
Supporting Information

General Information

All the reactions were carried out in oven dried glassware with freshly distilled dry solvents under anhydrous conditions unless otherwise indicated and all commercial chemicals were used as obtained. Evaporation of organic solutions was achieved by rotary evaporation with a water bath temperature below 40 °C. All the products obtained were purified by column chromatography using silica gel (100-200 mesh). Thin layer chromatography was performed on E Merck silica gel GF-254 pre-coated plates; identification was performed under UV illumination. ¹H and ¹³C NMR were recorded in JEOL 400 and 101 MHz spectrometer respectively. The chemical shifts are reported in ppm downfield to TMS ($\delta = 0$) for ¹H NMR and relative to the central CDCl₃ resonance ($\delta = 77.0$) for ¹³C NMR. Data are reported as follows: chemical shift in ppm (d), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz), and integration. High resolution mass spectra (HRMS) recorded on LCQ Fleet-Thermo Scientifics.

General Procedure for the synthesis of *N*-substitutedphenylisoquinoline-1-carboxamide derivatives (HSR1101 - HSR1111).

To a 0.5 M solution of isoquinoline-1-carboxylic acid (1.0 eq.) in THF, substitutedaniline (2.0 eq.) and 1,1'-carbonyldiimidazole (CDI) (1.2 eq.) were added. The mixture was stirred at room temperature for 6 h. The mixture was poured into water (50 mL)

and extracted with EtOAc (3 x 20 mL). The organic layer was dried over MgSO₄. The organic layer was concentrated *in vacuo* to afford the corresponding *N*-substitutedphenylisoquinoline-1-carboxamides (HSR1101 - HSR1111).

N-(2-Hydroxyphenyl)isoquinoline-1-carboxamide (HSR1101)

Brown solid; 47% yield ; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.67 (s, 1H), 10.29 (s, 1H), 9.50 (d, 1H, *J* = 7.8 Hz), 8.66 (d, 1H, *J* = 5.5 Hz), 8.41 (m, 1H), 8.15 (d, 1H, *J* = 5.5 Hz), 8.10 (d, 1H, *J* = 8.2 Hz), 7.89 – 7.79 (m, 2H), 7.02 – 6.97 (m, 2H), 6.91 – 6.87 (m, 1H); ¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 163.5, 148.3, 147.4, 141.0, 137.7, 131.4, 129.5, 127.9, 127.3, 126.8, 126.8, 125.4, 124.8, 112.0, 119.8, 115.4. HRMS m/z [M+H]⁺ calculated for C₁₆H₁₃N₂O₂: 265.0972; Found: 265.0963.

N-(3-Hydroxyphenyl)isoquinoline-1-carboxamide (HSR1102)

Yellow solid; 50% yield ; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 10.65 (s, 1H), 9.48 (s, 1H), 8.78 (d, 1H, *J* = 8.7 Hz), 8.62 (d, 1H, *J* = 6.0 Hz), 8.10 – 8.06 (m, 2H), 7.88 – 7.84 (m, 1H), 7.78 (m, 1H), 7.48 (t, 1H, *J* = 2.3 Hz), 7.24 (m, 1H), 7.17 (t, 1H, J = 8.2 Hz), 6.57 – 6.54 (m, 1H); ¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 165.2, 158.2, 152.4, 141.5, 140.3, 131.4, 130.0, 129.1, 127.8, 126.8, 123.9, 116.61, 113.3, 107.6. HRMS m/z [M+H]⁺ calculated for C₁₆H₁₃N₂O₂: 265.0972; Found: 265.0957 .

N-(4-Hydroxyphenyl)isoquinoline-1-carboxamide (HSR1103)

White solid; 43% yield ; ¹H NMR (400 MHz, DMSO-d₆) δ (ppm) 10.57 (s, 1H), 9.34 (s, 1H), 8.83 (d, 1H, J = 8.2 Hz), 8.60 (d, 1H, J = 5.5 Hz), 8.08 (d, 1H, J = 8.2 Hz), 8.05 (d, 1H, J = 5.5 Hz), 7.84 (t, 1H, J = 7.3 Hz), 7.74 (t, 1H, J = 7.3 Hz), 7.68 – 7.65 (m, 2H), 6.79 – 6.77 (m, 2H); ¹³C NMR (100 MHz, DMSO- d₆) δ (ppm) 164.7, 154.4, 152.4, 141.4, 137.1, 131.3, 130.9, 129.0, 127.8, 126.9, 126.0, 123.8, 122.2, 115.7. HRMS m/z [M+H]⁺ calculated for C₁₆H₁₃N₂O₂: 265.0972; Found: 265.0956.

