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Abstract: Prostate cancer (PCa) is the second most common cause of cancer-related mortality among
men in the developed world. Conventional anti-PCa therapies are not effective for patients with
advanced and/or metastatic disease. In most cases, cancer therapies fail due to an incomplete depletion
of tumor cells, resulting in tumor relapse. Exosomes are involved in tumor progression, promoting
the angiogenesis and migration of tumor cells during metastasis. These structures contribute to
the dissemination of pathogenic agents through interaction with recipient cells. Exosomes may
deliver molecules that are able to induce the transdifferentiation process, known as “epithelial to
mesenchymal transition”. The composition of exosomes and the associated possibilities of interacting
with cells make exosomes multifaceted regulators of cancer development. Extracellular vesicles
have biophysical properties, such as stability, biocompatibility, permeability, low toxicity and low
immunogenicity, which are key for the successful development of an innovative drug delivery
system. They have an enhanced circulation stability and bio-barrier permeation ability, and they can
therefore be used as effective chemotherapeutic carriers to improve the regulation of target tissues
and organs. Exosomes have the capacity to deliver different types of cargo and to target specific
cells. Chemotherapeutics, natural products and RNA have been encapsulated for the treatment of
prostate cancers.
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1. Introduction

Prostate cancer (PCa) is the most common solid malignancy, with a high mortality in men [1]. In
many cases, successful treatment of prostate cancer is difficult due to the late detection and rate of
metastasis [2]. Importantly, the tumors of many patients with prostate cancer become refractory to
androgen therapy and progress to metastatic castration-resistant disease [3]. An effective treatment
course of prostate cancer patients requires predictive biomarkers in metastatic castration-resistant
prostate cancer that support individual therapy [4]. Liquid biopsies, circulating tumor cells, exosomes
and circulating nucleic acids have been developed as minimally invasive assays to monitor PCa
patients [5]. Exosomes are extracellular vesicles (EVs), which may serve as novel tools for various
therapeutic approaches, including drug delivery [6], anti-tumor therapy, pathogen vaccination,
immune-modulatory and regenerative therapies. They are secreted by cells and detected in various
biological fluids, and they can serve as biomarkers for cancer diagnosis, prognosis and therapy [7].
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The presence of EVs in urine was discovered in 2004 [8]. It is believed that urinary EVs originate
from epithelial cells of the urogenital system, which includes the organs involved in reproduction and
urine excretion. Urine has additional advantages relating to cancers of the urogenital system, since
the composition of urine directly reflects changes in the function of associated organs. Blood-specific
prostate antigen (PSA) remains the most widely used biomarker in the detection of early prostate
cancer, but new biomarkers, like exosomal miRNAs, have been proposed to increase specificity and
distinguish aggressive from non-aggressive PCas [9]. It has been shown that urinary markers can aid
in the decision-making process regarding whether to carry out a prostate biopsy and in the design of a
therapeutic strategy [10]. Urinary exosomes and their cargo, especially miR-21 and miR-375, have
become an emerging source of biomarkers in the detection and prognosis of PCa [11]. Moreover,
the expression of serum exosomal miRNAs induced by radiotherapy may have potential value as
prognostic and predictive biomarkers PCa [12]. Exosomes are also promising carriers of drugs and
other therapeutic molecules targeting prostate cancer, but there are still several challenges relating to
their use as drug carriers [13].

