmetric posts 

and height restrictions. The resulted isolation product contained about 99% of the large clusters and 

about 65% of small clusters recovered from the whole blood. 

Although the design of DLD devices still is under consideration for every particular application, 

they were shown to be effective for cell isolation for cancer diagnostics. The examples include but not 

are limited to the works on CTC isolation mentioned above. Additionally, Wunsch et al. 

demonstrated the approach for the preparation of a nano-scaled DLD array that is suitable for the 

separation of exosomes [333]. More recently, Song et al. designed the DLD device with the posts 

modified by EpCAM aptamer covered Au NPs [334]. The aptamer-induced affinity capturing 

significantly increases the size-based enrichment of targeted CTCs in the DLD array. The captured 

cells can be released for further analysis by simple chemical reactions. 

To conclude this subsection, we refer to the review of McGrath et al. devoted to the DLD 

separation [312]. This review provides a deep insight into the theoretical background of DLD 

principles, as well as the number of examples of various DLD devices, and can be used as a guide to 

assemble the DLD device for the desired application. 
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Figure 17.  Mechanisms of separation by DLD with respect to cell size, shape, and deformability as in 

the case of RBCs. (a) The principle of DLD separation: particles with Reff < Rc follow the flow direction 

and those with Reff > Rc are displaced at an angle to the flow direction. For hard spheres, Reff is equal 

to the radius. (b) Red blood cells are normally disc–shaped but they can adopt other shapes when 

exposed to different chemicals. (c) Shear forces deform particles changing Reff, and measuring the 

change in Reff as a function of applied shear rate is equivalent to measuring the deformability of the 

particle. (d) Reff depends on the orientation of the particle. Controlling orientation and measuring Reff 

gives information about shape. It is also possible to measure deformability in different directions. (e) 

In a deep device RBCs rotate such that Reff (< Rc) is equal to half the thickness. (f) Confinement in a 

shallow device means that the cell radius defines Reff (> Rc). (g) An echinocyte with Reff > Rc. Reprinted 

with permission from [329]. Copyright 2012, the Royal Society of Chemistry. 

Pinched Flow Fractionation 

Pinched flow fractionation (PFF) is an approach for the separation of particles according to their 

sizes in laminar flow (Figure 18). It was firstly proposed by Yamada et al. [335] and included two 

elements. The first is hydrodynamic focusing of particles in a fluid stream similar to the flow 

cytometry, but in this case, particles or cells additionally aligned against the microfluidic channel 

wall. Through this process, a flowing stream with particles or cells is pinched into a narrow channel 

cross-section-pinched segment. Once the channel broadens, the particles are forced to flow in 

different trajectories due to their size determines how far from the wall, their center of mass is placed. 

The second element is the flow field fractionation. Different outlet channels conjoined to the main 

channel with particles pinched to the wall. Due to adjusted fluidic resistances, the particles of 

different sizes are sorted by radially spreading streamlines and follow into different outlet channels. 

Particle separation efficiency is defined by the ratio of flow rates, the width of the pinched segment, 

the total flow rate, and the geometry of the segment collecting the particles. The parameters listed 

above should be adjusted in order to find the optimal design. 

Yamada M. et al. separated polystyrene microspheres with a diameter of 15 µm from 30 µm ones 

[335]. The authors suggested a linear relationship between the particle radius and position in the 

pinched segment, assuming that all channels were much larger in width than in height. The pinching 

is taking place in the pinched segment with width 2d that should be similar to the diameter 2R max 

of the largest particle to be sorted. Therefore, the particles with a size significantly smaller than the 

channel width cannot be effectively separated. In order to overcome this problem and increase the 

particle displacement after passing the pinched segment, the geometry of one or more of the outlet 

channels was made asymmetrical to modify flow resistance for better hydrodynamic control. This 

realization was proposed by Takagi et al. as asymmetric pinched flow fractionation increasing the 

separation resolution [336]. This modification is capable of separating 1 µm and 2.1 µm particles with 
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an efficiency of 80%. Additionally, the broadening of the pinched segment allows adding 

downstream collecting channels in the PFF design [337]. 