N-(2-Methoxyphenyl)isoquinoline-1-carboxamide (HSR1104)

Yellow solid; 77% yield ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.74 (s, 1H), 9.69 (d, 1H, J = 7.8 Hz), 8.68 (d, 1H, J = 7.8 Hz), 8.59 (dd, 1H, J = 5.5 Hz), 7.9 – 7.86 (m, 2H), 7.79 – 7.70 (m, 2H), 7.15 – 7.04 (m, 2H), 6.96 (d, 1H, J = 7.8 Hz), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 149.0, 140.0, 137.8, 130.9, 129.0, 128.0, 127.8, 127.3, 127.1, 124.8, 124.1, 121.1, 119.8, 110.2, 56.0. HRMS m/z [M+H]⁺ calculated for C₁₇H₁₅N₂O₂: 279.1128; Found: 279.1109.

N-(3-Methoxyphenyl)isoquinoline-1-carboxamide (HSR1105)

Yellow solid; 73% yield ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.22 (s, 1H), 9.74 (d, 1H, J = 7.8 Hz), 8.50 (d, 1H, J = 5.5 Hz), 7.88 – 7.82 (m, 2H), 7.68-7.56 (m, 4H), 6.97 – 6.93 (m, 2H), 3.83 (s, 3H),; ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.5, 160.3, 139.6, 139.3, 137.8, 131.0, 129.8, 129.2, 128.0, 127.1, 125.1, 112.2, 110.5, 105.3, 55.5. HRMS m/z [M+H]⁺ calculated for C₁₇H₁₅N₂O₂: 279.1128; Found: 279.1103.

N-(4-Methoxyphenyl)isoquinoline-1-carboxamide (HSR1106)

Yellow solid; 75% yield ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.4 (s, 1H), 9.72 (d, 1H, J = 8.7 Hz), 8.53 (d, 1H, J = 5.5 Hz), 7.92 – 7.88 (m, 2H), 7.80 – 7.72 (m, 2H), 7.61 (m, 1H), 7.31 – 7.30 (m, 2H), 6.73 – 6.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.6, 156.5, 147.8, 140.0, 137.7, 131.4, 130.7, 128.9, 128.0, 127.4, 127.0, 124.8, 121.6, 114.3, 55.6. HRMS m/z [M+H]⁺ calculated for C₁₇H₁₅N₂O₂: 279.1128; Found: 279.1112.

N-(2-(Trifluoromethyl)phenyl)isoquinoline-1-carboxamide (HSR1107)

White solid; 87% yield ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.56 (s, 1H), 9.24 (dd, 1H, J = 7.3 Hz), 8.14 – 8.08 (m, 2H), 7.43 – 7.39 (m, 2H), 7.29 – 7.24 (m, 2H), 7.23 – 7.14 (m, 2H), 6.78 (t, 1H, J = 8.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 164.0, 146.8, 140.3, 137.8, 135.8, 132.9, 130.7, 129.2, 127.6, 127.5, 127.1, 125.3, 124.1, 123.2. HRMS m/z [M-H]⁻ calculated for C₁₇H₁₀F₃N₂O: 315.0750; Found: 315.0767.