2. Structure and Function of Exosomes

Exosomes are small (from 30 to 120 nm in diameter) extracellular vesicles (EVs) (Figure 1). Their
lipid bilayer membrane, with a width of 5 nm, protects them from the negative action of RNases
and proteases. Exosomes have a longer retention in circulation in comparison to polymersomes or
liposomes [14]. This characteristic originates from transmembrane protein (CD47-SIRPα), which
prevents exosomes from being phagocytosed [15]. Moreover, the double membrane structures contain
various cargo, such as miRNAs, proteins (e.g., tetraspanin CD63, CD81, CD82, CD53 and CD37, as well
as cystolic proteins), lipids (e.g., sphingomyelin, cholesterol and generally saturated fats) and viral
particles [16], and their presence depends on the origin cells and organism’s health conditions. The
proteins in exosomes include endosomal, plasma and nuclear proteins [17]. Therefore, in comparison
to cellular proteins in prostate cancer, those in exosomes have a higher level of glycosylation [18].
Moreover, proteins enriched in exosomes include those relevant for individual exosomal biogenesis
pathways and for exosome secretion. The Minimal Information for Studies of Extracellular Vesicles
2018 highlights three categories of markers that must be found in isolated extracellular exosomes. They
include at least one transmembrane/lipidbound protein or cytosolic protein and one negative protein
marker [19]. The cargo present in extracellular vesicles can be transferred and alter signaling pathways
in recipient cells [13]. For example, exosomes from metastatic prostate cancer cells showed high
contents of miR-21 and miR-141, which are responsible for the regulation of osteoclastogenesis and
osteoblastogenesis. Cancer-derived exosomes can promote epithelial–mesenchymal transition (EMT)
via miRNAs. They play an important role in the conversion from benign to malignant cancers [13] and
in the regulation of the response to docetaxel, such as miR-34 in prostate cancer cells and cell-derived
exosomes targeting Bcl-2. This shows the great influence of extracellular vesicles on the drug resistance
of prostate cancer cells.

Exosomes are released by the exocytosis of multivesicular bodies (MVBs), developed from early
and then late endosomes [20]. Those naturally occurring membrane particles mediate intercellular
communication by delivering molecular information between cancer and stromal cells, especially
cancer-associated fibroblast (CAFs) [14]. Cancer cell-derived EVs cause very diverse effects and may
depend on their target cells, which appear to take them up in several ways, such as receptor/lipid raft
endocytosis, phagocytosis, micropinocytosis or fusion with the plasma membrane [17]. Some exosomes
can reduce the anti-cancer immune response, interact with specific membrane receptors [9] and promote
a suitable microenvironment, while others may cause drug resistance and the failure of antibody
therapy involving RNA species and protein delivery [21]. Recent studies point out that exosomes
released from the tumor microenvironment can regulate (also by tethering TGFβ) a proliferation, a
reduction of apoptosis, a promotion of angiogenesis and, finally, an evasion of immune surveillance
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(Figure 2). Moreover, exosomes can provide candidate biomarkers for prostate cancer, contribute to
tumor progression and, after a loss of environment homeostasis, promote tumor metastasis [18].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 14 
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3. Tumor-Derived Exosomes in Cancer Progression

3.1. Tumorigenesis

Tumorigenesis or carcinogenesis is the process of an uncontrolled multiplication of cells or
deregulated apoptotic cell death, which leads to the formation of cancer. Exosomes derived from
prostate cancer cells, which have become the common object of scientists’ interest, are implicated in
creating a premetastatic niche [13]. It is a microenvironment that is especially favorable to cancer cells
composed of different cell types, like fibroblasts, lymphocytes, epithelial cells, matrix molecules, factors,
such as growth factors, and cytokines [22]. Exosomes influence the immune system in a premetastatic
niche through various mechanisms. Prostate cells are involved in producing tumor-derived secreted
factors (TDSFs), including VEGF, TNF-α and interleukins in response to the local inflammatory niche.
First, TDSFs stimulate the recruitment of myeloid cells and immune cells to the pre-metastatic niche.
Furthermore, the expression of inflammatory factors is upregulated by stromal cells under the influence
of TDSFs. Moreover, tumor-derived exosome content enhances the pre-metastatic niche [23]. Tumor
exosomes possess the capacity to support the migration of immune cells, like neutrophils, macrophages
and regulatory T to secondary sites, thereby reducing immune response against tumors and inhibiting
antigen-presenting cells, such as dendritic cells. These nanoparticles could impair the function of
T-cells and NK-cells via the blocking, proliferation, activation and provision of apoptosis [23,24].