 

Figure 18. Principle of pinched flow fractionation. (a) In the pinched segment, particles are aligned to 

one sidewall regardless of their sizes by controlling the flow rates from two inlets; (b) particles are 

separated according to their sizes by the spreading flow profile at the boundary of the pinched and 

the broadened segments. The liquid containing particles is dark-colored. Reproduced with 

permission from [335]. Copyright 2004, American Chemical Society. 

Alternatively, the separation resolution was enhanced by a simple geometric modification of the 

primary PFF design like adding a snakelike part to channel [338]. This results in a more effective 

separation of particles due to an increase of the lateral distance between the particles after the pinched 

segment. The enhanced PFF was shown to be capable of separating 7 different sizes of particles with 

an efficiency of 70%. In addition, PFF has been expanded by the spatial reorientation of the 

microfluidic device for gravitationally enhanced separation of particles with different sizes and mass 

[339]. The theoretical and experimental studies on dynamic characteristics of laminar flows and 

hydrodynamic enhancement of particle separation were carried out. Polystyrene microbeads with 

different sizes were used as model particles to demonstrate rapid (<1 min) and high-purity (>99.9%) 

effective separation. As a result, a simple sorting system was developed to perform size profiling and 

following mass-dependent separation of particles using a combination of gravity and hydrodynamic 

flows and applied to separate polydisperse perfluorocarbon droplets emulsions. 

The first step towards nano-scale separation was realized by Y. Sai et al. by separation of 0.5 µm 

from 0.86 µm polystyrene microspheres [340]. They suggested incorporating microvalves to change 

the flow resistance in the collecting outlets of the PFF device to enhance separation efficiency. 

Expectedly, the pressure in the outlet varies depending on the microvalve position that leads to 

changing the flow rate inside the channel and the path of the flow through the particles. Thus, by 

adjusting the valves, one can force particles of different sizes to move to different outlets. 

Additionally, it was established that the separation resolution depends on the microchannel wall 

roughness that is the particles with a diameter comparable with the wall roughness could not be 

separated by the PFF technique [341]. 
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In concentrated samples, interactions between particles increased, which leads to decreasing the 

selectivity of the PFF system. Thus, the influence of concentration needs to be investigated. The 

quantitative influence of the pinching intensity in the balance between the requirements of selectivity 

and minimal dilution was discussed [342]. As a result, PFF was proved as an efficient technique to 

separate a semi-concentrated polydisperse suspension of microparticles into sub-populations with 

tiny overlapping. 

Eventually, the PFF technology was extended to a passive hydrodynamic cell sorting for 

leukocyte enrichment [343]. In addition, PFF was used to separate cancer cells (LS174T colorectal 

adenocarcinoma) from white blood cells (WBC), with that the cells were separated at efficiencies 

above 90% for both cell types [344]. The size overlapping between cancer cells and WBC prevents 

high-efficiency separation, however, it can be improved using a difference in cell deformability. 

Further PFF improvements can be developed by using other separation techniques in 

combination with PFF, for instance, sedimentation [345], centrifugal [346], optical [347], and 

dielectrophoretic forces [348]. Furthermore, inertial enhanced pinched flow fractionation by taking 

advantage of inertial forces was devised [349]. 

5. Automatic Processing of Cytometry Data 

After the flow cytometry data is collected, a detailed analysis should be performed. At the 

beginning of flow cytometry development, the analysis was carried out manually [350] and, 

therefore, consumed a lot of time, while the quality of analysis depended on the operator 

qualification. Currently, a cytometry device usually provides a user with a toolset for automatic data 

processing. The data processing pipeline in flow cytometry usually consists of some signal 

preprocessing, generating a set of features for each object in the flow and then provide separation of 

object classes based on the combination of features (Figure 19). Signal preprocessing is highly specific 

for each device design and, thus, it is outside the scope of this review. 