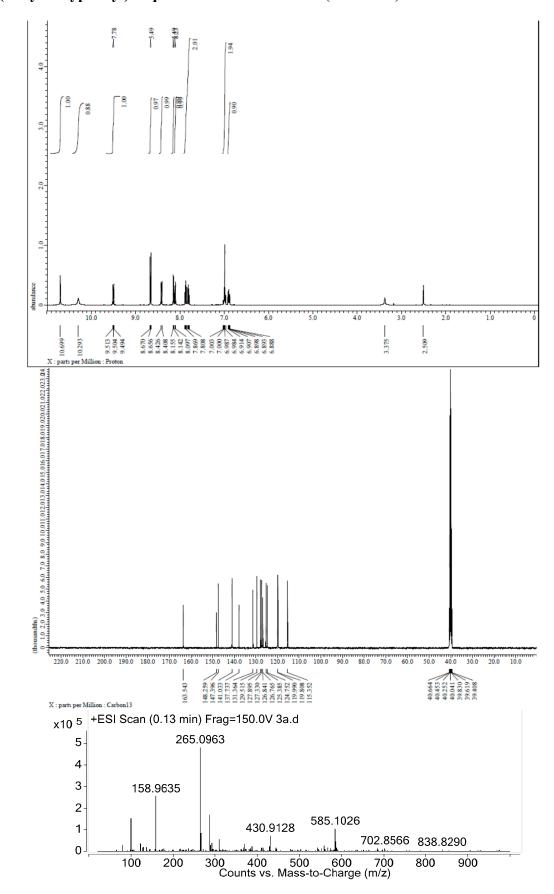
N-(3-(Trifluoromethyl)phenyl)isoquinoline-1-carboxamide (HSR11018)

White solid; 85% yield ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.58 (s, 1H), 9.71 (d, 1H, J = 8.2 Hz), 8.53 (d, 1H, J = 6.0 Hz), 8.17 (s, 1H), 7.99 (d, 1H, J = 8.2 Hz), 7.90 – 7.88 (m, 2H), 7.79 – 7.72 (m, 2H), 7.52 (t, 1H, J = 7.8 Hz), 7.40 (d, 1H, J = 7.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.8, 146.8, 139.8, 136.6, 137.8, 131.0, 129.7, 129.3, 127.7, 127.1, 125.4, 122.8, 120.8, 116.6. HRMS m/z [M-H]⁻ calculated for : C₁₇H₁₀F₃N₂O: 315.0750; Found: 315.0770

N-(4-(Trifluoromethyl)phenyl)isoquinoline-1-carboxamide (HSR1109)

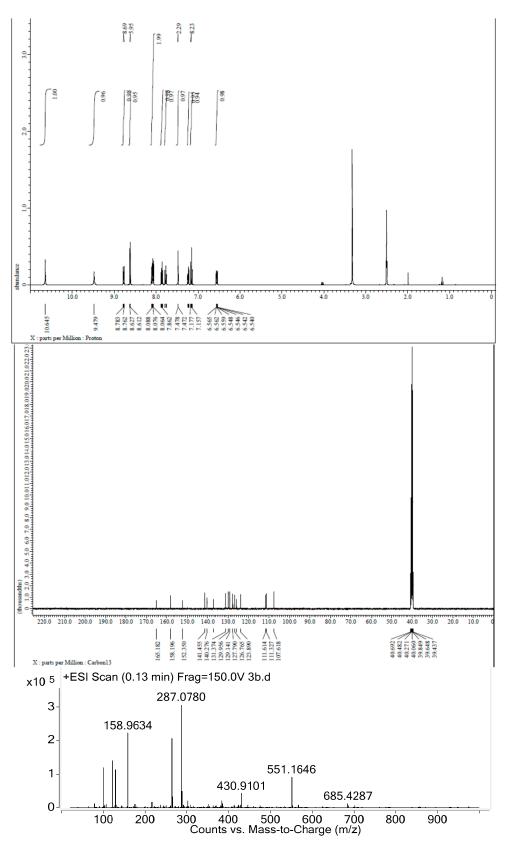
White solid; 78% yield ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.61 (s, 1H), 9.71 (d, 1H, J = 7.3 Hz), 8.55 (d, 1H, J = 5.5 Hz), 7.96 (d, 2H, J = 8.2 Hz), 7.92 – 7.89 (m, 2H), 7.80 – 7.73 (m, 2H), 7.67 (d, 2H, J = 8.7 Hz) ; ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.9, 146.8, 141.1, 140.0, 137.8, 130.9, 129.3, 127.6, 127.1, 126.4, 126.4, 126.0, 125.4, 119.4. HRMS m/z [M+H]⁺ calculated for : C₁₇H₁₂F₃N₂O: 317.0896; Found: 317.0869.