3.2. Tumor Progression

Recent research suggests that exosomes isolated from the prostate cancer microenvironment are
an important factor in the progression of this type of cancer. The increase in the mass of prostate
tumors may be the result of tumor stem cell proliferation, which possess a self-renewing ability [13,25].
Prostate cancer exosomes, as the carriers of many lipids, proteins and RNAs, can affect the proliferation,
angiogenesis and survival of cancer cells, as well as their ability to avoid immune surveillance [26].
Exosomes, which form in the tumor microenvironment, transport, among other things, miRNAs (miRs,
short noncoding RNAs that are responsible for the regulation of gene expression). miR-20a, miR-21
and miR-125b cause the inhibition of apoptosis and survival, promoting the effects of cancer cells.
miRNA-221 and miR-222 are responsible for cancer growth. miR-92a and miR-17-92 are involved in
the promotion of angiogenesis, as a result of an increased proliferation and migration of endothelial
cells. It has been shown that miR-210 is responsible for the induction of metastasis by EMT promotion.
miR-21, miR-100 and miR-139 induce fibroblast migration by increasing the expression of MMP-2,
MMP-9, MMP-13 and RANKL. miR-21, miR375 and miR-141 overcome low androgen conditions
during distant metastasis. miR-1290 and miR-375 are connected with a poor patient prognosis. miR-409
downregulates tumor suppressors, like RSU1 and STAG2, and promotes cancer cell tumorigenesis. The
ANXA6/LRP1/TSP1 complex causes tumor growth induction. miR-126 and miR-146a are involved in
tumor suppression [27–30]. Moreover, exosomes, with a structure rich in lipids, especially cholesterol
and sphingomyelin, can modulate the lipid composition of the target cells, disturbing their homeostasis.
A study on prostate cancer has shown that the accumulation of cholesterol esters in prostate cancer cells
is associated with tumor progression and metastasis. This was confirmed by studies, using synthetic
exosomes carried out by the Lombardo Group, which showed that exosomal lipids can increase the
tumor aggressiveness, metastatic progression and drug resistance of pancreatic cancer cells [31].

It is well known that exosomes secreted by prostate cancer cells under hypoxic conditions
increase the invasiveness, mobility and EMT in native PC cells and promote the transformation of
fibroblasts into myofibroblasts. Moreover, under these conditions, lipid accumulation (triglycerides,
bis-monoacylglycerolphosphate, ceramides, cholesterol, etc.) increase in PCs, which leads to increased
exosome secretion by hypoxic tumor cells [32].

Exosomes also participate in the regulation of the progression of prostatic tumors, as the carriers of
numerous proteins. These vesicular structures, as carriers of TGF-β, can induce the above-mentioned
transformation of fibroblasts into myofibroblasts (CAFs) by the activation of TGF-β/Smad3 signaling or
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independent SMAD signaling pathways and promote neoangiogenesis. Webber found that exosomal
TGFβ1 induces a highly aggressive myofibroblast phenotype, with a high proangiogenic activity [13,33].
ITGA3, ITGB1, ITGB4 and ITGB3 are exosomal proteins involved in the progression of prostate cancers.
These integrins are responsible for the promotion of the migration and invasion of epithelial cells by the
activation of Src phosphorylation in recipient cells. The matrix metalloproteinases MMP-9 and MMP-14
promote cancer cell protection from apoptosis and intensify their mobility through the stimulation
of ERK1/2 phosphorylation. Subsequently, they prepare the metastatic site [26,27]. The next group,
ligands for the NKG2D and Fas receptors, causes tumor immune evasion by receptor downregulation
and silences the cytotoxic activity of NK cells and CD8+ cells. Caveolin-1 increases the survival of cancer
cells and their independence from androgens, and they also promote distant metastasis by the positive
regulation of fatty acid synthase activity. Hypoxia-inducible factor 1α (HIF-1α) promotes the initiation
and progression of metastasis by promoting the loss of E-cadherin. The tetraspanin–integrin complex
increases the adhesion of exosomes to the right cells. The epidermal growth factor receptor (EGFR)
induces tumor angiogenesis by the activation of the autocrine VEGF/VEGFR-2 pathway in endothelial
cells. Tyrosine-protein kinase Met induces metastasis and promotes a phenotype resistant to castration
therapy. Other exosomal proteins, c-Src tyrosine kinase, IGF-1R and FAK, induce angiogenesis by the
stimulation of the VEGF transcription within the tumor microenvironment [34–39].