 

Figure 19. The deep neural network recognizes cell types by their corresponding waveforms. 

Different types of cells are categorized and charged with different polarity charges so that they can 
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be separated into different collection tubes. Reprinted with permission from [351]. Copyright 2019, 

Nature Springer. 

Conventional flow cytometry methods provide an intrinsic set of features describing single 

objects in the flow. It usually includes forward scatter and side scatter channels along with signals 

from PMTs detecting fluorescence in a number of wavelength bands. Imaging flow cytometry, 

however, requires conversion from raw images of single objects into a set of features that allow 

discriminating properly different object classes. Feature construction and selection of separation 

criteria for a long time was a complex procedure that requires high qualification and a lot of expertise 

from the device operator. Progress in flow cytometry increased both the number of cells in the 

experiment and the amount of information obtained from single cells, so the processing methods 

became more complex. On the other hand, modern progress in machine learning and deep learning 

methods start to make formerly complex procedures completely automatic and less erroneous in 

general. 

In the conventional analysis of flow cytometry data, expert works with a set of features—the 

values that describe each object in the flow. The most basic is the intensity of fluorescence in different 

spectral channels along with front scatter and side scatter light intensities. The multidimensional 

space of features is usually orthogonalized by a compensation matrix that describes how to minimize 

the crosstalk between channels. Afterward, the feature space can be distorted by some transfer 

function (e.g., logarithm, biexponential, logistic, tangential) that provides cut-off for the outliers or 

compression of the rare high-intensity events into the space near the major data points. The essential 

part of the data processing is based on gating. The features that provide separation of object 

subpopulations are selected and plotted as 1D or 2D plots. Then the data points in a range (for 1D) 

or a region (for 2D) of values are selected manually on the plot by visually monitoring the points 

clusters and the data for objects subpopulation is extracted, so the next separation can be done on 

this subset. 

To perform data analysis after receiving the signals, specific features should be determined. The 

combination of these features should characterize the cells of interest in the most accurate way. Until 

recently, classical computer vision (CV) and machine learning (ML) algorithms, such as thresholding 

(for feature extraction) or gradient busting and random forest (to solve classification problems) were 

mainly employed in the analysis of flow cytometry data [352]. However, there are a few examples of 

the original algorithms [353,354] to detect rarely seen labeled cells in the sample and to segment the 

nucleus, respectively. The introduction of these algorithms allowed us to automate the analysis of 

cytometry data with fairly good accuracy. To date, these approaches can be considered traditional 

and most widely used. Traditional ML and CV are currently implemented in the majority of 

cytometry data processing software, for example, IDEAS by AMNIS or FCS flow cytometry by De 

Novo software, which is often used with the MATLAB package for additional calculations. There are 

also free open-source software packages, like ImageJ [355,356] and CellProfiler [357-359]. The 

pipeline tends to be the following: single images from a cytometer are loaded to the software (for 

example, CellProfiler) where they are processed (for instance, brightness is adjusted and borders are 

highlighted) and placed into separate files. Then, the files are transferred to the input of some 

machine learning system built on the basis of some computational frameworks programmed in 

MATLAB, Python, or some other general-purpose computer language. 

A lot of effort was made to define the automatic gating procedure for flow cytometry data [360-

364] or clustering of similar phenotype on multidimensional data [365,366]. A number of machine 

learning approaches for automatic separation of subpopulations in the feature space was developed. 

The most well-known are SPADE, FlowSOM, and CITRUS methods along with the viSNE alone and 

combined with the previous three ones for prior dimensionality reduction. 

