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Abstract: Increased oxidative stress and mitochondrial damage are observed in protein aggregation 

diseases, such as age-related macular degeneration (AMD). We have recently reported elevated levels 

of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and 

extracellular drusen-like structures in the retinal pigment epithelial cells (RPE) of the dry AMD-

resembling NFE2L2/PGC1α double knockout (dKO) mouse model. Here, we provide evidence of a 

disturbance in the autolysosomal machinery handling mitochondrial clearance in the RPE cells of 

one-year-old NFE2L2/PGC1α-deficient mice. Confocal immunohistochemical analysis revealed an 

upregulation of autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) 

as well as numerous mitophagy markers, such as PTE-induced putative kinase 1 (PINK1) and E3 

ubiquitin ligase (PARKIN) together with damaged mitochondria. However, we detected no evidence 

of increased autolysosome formation in transmission electron micrographs or of colocalization of 

lysosomal marker LAMP2 (lysosome-associated membrane protein 2) and the mitochondrial marker 

ATP synthase β in confocal micrographs. Interestingly, we observed an upregulation of late 

autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells together with 

autofluorescence aggregates. Our results reveal that there is at least a relative decrease of mitophagy 

in the RPE cells of NFE2L2/PGC1α dKO mice. This further supports the hypothesis that mitophagy is 

a putative therapy target in AMD-like pathology. 

Keywords: ageing; oxidative stress; mitochondrial damage; age-related macular disease; mitophagy; 
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1. Introduction 

Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly 

[1–3]. AMD is a multifactorial disease which develops as a response to complex interactions between 

metabolic, genetic and environmental risks. The cellular pathology involves oxidative stress, protein 

aggregation and inflammation [4–6]. 

A gradual loss of central vision due to degenerative and neovascular changes in the outer retina 

is characteristic of AMD (Figure 1). The early observed clinical hallmark is degeneration of the retinal 

pigment epithelium (RPE), involving the accumulation of protein, lipids and carbohydrates 

containing lysosomal lipofuscin and extracellular drusen deposits (Figure 1) [7–10]. Choroidal 

neovascularization is a diagnostical criterion for wet AMD. RPE cells have a key role in regulating 

the visual cycle and supporting the survival and maintenance of the functionality of photoreceptor 

cells (PRCs). 

 

Figure 1. A cross-section of the human eye (a). The main outer retina layers in the healthy eye (b). The 

accumulation of drusen deposits (red arrow) and degeneration of retinal pigment epithelium (RPE) 

cells are detected in dry age-related macular degeneration (AMD) (c). Together with the dry AMD 

signs, choroidal neovascularization (black arrow) is a clinical hallmark of wet AMD (d). 

Functionally impaired mitochondria and cellular oxidation levels are linked to age-related 

neurodegenerative diseases, such as AMD [11–14]. RPE cells are known to be quiescent and their 

mitochondria are particularly prone to oxidative stress. In addition, each day RPE cells face enormous 

metabolic challenges in ensuring the diurnal endolysosomal clearance of lipid-rich photoreceptor 

outer segments (POS). Our recent observations support the hypothesis that oxidative stress and 

mitochondria damage are central factors in the pathology of AMD [15]. Once nuclear factor erythroid 

2-related factor 2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PGC-1α) genes are silenced, it is possible to detect evidence of oxidative stress, protein 

aggregation and mitochondrial damage resembling the clinical signs of dry AMD [16,17].  
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In general, autophagy involves a bulky nonselective degradation pathway and selective form 

which maintains intracellular homeostasis by mediating and degrading cytoplasmic materials, such 

as misfolded proteins, damaged organelles, lipids and carbohydrates, by target-specific 

autolysosomal degradation. Subsequently, recycled materials are utilized for other cellular processes. 

In selective autophagy, specific cargos are ubiquitinated and recognized by autophagy adaptor 

proteins such as sequestosome-1 (p62/SQSTM1) preceding autolysosomal degradation [18–21]. 

Selective autophagy can be classified according to the specific target, e.g., mitophagy (mitochondria), 

lipophagy (lipid droplets), glycophagy (glycogen) and ribophagy (ribosomes) [22,23].  