It has also been shown that tumor-derived exosomes enhance interleukin-6 production in
myeloid-derived suppressor cells through the activation of Toll-like receptor 2 via the membrane-linked
heat shock protein, which promotes the autocrine phosphorylation of Stat3 and enhances the effect of
the immunosuppression of the immune system and the promotion of prostate cancer [40].

Exosomes secreted by prostate cancer cells are also involved in tumor metastasis in bone, which
is common in patients with this type of cancer. Recent studies have shown that prostate cancer
cell-derived exosomes mediate cell–cell communication in osteoblastic metastasis. On the other hand,
osteoblast-derived exosomes may regulate prostate cancer cell proliferation at the original site of tumor
development [41].

Exosomes secreted by tumor cells affect the stromal cells by stimulating the formation of
pro-proliferative and proangiogenic phenotypes in these cells. It has been shown that exosomes
secreted by cancer-associated fibroblasts increase the ability of prostate cancer cells to proliferate
and survive in low-oxygen and low-nutrient environments by inhibiting mitochondrial oxidative
phosphorylation and increasing anaerobic glycolysis [33,42].

3.3. Angiogenesis

Exosomes obtained from prostate cancer stem cells support tumorigenesis by promoting
angiogenesis, which, as a process of developing a new vasculature, is crucial for tumor growth
and migrations and is the main cause of metastasis and malignancy. A recent report has shown that
some conditions, like hypoxia or acidosis, enhance secreting exosomes in bodily fluids, and these
exosomes cause angiogenesis more frequently [30]. Studies have also reported that the expression of
E-cadherin and carbonic anhydrase 9 in exosomes could contribute to the angiogenesis process [43]. In
the case of prostate cancer, the process of vascularization is supported by the transfer of sphingomyelin
and CD147 via exosomes into endothelial cells [44]. Newly formed blood vessels are created to
facilitate tumor growth by transporting TDSFs and circulating tumor cells (CTCs) into secondary
tissues, thereby beginning vascular leakage [23]. Prostate cancer cell-derived exosomes, via the
activation of TGF-β\SMAD3 signaling, lead to the transformation of fibroblasts into myofibroblasts,
referred to as CAFs. The exosomes derived from these special kinds of cells are able to cause an
explosive growth of prostate cancer cells by transferring the miRNAs (miR-21 and miR-409) into
neighboring epithelia. miR-21 suppresses the expression of APAF1 (apoptotic peptidase activating
factor 1) and PDCD4 (programmed cell death 4) to inhibit apoptosis and make cancer cells resistant to
chemotherapeutics [13]. Increased angiogenesis and vascular permeability promote metastasis.
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3.4. Metastasis