Spanning-tree Progression Analysis of Density-normalized events (SPADE) [367] organizes the 

cells in a hierarchy of related phenotypes. It allows for high throughput processing of data volumes 

and draws a tree of different phenotypes/subpopulations of objects that can be easily understood, 

and extract subpopulations of cells with similar properties. The inputs for the algorithm are selected 

markers/features set, outlier density, target density and desired number of the clusters. The first and 
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the last ones are the most important, the second and the third regulate how many cells are excluded 

and how many will survive the downsampling process. The last parameter governs when the 

algorithm will stop. 

FlowSOM [368] is another approach to build Self-Organizing Maps on the dataset and organize 

it into a minimal spanning tree. This algorithm can use a complete dataset without downsampling 

and runs visualization procedure much faster than the previous method giving, in general, a similar 

result. 

The third automatic approach for the detection of subpopulations from a flow cytometry dataset 

is based on the t-distributed Stochastic Neighbour Embedding (t-SNE) [369] method. The method 

builds a projection from the dataset with high dimensionality containing a large number of 

independent features into 2D space in a way that neighbor points are still nearby and separate 

clusters become well visible in the projection. In the flow cytometry, this method is usually called 

viSNE [370]. 

Information about automatic methods not using dating summarized in a number of 

comprehensive reviews, that include Aghaeepour et al. [371] and Mair et al. [372] 

The next major step in the automation of cytometry data processing is based on transfer from 

manual feature construction to automatic. This process in computer science is heavily based on the 

transfer from classical machine learning algorithms, which separate the data by manually selected 

and thoroughly checked set of features, to learning approaches, which construct features by learning. 

Most of the deep learning approaches were based initially on learning convolutions in the 

separate layers of neural networks (NNs) architecture. However, nowadays there are various and 

versatile sets of network architectures providing required functionality and the progress in inventing 

new ones is very fast. First successful approach to construct deep learning models for computer vision 

was mostly based on a deep network with a lot of layers in the structure forming a pairs from 

convolution layer that learns transfer methods to construct a features at each level of abstraction and 

fully connected layers keeping information as a set of weights of selected features [373]. The more 

modern neural network architectures can be based on only convolutions [374] or some kind of 

recurrence (RNN) providing the memory of previously processed data inside the network. 

Any machine learning model still requires a dataset to be trained on. During the training, deep 

learning algorithms independently selects geometric features from the available data (a certain 

combination of curved lines, a combination of pixels of a certain brightness), followed by the 

derivation of abstract features from, for example, presence of a vacuole in the image or damage of 

cell nucleus [375]. As a result, the capabilities of flow cytometry are increased. Large arrays of images 

can be processed without distraction by a preliminary search and registration of significant features, 

making the process fully automated. Moreover, with the help of NNs, one can detect those significant 

features, which were not assumed by a researcher [376]. 

Deep learning approach allows us to solve some complex computer vision problems like 

semantic segmentation (separation of closely packed objects) or object detection with the accuracy of 

well-trained human experts and sometimes even better, however, it is achieved by the large size of 

required datasets. The usual balanced set of objects to train a deep neural network for computer 

vision problems should consist of tens of thousands of objects from each class. Sometimes it can be 

achieved by artificial augmentation of smaller datasets containing only thousands or even hundreds 

of objects, but it is mostly a required minimum to train a good working model. The initial marking 

of the dataset should be done by human experts and it is among the most tedious and complex tasks 

in a deep learning approach. 