Unlike canonical selective autophagy, once mitochondrial damage and depolarization has 

occurred, the serine/threonine kinase PINK1 (PTEN-induced putative kinase 1) serves as a sensor for 

the mitochondrial polarization state. Under normal conditions, the polarized mitochondrial PINK1 

is imported into the mitochondria and becomes rapidly degraded by combined activity of protease 

PARL (presenilin associated rhomboid-like protein) and proteasomes [24,25]. Mitochondrial 

depolarization results in the accumulation of PINK1 on the outer mitochondrial membrane (OMM) 

and recruitment of PARKIN (465-residue E3 ubiquitin ligase) from the cytosol. PINK1 at the OMM 

phosphorylates ubiquitin at serine 65 [26–28] and the ubiquitin-like domain of PARKIN at serine 65 

[29]. Once recruited and activated, PARKIN E3 ligase activity ubiquitinates numerous downstream 

autophagosome-related proteins and stimulates the local formation of autophagosomes with LC3 

(microtubule-associated proteins 1A/1B light chain 3B) via their LIR motifs (LC3 interacting region) 

[30,31]. Once the autophagosome has matured, the RAS-related GTP-binding proteins (Rab family 

proteins) become involved in the modulation of lysosome and autophagosome fusion process and 

the subsequent cargo degradation by hydrolytic enzymes. In particular, Rab5 is known to associate 

with the autophagosomal precursor, whereas Rab7 is involved in the late endolysosomal process 

[32,33]. 

In this study, we show that absence of NFE2L2/PGC-1α, the master regulators of antioxidant 

production and mitochondrial biogenesis, leads to disturbed mitophagy in the mouse RPE cells. The 

data suggest that there is a functional initiation of the mitophagy, but it fails during the late stages of 

process.  

2. Results 

2.1. Mitochondria Validation  

Initially we examined the condition of the PRCs, Bruch’s membrane and choroid of one-year-

old wild type (WT) and double knockout (dKO) mice (Supplementary Figure 1). The WT mice 

displayed the normal phenotype of PRCs, RPE and intact Bruch’s membrane in retina. The dKO 

animals [15] were characterized with typical AMD signs, such as an accumulation of drusen-like 

deposits. The total number of mitochondria in WT and dKO was analyzed using mitochondrial 

import receptor unit TOM20 immunostaining (Figure 2). We observed no statistical TOM20 staining 

difference between WT and dKO in mitochondria. Since TOM20 recognizes both healthy and 

damaged mitochondria, we conducted ultrastructural transmission electron microscope (TEM) 

analysis. A decline in viable mitochondria and higher mitochondrial damage were detected in dKO 

RPE cells (Supplementary Figure 1). 
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Figure 2. Confocal microscopy analysis of mitochondria in RPE cells. Mitochondrial marker TOM20 

(red) binds to OMM of both healthy and damaged mitochondria in RPE cells of wild type (WT) (a) 

and double knockout (dKO) mice (b). The relative changes of the total mitochondrial number in dKO 

versus WT are shown, n = 5 images per eye/animal (c). Scale = 5 µm. TMN, total mitochondrial 

number. 

2.2. PINK1/PARKIN in Primary Mitochondrial Quality Control System 

During mitophagy, PINK1 is known to be stabilized on the OMM and recruit PARKIN along 

with the series of other autophagy-related proteins to initiate local autophagosome formation. The 

initiation of mitophagy process in RPE cells of dKO was initially assessed by analyzing the 

recruitment of mitochondrial sensor PINK1 and PARKIN on the damaged mitochondria using 

double staining immunofluorescence (Figure 3). In dKO, the RPE cells revealed a ~7% reduction in 

total puncta. However, the colocalization was significantly increased by ~118% as compared to WT 

(Figure 3i). The occurrence of colocalization was observed in ~6% of WT and in ~12% of dKO, as 

normalized to the total number of puncta from each channel. Next, PINK1/PARKIN colocalization 

with phospho-ubiquitin serine 65 (pS65) was assessed (Figure 4). PARKIN phosphorylated at the 

Ser65 by PINK1 is known to specifically bind to pS65 [34,35]. We observed a ~33% increase in the 

total puncta in dKO along with an increased colocalization of pS65 and PARKIN by 115% in dKO 

RPE cells (Figure 4i). The increase in colocalization of pS65/PARKIN reflected the recruitment of 

phosphorylated PARKIN to the damaged mitochondria and the initiation of mitophagy. Studies have 

also shown PINK1/PARKIN-unrelated mitophagy receptors that may contribute to the mitophagy 

activation [20]. We studied the role of oxidative stress and hypoxia-related ubiquitin-dependent and 

ubiquitin-independent mitophagy receptors in dKO mice model. However, AMBRA1 (autophagy 

and beclin-1 regulator 1), Bnip3 (BCL2 interacting protein 3) and FUNDC1 (FUN14 domain-

containing 1) did not colocalize with mitochondrial marker ATP synthase β, indicating that these 

receptors do not actively participate in mitophagy initiation in this model (Appendix A, Figure A1). 