N-(3,5-Bis(trifluoromethyl)phenyl)isoquinoline-1-carboxamide (HSR1110)

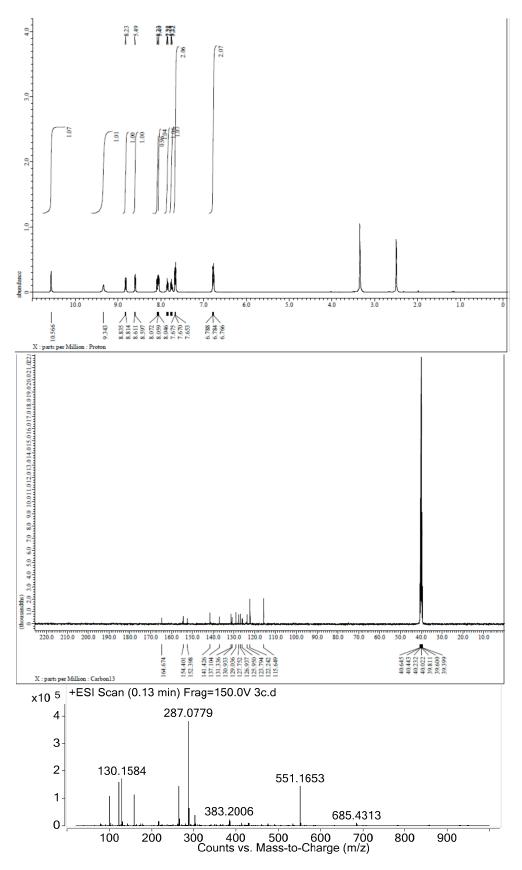

White solid; 89% yield ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.78 (s, 1H), 9.71 (m, 1H), 8.54 (d, 1H, *J* = 5.5 Hz), 8.34 (s, 2H), 7.92 – 7.90 (m, 2H), 7.80 – 7.73 (m, 2H), 7.65 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.9, 146.1, 139.8, 139.5, 137.8, 133.0, 132.7, 132.4, 131.1, 129.5, 127.5, 127.2, 125.8, 124.7, 121.9, 119.4, 117.4. HRMS m/z [M-H]⁻ calculated for : C₁₈H₉F₆N₂O: 383.0624; Found: 383.0635.

N-(3-Chlorophenyl)isoquinoline-1-carboxamide (HSR1111)

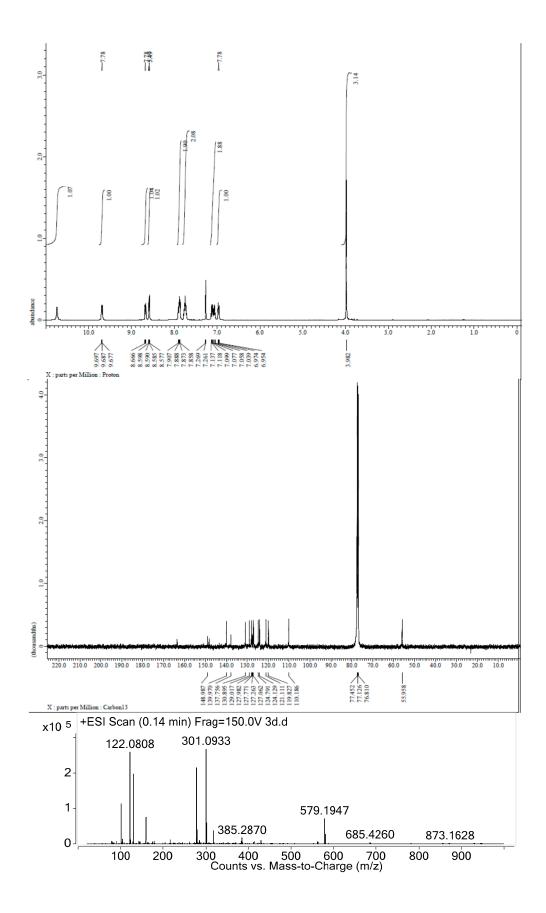

White solid; 63% yield ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.44 (s, 1H), 9.73 (d, 1H, J = 7.3 Hz), 8.53 (d, 1H, J = 5.5 Hz), 7.99 (t, 1H, J = 2.1 Hz), 7.91 – 7.88 (m, 2H), 7.80 – 7.72 (m, 2H), 7.65 (dd, 1H, J = 8.2 Hz), 7.34 (t, 1H, J = 7.8 Hz), 7.15 (dd, 1H, J = 8.2 Hz) ; ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.8, 147.0, 140.0, 139.3, 137.8, 134.9, 130.1, 129.2, 127.78, 127.4, 127.1, 125.3, 124.3, 119.9, 117.8. HRMS m/z [M+H]⁺ calculated for : C₁₆H₁₂ClN₂O: 283.0633; Found: 283.0609.