Tumor metastasis is a complicated process, including vascular leakiness and an alteration
of the microenvironment, in which exosomes are also involved. Initially, exosomes begin an
epithelial–mesenchymal transition (EMT) via miRNAs by losing their junction and adhesion ability.
Thus, epithelial tumor cells obtain mesenchymal cell properties and are responsive to malignancy [45].
Exosomes support the formation of a pre-metastatic niche, and cells could then be found at the
vascularized organs, but metastasis cannot be developed randomly, but rather only in preferential
sites under the direction of exosomes. In the process of this expansion, the special kind of CTCs
(metastases-initiating cells (MICs)) are involved [46]. MICs can act on other cells by secreting exosomes
that reprogram adjacent stromal cells to create a more favorable tumor microenvironment in order to
support cancer growth and progression. As mentioned above, cancer-derived exosomes determine
organotropism. Prostate cancer possesses an affinity with bone. Exosomes obtained from prostate
cancer cells by osteoclast fusion and differentiation support transmission to this destination [47].
Furthermore, exosomes derived therefrom, through the activation of RANKL, FOXM1 and c-Myc,
support EMT [46]. As described previously, cancer cell-derived exosomes transfer various substances,
including integrins, which are responsible for organotropism. Integrin σ3 and β1 lead to the migration
and dissemination of epithelial cells. In addition, integrin avb6, expressed on the surface, is responsible
for the metastatic phenotype [48]. The tumor microenvironment contributes to the regulation of prostate
cancer progression through proliferation, angiogenesis and metastasis, and it also regulates immunity.

3.5. Tumor Immune Escape

The immune system is able to recognize transformed cells and eliminate them. Thus, tumors use
diverse mechanisms to escape from immune-mediated surveillance. Exosomes derived from prostate
cancer cells impair the cytotoxic function of lymphocytes and induce the apoptosis of CD8+ T cells [23].
In the first step, exosomes activate the T cell receptor, and the expression of Fas on the T cell is then
upregulated. Subsequently, FasL induces apoptosis directly via receptor CD 95/APO1 or indirectly
using dendritic cells [49]. Fas-mediated apoptosis, as an immune-evasive mechanism, may lead to
tumorigenesis, but it may also be responsible for drug resistance [49]. Some other mechanisms and
molecules may also contribute to T cell apoptosis. Among the substances carried by exosomes is the
programmed death ligand 1 (PDL-1). Exosomal PDL-1 plays the same role as tumor PDL-1. PDL-1
binds to its receptor, PD-1, expressed on the surface of activated T and B cells or macrophages, and
enables T cell apoptosis [50]. On the other hand, cancer-derived exosomes can not only cause the
dysfunction of T and NK cells by blocking the activation and proliferation or induction of apoptosis,
but also inhibit antigen-presenting cells and antitumor immune response [23]. While exosomes are
characterized by heterogeneity and a risk of developing metastasis, those nanoparticles could be used
as diagnostic and prognostic biomarkers for various cancers and as promising drug carriers.