In summary, our results suggest that PINK1/PARKIN control the regulation of mitophagy in 

situations of oxidative stress and mitochondrial damage [36]. 
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Figure 3. Confocal microscopy analysis of the mitophagy initiation in the RPE cells by staining PINK1 

and PARKIN. One-year-old WT and dKO mice focusing on the RPE cells in the vicinity of the optic 

nerve (a,e). PINK1 (b, red) and PARKIN (c, green) were double-stained and the merged image (d) 

was used to count the colocalized puncta from WT. Similarly, in dKO PINK1 (f, red) and PARKIN (g, 

green) were double-stained, and the merged image (h) was used to count the colocalized puncta. In 

dKO, we observed a ~7% decrease in the total number of puncta; however, the number of 

colocalizations was increased by ~118% (i). Scale = 5 µm. *p = 0.01. 

 

Figure 4. WT and dKO RPE cells (a, e) were double-stained for pS65 (b, f) and PARKIN (c, g) and 

analyzed by confocal microscopy. In dKO, we observed a ~33% increase in the total puncta with a 

~115% increase in colocalization as compared to WT (d, h and i). Scale = 5 µm. p = 0.2. ns—

Nonsignificant.  
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2.3. Relative Decrease in Autolysosomal Clearance and Impaired Mitophagy Process 

After PINK1/PARKIN have been localized in the outer membranes of damaged mitochondria, 

then autophagosome should be formed. We analyzed the formation of the autophagosome by 

undertaking double staining of LC3B and mitochondrial marker ATP synthase β (Figure 5). In 

principal, once mitophagy has been activated, the proteins form mature autophagosomes before 

fusing with a lysosome. The colocalization of LC3B and ATP synthase β (Figure 5d and h) are 

evidence of the formation of the autophagosome. In dKO RPE cells, we observed a statistically 

significant ~158% increase in the positive colocalization, preceding a ~21% increase in total number 

of puncta as compared to WT cells (Figure 5i). In addition, the correlation of colocalization within 

WT was ~12%; in dKO it was ~21%. These data reveals the relative increase in autophagosome 

formation, particularly the form mediated via PINK1/PARKIN pathway.  

In summary, we have observed that damaged mitochondria are marked by PINK1/PARKIN and 

that autophagosomes with mitochondrial cargo are formed more extensively in the dKO mice than 

in the corresponding WT animals. Subsequently, in an attempt to track the clearance of the cargo, we 

applied the double-staining of the lysosomal marker LAMP2 and mitochondrial marker ATP 

synthase β (Figure 6). In dKO RPE cells, the total number of puncta and the degree of colocalization 

were increased only by ~8% and ~20%, respectively. This clearly indicates that there is a profound 8-

fold decrease in the numbers of autolysosomes (Figure 6i) as compared to autophagosomes (Figure 

5i). Hence, one can conclude that, in conditions of oxidative stress and mitochondrial damage, the 

process of mitophagy could be impaired in our NFE2L2/PGC-1α dKO mice model, which has many 

of the characteristics of AMD.  

Since the staining of LAMP2/ATP synthase β did not show significantly increased colocalization, 

we used transmission electron microscopy (TEM) and immunogold labeling of PINK and PARKIN 

to detect mitochondria-specific autophagic organelles. We were unable to identify a clear difference 

in the number of mitochondria-specific autophagosomes and reduced formation of autolysosomes 

when comparing between WT and dKOs, although, the latter animals had revealed a decreased 

tendency in line with our colocalization results (Figure 7). Moreover, no PINK or PARKIN 

immunogold signals were seen in WT, while dKO samples showed positivity inside the mitochondria 

(Figure 7e). 

 

Figure 5. Confocal microscopy analysis of autophagosome marker LC3B and mitochondrial marker 

ATP synthase β in WT and dKO RPE cells (a, e). The colocalization of LC3B (b, f) and ATP synthase 

β (c, g) will show the amount of local autophagosome formation. Our image analysis showed a ~158% 

increase in the LC3B and ATP synthase β colocalization in dKO compared to in WT (d, h and i). Scale 

= 5 µm. **p < 0.0025.  
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Figure 6. Confocal microscopy analysis of lysosomal marker LAMP2 and mitochondrial marker ATP 

synthase β in WT and dKO RPE cells (a, e). The colocalization of LAMP2 (b, f) and ATP synthase β 

(c, g) shows the amount of autolysosome formation. Image analysis showed no significant changes in 

LAMP2 and ATP synthase β colocalization in dKO animals compared to WT (d, h and i). Scale = 5 

µm. p = 0.70. ns—Nonsignificant.  