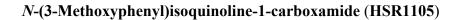

Appendix

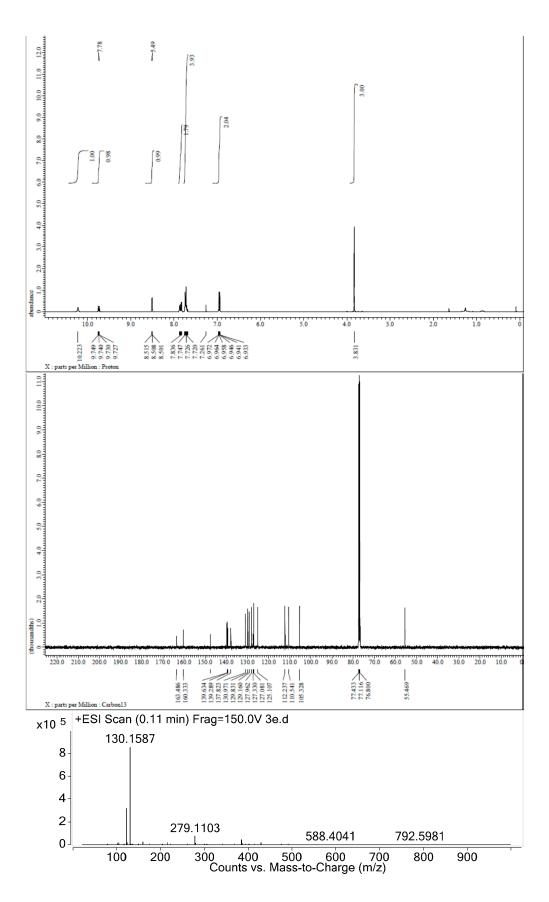
¹H, ¹³C & Mass Spectral Copies of Tested Compounds in this Study

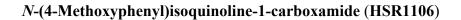


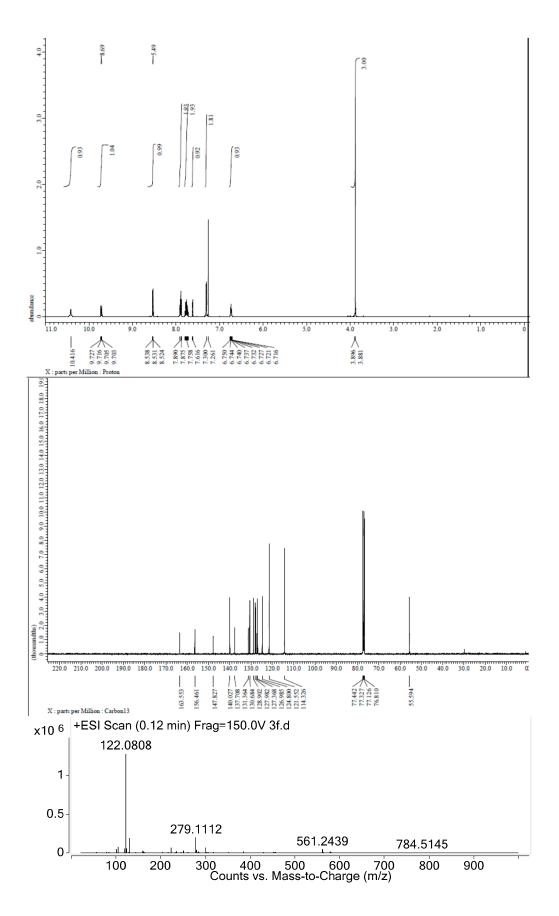
N-(2-Hydroxyphenyl)isoquinoline-1-carboxamide (HSR1101)