Additionally, a serious obstacle using deep learning methods in diagnostics may be their 

interpretability [377]. One or another step of the algorithm is difficult to explain in a large part of 

deep learning methods. In medical diagnostics, this may cause fatal consequences. The high system 

requirements for computing performance to run the deep learning algorithms is also can be 

considered as a disadvantage, however, it is now mostly eliminated by the computational power 

provided by the general-purpose graphics processing unit (GPGPU) or tensor unit acceleration with 

parallel processing. 
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Recently, there were a number of publications describing the complex system providing cell 

sorting by a combination of all the above-mentioned approaches. Nitta et al. demonstrated an 

integrated approach to the problem of finding the right cells and sorting them in a real-time combing 

traditional and deep machine learning [378]. Since neural networks usually have high accuracy, but 

relatively low speed, first for each event in the image a binary mask is created for the bright-field 

image, followed by extraction of the main characteristics from bright-field and fluorescent images. In 

this regard, algorithms of traditional computer vision were applied. For example, a median filter was 

applied to decrease image noise, whereas the Canny edge detection allows defining the contours of 

cells, particles or their groups. The extracted information about the geometry of the object allows 

building the binary mask. Further, the binary mask was applied to incoming images in order to 

receive information about their morphological characteristics (area and shape) and scattering and 

fluorescence intensity to highlight the region of interest. Afterward, the data was transferred to the 

input of a six- or eight-layer convolution neural network. This operation removes unnecessary 

information and makes it easier to extract intricate features. To put in other words, in the developed 

method the traditional ML and DL compensate the disadvantages of each other and combine high 

speed and accuracy. Testing the effectiveness of the method was done by sorting particles of different 

diameters in the sample (3-mm and 6-mm). 

This paper also demonstrated a well-developed approach to building the entire computing 

architecture. Often this issue is neglected in research, giving preference directly to data analysis. 

However, an emerging trend towards the application of flow cytometers in diagnostics, engineering 

issues will have to be paid more attention. Properly built and optimized computing architecture can 

significantly increase effectiveness without the need for expensive equipment. In turn, this will make 

promising flow cytometer-based devices more affordable. 

Li et al. addressed the problem of imaging cells without fluorescent agents to avoid their impact 

on cell behavior [351]. The authors developed an unusual approach to the problem of computational 

complexity. In particular, they discard most complicated operations, like image construction and 

extraction of features, and work directly with one-dimensional time series that display the shape of 

the detected wave. In order for the neural network could process with data, it was transformed into 

a two-dimensional array where one measurement corresponds to laser pulses at a point, the other 

corresponds to the number of points per pulse. Each signal was further divided into 100 smaller 

waveforms, with an overlap factor of 50% to create redundancy. This will further reduce noise and 

increase the sustainability of learning. After all the preparatory operations, the data were transferred 

to the input of a neural network with architecture based on VGG neural network architecture [374]. 

It consists of 16 convolutional layers, three layers for max-pooling, and three fully connected layers. 

As a result of the work, the network gives the probability of a cell belonging to one of three classes. 

The result was a score of 95.71% and accuracy 95.75% with high learning stability and recognition 

time within a few milliseconds. 

Tanhaemami et al. predicted the lipid content in microalgae cells after nitrogen starvation by 

application of linear regression and a genetic algorithm (without the use of fluorescent labels) [379]. 

Eulenberg et al. [380] and Doan et al. [381] studied the cell cycle of Jurkat cells in diabetic retinopathy 

and morphological changes in red blood cells. Both papers mostly modify the existing model of 

machine learning and interpret conclusions in terms of biology, without reference to a specific device. 

The works employ training by standard images received from the cytometer without adjustment of 

the element base or the type of signals on the sensors. These examples demonstrate the flexibility of 

neural networks, as they require fewer preliminary data manipulation to work than traditional ML. 

Certainty modern machine learning methods will gradually supersede traditional methods in 

the processing and analysis of flow cytometry data in the long run. ML and DL proved to be powerful 

and well-suited tools in cytometry. Probably, quite a few tasks can be solved by purely engineering 

approaches by adapting existing algorithms. Nevertheless, there is still the problem of further 

increasing the rate and biological interpretation of the results. 