4. The Potential of Exosomes in Prostate Cancer Diagnosis and Monitoring

EVs may be key biomarkers in the early diagnosis of prostate cancer and in a personalized
approach to treatment and to future patients’ prognosis [26]. EVs in the blood and urine of prostate
cancer patients contain unique prostate-cancer-specific contents, which are biomarkers of prostate
cancer and cancer metastasis [51,52]. Exosomes present many different proteins on their surface. These
proteins can act as epitopes, which are recognized using different mono- or polyclonal antibodies. A
dedicated assay has been established to determine if the exosomes in blood plasma can serve as markers
for prostate cancer [51]. Additionally, several EV-derived proteins have been investigated as potential
cancer biomarkers in clinical settings [53]. Several urinary exosome proteins showed a high sensitivity
and specificity for prostate cancer as individual biomarkers, and combining them in a multi-panel
test has the potential for a full differentiation of prostate cancer from non-disease controls [52].
Liu et al. showed that exosomes from prostate cancer are highly enriched with PSA, representing
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characteristics of the original PCa cells [54]. Current evidence indicates that the strongest candidates
for intercellular communications in PCa are exosomal RNAs [55]. The EV-derived RNAs have also
been assessed in terms of their potential as cancer biomarkers in clinical samples. Yang et al. confirmed,
through meta-analysis, that plasma exosomal miRNAs have a high diagnostic value for prostate cancer
patients [56]. Hessvik et al. identified 36 exosomal miRNAs as biomarker candidates for PCa in clinical
studies [57]. In prostate cancer, plasma vesicles, isolated using the precipitation-based ExoQuick
method, identified miR-1290 and miR-375 as potential prognostic biomarkers in castration-resistant
prostate cancer (CRPC), since their level correlates with a poorer overall survival (p < 0.004) [58,59].
Joncas et al. demonstrated that the exosomal androgen receptor splice variant (AR-V7) is correlated
with lower sex steroid levels and with a poor prognosis in CRPC patients [60]. For prostate cancer,
the expression of the AR-V7 RNA in CTCs was identified as a predictive marker for response to
enzalutamide (anti-androgen) and abiraterone (anti-androgen and CYP17 inhibitor) [61]. Whether the
AR-V7 transcript can also be measured in plasma EVs and serve as a biomarker was investigated by
Del Re et al. [62]. Using the exoRNeasy purification method, EV-RNA was extracted, and the AR-V7
transcript was detected, preferentially in patients resistant to enzalutamide or abiraterone treatment.
This study, as well as other studies, shows the biomarker potential of plasma-derived EV-RNA and the
advantages with respect to the cost, ease of workflow and likelihood that all (heterogeneous) tumors are
represented by a specific EV population. Communication between a tumor and its environment in PCa
via extracellular vesicle (EV) RNAs is a potential mechanism of bone metastasis [63]. It has been shown
that exosomal miR-375 significantly promoted osteoblast activity [64]. Krishn et al. proved that prostate
cancer sheds the αvβ3 integrin in vivo through exosomes. The exosomal αvβ3 integrin has been
shown to promote aggressive phenotypes in many types of cancers and may be clinically useful as a
non-invasive biomarker to follow prostate cancer progression [65]. Another paper has reported survivin
as a plasma-derived EV biomarker through the isolation of total EVs by the ultracentrifugation-based
method for prostate cancer [66]. It has been shown that exosomes released by irradiated prostate cancer
cells are enriched in B7-H3 protein (CD276), which has been identified as a diagnostic marker [67].
Furthermore, the serum exosomes of prostate cancer patients undergoing radiotherapy had increased
levels of HSP72, which plays a key role in the stimulation of pro-inflammatory immune responses [68].
Additionally, urinary exosomes are a promising non-invasive biomarker, with a potential use in the
diagnosis, prognosis and monitoring of prostate cancer [69].

5. The Potential of Exosomes in Prostate Cancer Therapy

5.1. Exosomes as Drug Carriers for Prostate Cancer Therapy

Extracellular vesicles have biophysical properties, such as stability, biocompatibility, permeability,
low toxicity and low immunogenicity, which are key to successful drug delivery systems [70]. They
have an enhanced circulation stability and bio-barrier permeation ability, and they can therefore be
used as effective chemotherapeutics carriers to improve the regulation of target tissues and organs [71].
Chemotherapeutics, natural products and RNA were combined for the treatment of prostate, breast,
pancreatic, and lung cancers, as well as glioblastoma [14]. Exosomes have the capacity to deliver
different types of cargo and to target specific cells (Figure 3). They have been tested for the delivery of
different therapeutic agents in in vitro and in vivo experiments [72]. EVs can be used as carriers to
deliver therapeutic agents to tumor cells, leading to an effective tumor cell killing, while minimizing
the side effects of the drugs [73]. It has been shown that mesenchymal stromal cells are able to package
and deliver active drugs through their membrane microvesicles (MVs) [74]. Additionally, Tian et
al. demonstrated that exosomes modified by targeting ligands can be used therapeutically for the
delivery of doxorubicin to tumors [75]. Additionally, Qi et al. confirmed that drug-loaded exosomes
enhanced cancer cell targeting under an external magnetic field and suppressed tumor growth [76].
Saari et al. confirmed that cancer cell-derived EVs can be used as effective carriers of Paclitaxel to
autologous prostate cancer cells by increasing its cytotoxicity [21]. The simultaneous application of



Int. J. Mol. Sci. 2020, 21, 2118 8 of 14

either radiation technology or nuclear medicine with exosomes are promising tools for the realization
of the enhancement of targeting strategies using radiation technology [77].
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5.2. Precision Therapy