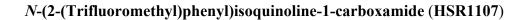


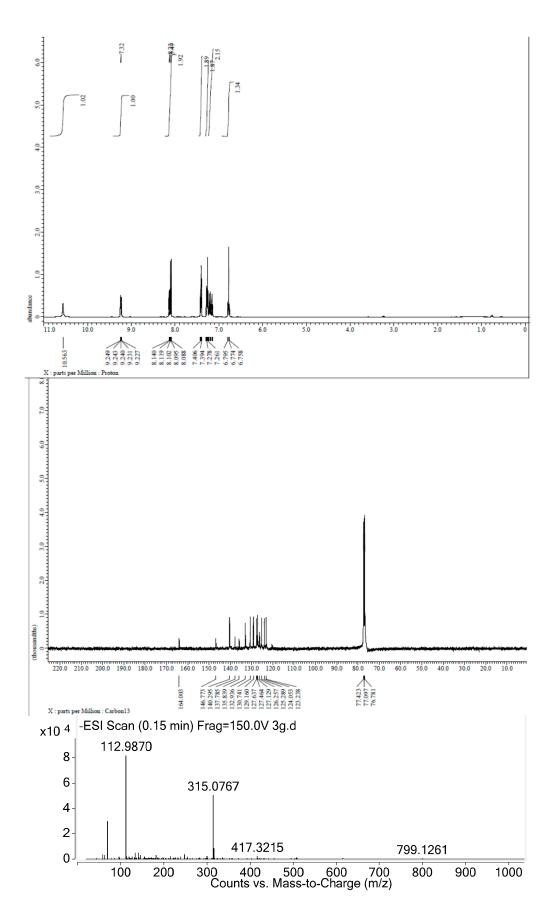


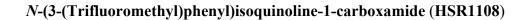

N-(4-Hydroxyphenyl)isoquinoline-1-carboxamide (HSR1103)