 

Figure 7. Representative TEM pictures of autophagosome and autolysosome of selective autophagy, 

i.e., mitophagy. Mitochondria (M) fully enveloped within an autophagosome (a). The white arrows 

indicate the double membrane of matured autophagosome. The amount of mitochondria-specific 

early autophagosomes between WT and dKO was statistically (b) nonsignificant (ns). Highly 

degraded mitochondria, representing a late autolysosome (the black arrow shows degrading cristae) 

(c). No statistical significance was found in the number of the late autolysosome structures between 

WT and dKO (d). The red and green arrows indicate PINK and PARKIN immunogold particles in the 

dKO RPE samples, respectively (e). ML, melanosome. Scale = 0.5 µm (a and c), scale = 0.2 µm (e). ns—

Nonsignificant.  
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2.4. Aggregates Colocalize with Rab7 

Lipofuscin are yellowish autofluorescence pigments that accumulate as a result of free-radical 

damaged proteins and lipids during ageing [37]. Since our model displays relatively reduced 

mitophagy, we were interested to determine whether the autophagosome and lysosomal fusion 

process might be disrupted. Ras-related proteins Rab5 and Rab7, small GTPase proteins and 

regulators of the early and mature autophagosome formation were analyzed with respective 

antibodies [38,39]. Confocal microscopy analysis showed that the green autofluorescence (AF) 

structures in WT and dKO RPE cells only partially co-stained for Rab5 (Figure 8). However, a clear 

co-staining between AF and Rab7 was detected in the perinuclear space of dKO samples (Figure 8d 

and h). The AF and early endosome marker Rab5 also showed some degree of colocalization in the 

dKO RPE cells (Figure 8c and g). Moreover, the dispersed cytoplasmic AF foci in both genotypes 

seemed to be smaller than those present in the perinuclear aggregates in WT (Figure 8c and d) and 

dKO (Figure 8g and h). AF represent a heterogenous signal in number and intensity within RPEs, 

and a higher number of aggregates were detected in dKO RPE cells as compared to WT samples 

(Figure 8i).  

 

Figure 8. Representative high-power confocal microscopy images of WT (a, c; e, g) and dKO (b,d; f,h) 

show that Rab5 (a-d) and Rab7 (e-f) proteins are present throughout the cytoplasm of RPE cells but 

are prominently concentrated in the perinuclear space. However, they were differently expressed in 

WT and dKO RPE cells. Note that the formation of autofluorescence spots (AF) was more prominent 

in dKO samples (c, g), whereas WT RPE (a, f) exhibited only a few AF foci. The confocal plane and 

pinhole settings for the squared regions of WT and dKO were chosen to reveal mainly details of the 

pericellular space for Rab5, Rab7 and the distribution of AFs spots in WT and dKO samples, where 

the white arrow indicates the areas of possible colocalization. Quantification of Rab5 (i) and Rab7 (j) 

with AF foci colocalization. Colocalization analysis revealed a low association of early endosomal 

marker Rab5 with AF-foci in both genotypes studied, whereas the colocalization of the late endosomal 

marker Rab7 with AF-foci was clearly increased in dKO RPE compared to WT samples, mean ± SD. 

Scale = 1 µm. *p < 0.05. ns—Nonsignificant.  



Int. J. Mol. Sci. 2020, 21, 1976 9 of 19 

As far we are aware, this is the first study that has demonstrated a deficiency of mitophagy in 

the NFE2L2/PGC-1α knockout mice. There is evidence that RPE cells attempt to initiate mitophagy, 

but autophagy flux to ensure mitochondrial clearance does seem to be disturbed.  