6. Advantages and Limitations of Modern Flow Cytometry 
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Flow cytometry technology has undergone many changes since its invention in the 50s of the 

last century. The development of new hardware and software for flow cytometry systems as well as 

fluorophores development expanded the number of science domains in which this technology could 

be applied. At the dawn of flow cytometry technology, it was used just to count and estimate the size 

of particles [382]. Currently, fluorescent flow cytometry systems are applied to solve a broad 

spectrum of issues in the diagnostics [383-385], biotechnology [386], material science [387,388], and 

other scientific fields. 

The current state-of-the-art in fluorescent flow cytometry allows to estimate up to 20 

independent parameters for each cell and possesses a high throughput possibility—thousands of cells 

per second [389]. However, the simultaneous usage of the number of fluorophores to label different 

cell structures can lead to the overlapping of their emission spectra and requires compensation 

procedure performance [390]. This step is crucial in the case of studying rare objects, such as CTCs, 

because their small amount does not allow an operator to create a compensation file. There are two 

approaches to solve this problem. The first one is to apply antibody capture beads to simulate 

positive, dim, and negative staining for the creation of a compensation file [391]. The second one is 

to use advanced software for automatic correction of the spectral overlapping [389]. 

Additionally, conventional fluorescent flow cytometry systems do not provide bright field and 

fluorescent images of events that constrain the ability of real-time verification. Imaging flow 

cytometry systems successfully solved this problem by combining the statistical power of 

conventional flow cytometry with the advantages of fluorescence microscopy [392]. The combination 

of both these technologies permits to acquire up to 12 fluorescent and bright-field images of each 

object without significant loss in throughput ability. However, this technology imposes some 

limitations on the object size, which is directly determined by the detection limit, dynamic range, and 

intensity resolution of the system [393]. Conventional flow cytometry also has the size threshold for 

object detection >500 nm [394,395]. One more disadvantage of flow cytometry is the disability to 

detect events in the whole blood due to its cell concentration [396] far more than the detection 

threshold (no more than 108 cell/mL for Amnis, 3 × 107 cell/mL for Bio-Rad, 7.5 × 106 cell/mL for 

Beckman). However, a more detailed analysis of certain cell populations selected during flow 

cytometry measurement, for instance, genetic analysis requires some post factum procedure. With 

this regard, the demand for separation of the sample or its return for further analysis arises. Some 

devices such as Sony SH800, Bio-Rad S3e cell sorters, or Beckman MoFlo XDP High-Speed Cell Sorter 

have this ability, but this is the exception rather than the rule. 

7. Conclusions and Outlook 

The progress in the design of modern flow cytometry devices is strongly related to advances in 

adjacent areas of research and development. Considering the hardware part, great progress was 

made in the design of advanced optical systems like structured light illumination schemes, which 

allow for capturing better quality images on higher speeds of flow with less laser-induced damage 

of fluorophores. Additionally, the novel optical systems require fewer efforts in precise focusing of 

detected objects in flow and lens objective on the common spot. Great progress was also made in 

nonconventional detection methods including flow cytometry approaches for detection in vivo based 

on photoacoustic and photothermal phenomena. However, these substantial areas are out of the 

scope of this review. 

Further, a semiconductor industry constantly provides better detectors that require less light to 

detect a signal. The modern techniques of image processing are able to take composite digital images 

by merging processed low-quality signals with properly removed noise from many sensors 

simultaneously. Semiconductor laser diodes and detectors for the less common part of the optical 

spectrum starts to be more available in all means and easier to integrate into new device designs. 

Enormous progress in flow cytometry data processing software is achieved with the 

development of modern machine learning and deep learning techniques for all stages of data 

processing. The denoising and sensor fusion, solving computer vision and object detection tasks, 

grouping objects by the similarity of features that are automatically selected and generated are used 
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everywhere now. All device and processing software vendors are starting now to provide this kind 

of solution to end-users. 

With all this combination of novel techniques, the flow cytometry area of research is developing 

rapidly providing better devices that have better performance and much easier to operate. It pushes 

flow cytometry towards widely adopted endpoint-of-care devices from the research lab. 
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