Exosomes have been shown to be crucial for the development of drug resistance in patients with
prostate tumor. In 2017, Del Re et al. assessed AR-V7 as a predictor of resistance to hormonal therapy
by highly sensitive digital droplet polymerase chain reaction in plasma-derived exosomal RNA. They
found that both the median progression-free survival (20 vs. 3 months; p < 0.001) and overall survival
(8 months vs. not reached; p < 0.001) were significantly longer in AR-V7-negative vs. AR-V7-positive
patients [62]. Exosome-derived microRNAs also contribute to PCa chemoresistance [78] and can act
as surrogate biomarkers of tumor response to taxanes [79]. It has been observed that the transfer of
exosomes (in particular, MDR-1/P-gp) from docetaxel-resistant cell lines to the DU145, 22Rv1, and
LNCap PCa cell lines induces an acquired resistance to this drug [80]. In the same view, Kawakami et
al. reported that β4 (ITGB4) and VCL in exosomes could be useful markers of PCa progression, which
is correlated with taxane resistance [81]. Interestingly, high serum exosomal P-glycoprotein levels are
associated with resistance to docetaxel, but not to cabazitaxel, thus representing a potential biomarker
for guiding the decision-making process of PCa patients [82].

There is currently also a list of challenges that remain in the era of individualized or person-specific
targeting of cancer. EVs are being pursued as intercellular vectors for RNA-based therapy (both
miRNAs and siRNAs), with a documented efficacy in animal models of disease. For example, the
in vivo suppression of prostate cancer has been achieved through the exosome delivery of the tumor
suppressor miRNA, miR-143, in mice [83].

6. Concluding Remarks and Future Directions

Increasingly, studies confirm the potential of exosomes as therapeutic vehicles for cancer treatment.
Exosomes can transfer cargos with both an immunoregulatory potential and genetic information.
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They can decrease tumor cell invasion, migration and proliferation by enhancing immune response,
cell death and sensitivity to chemotherapy. Exosomes have a high potential for both as diagnostic
and therapeutic agents in immune therapy, vaccination trials and regenerative medicine. The native
structure and unique cellular functions of exosomes give them a great potential as natural drug/gene
delivery vehicles, but developing efficient and reliable isolation methods is necessary to fully utilize
their potential [84]. The use of exosomes in clinical applications must be further investigated in
order to establish standards for exosome characterization and manipulation [85]. The most important
thing is to choose optimal methods for engineering exosomes and ensuring the safety of engineered
exosomes in clinical trials [86]. Furthermore, the translation of EVs into clinical therapies requires their
categorization as active drug components or drug delivery vehicles [6]. It is also necessary to clarify
the composition and action mechanism of the various substances in exosomes and determine how to
obtain highly purified exosomes and the right dosage for their clinical use [15]. Another important
therapeutic use of EVs could be cancer vaccination [87]. In brief, exosomes are very promising tools for
the future theranostics of prostate cancer, but their use first requires solutions for the many challenging
issues remaining.
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APAF1 apoptotic peptidase-activating factor 1
AR-V7 androgen receptor variant 7
CAFs cancer-associated fibroblast
CRPC castrate-resistant prostate cancer
CTCs circulating tumor cells
EGFR epidermal growth factor receptor
EMT epithelial–mesenchymal transition
EV extracellular vesicles
FASL ligand Fas
HIF-1α hypoxia-inducible factor 1α
HSP heat shock proteins
ITGB4 integrin β4
MICs metastases-initiating cells
miR micro RNA
MMP matrix metalloproteinase
MVBs multivesicular bodies
PCa prostate cancer
PDCD4 programmed cell death 4
PDL-1 programmed death ligand 1
PSA prostate specific antigen
RANKL receptor activator for nuclear factor κB ligand
RSU1 Ras suppressor protein 1
siRNA small interfering RNA
STAG2 cohesin subunit SA-2
TDSFs tumor-derived secreted factors
TGFβ transforming growth factor β
VCL vinculin
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