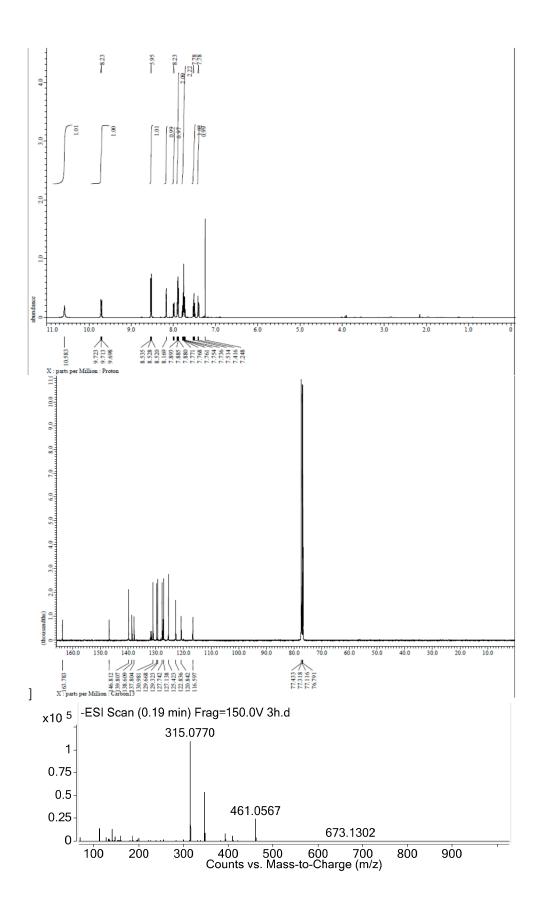


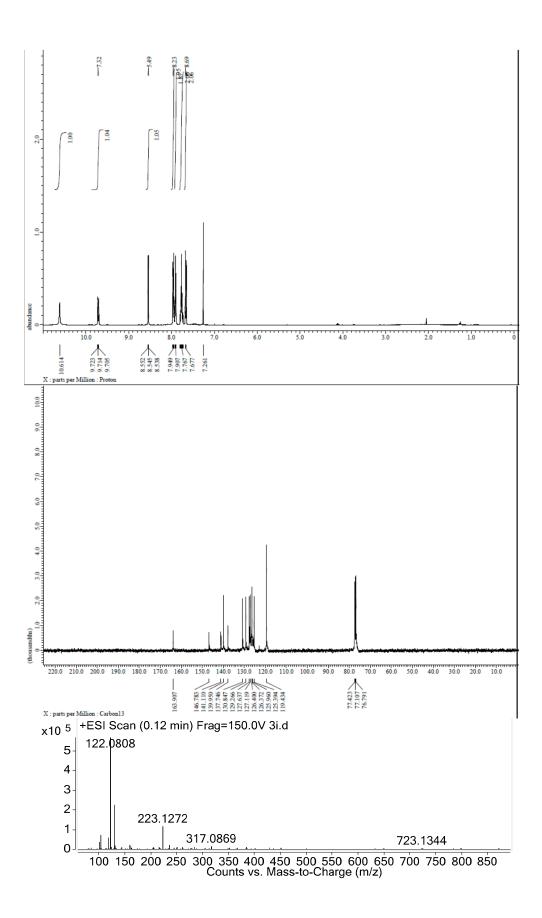

N-(2-Methoxyphenyl)isoquinoline-1-carboxamide (HSR1104)

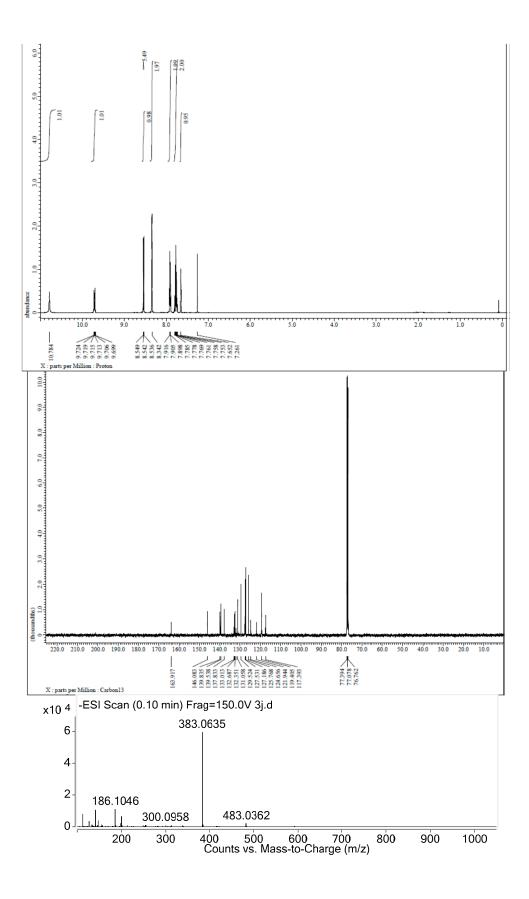


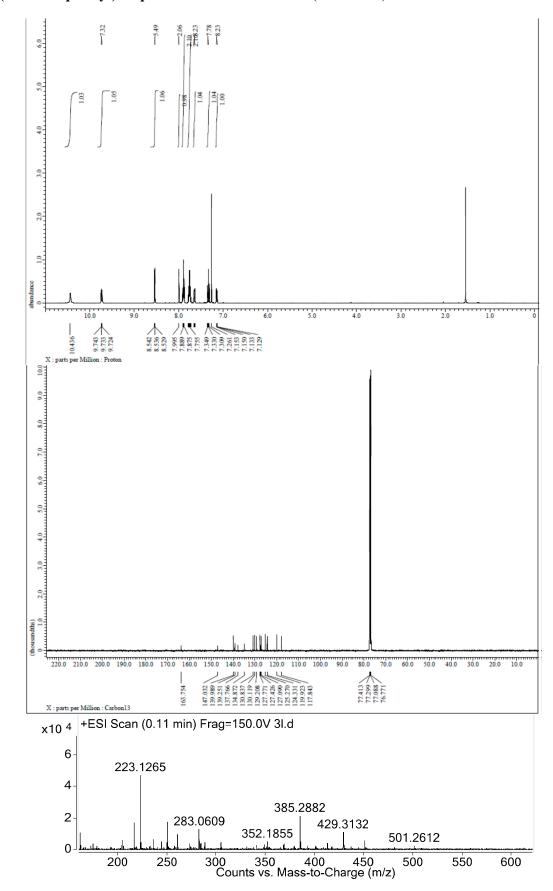












N-(4-(Trifluoromethyl)phenyl)isoquinoline-1-carboxamide (HSR1109)

N-(3-Chlorophenyl)isoquinoline-1-carboxamide (HSR1111)