3. Discussion  

During the aging process, increased oxidative stress leads to a dysfunction of mitochondria and 

detrimental protein aggregation [37,40–43]. Dysfunctional mitochondria and the elevated generation 

of ROS are among the earliest events occurring in the progression of the numerous 

neurodegenerative protein aggregation diseases, such as Alzheimer’s and Parkinson’s diseases 

[44,45]. Since it is essential that cells have healthy mitochondria for energy production as well as for 

several cytoprotective cellular processes, dysfunction in these processes would be predicted to exert 

profound harmful consequences in AMD. Mitochondria undergo constant fission and fusion in order 

to meet the demands of the cells [46]. In conditions of stress, both mitochondrial fission and fusion 

work in parallel to maintain the function of these organelles. An increase in mitochondrial fission 

leads to mitochondrial fragmentation, whereas fusion results in mitochondrial elongation. Failures 

in the components of this machinery lead to cellular degeneration and even cell death [47]. We 

exploited our NFE2L2/PGC-1α dKO mice model to gain detailed insights into mitophagy during 

conditions of oxidative stress and damaged mitochondria. 

The functional role of PINK1/PARKIN in mitophagy has been extensively reviewed elsewhere 

[48–51]. Here, we focused on the clearance capacity of mitophagy alone. Our immunohistochemical 

colocalization studies in RPE cells of NFE2L2/PGC-1α dKO displayed a significant increase in the 

PINK1/PARKIN levels. The results were in line with previous observations in the PINK1-deleted 

mammalian model [52], Drosophila PARKIN mutants [53], and induced mitochondrial damage in 

HeLa [54] and ARPE-19 cell lines [55]. The levels of PINK1/PARKIN were accompanied by equal 

pS65/PARKIN levels. Hence, our data clearly fit with the perception of oxidative stress and damaged 

mitochondria in NFE2L2/PGC-1α dKO. The immunoelectron microscopy analysis showed evidence 

of a strong colabelling of PINK1 and PARKIN in dKOs. No, or only a few, PINK1/PARKIN signals 

were detected in WT animals. These findings indicate elevated mitophagy initiation in dKO mice. 

The ubiquitinated mitochondria are recognized by LC3B either directly or via adopter proteins 

and become sequestered into autophagosomes [56–58]. High levels of LC3 and ATP synthase β 

colocalization were detected in the dKO samples. This suggests that there is a buildup of critically 

demanding sections of the mitophagy (autophagosome) process in RPE cells if they lack the 

NFE2L2/PGC-1α genes. Interestingly, we did not observe an increase in the late-stage markers of 

mitochondrial clearance, LAMP2/ATP synthase β colocalization. Therefore, we examined the 

autophagosome and lysosome fusion process. The late autophagosomal marker Rab7 colocalized 

with autofluorescence protein aggregate components, especially in the perinuclear space of RPE cells 

in dKOs. This observation seems to indicate that there is a dysfunction in the autolysosomes due to 

the influence of detrimental oxidized cross-linked proteins in the lysosomal enzymes [59]. Naive RPE 

cells exposed to oxidative compounds can effectively maintain functional mitochondrial–lysosomal 

axis and phagocytic POS clearance [60]. During aging and in pathological states, this capacity 

declines, disturbing the function of autophagy and interfering with the ubiquitin proteolytic system 

[61]. We detected increased staining of both Rab5 and Rab7 together with perinuclear 

autofluorescence deposits. Lipofuscin has been reported to inhibit lysosomal protein degradation and 

may cause AMD [62]. However, more experiments will be needed to clarify the relationship between 

Rab7 and the presence of highly reactive autofluorescence aggregates [63]. Our results suggest that if 

NFE2L2/PGC-1α signaling is disturbed, then the accumulation of oxidized undigested aggregates, 

including lipofuscin, can potentially hinder the critical mitophagy process in RPE cells (Figure 9).  
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Figure 9. A schematic representation of disturbed selective autophagy in RPE cells of NFE2L2/PGC-

1α dKO. Under conditions of chronic oxidative stress and mitochondrial damage, there is evidence of 

incomplete mitophagy in our model due to the accumulation of reactive autofluorescence aggregate 

linked Rab7 colocalization. However, more studies will be required to clarify the association between 

Rab7, an autophagosome-related vesicular transport protein, and oxidized cross-linked materials.  

Our study highlights the importance of autolysosomal capacity and its components during 

chronic oxidative stress and mitochondrial damage. There is an increasing body of evidence revealing 

the importance of autophagy in the regulation of mitochondrial homeostasis. Therefore, mitophagy 

may represent a novel therapy target in the prevention or treatment of dry AMD. 

4. Materials and Methods 

4.1. Ethics and Animal Experiments 

All the experimental protocols were conducted in accordance with the institutional guidelines 

of Animal Ethics Committee of the Provincial Government of Southern Finland and with the 

guidelines of European Community Council Directives 86/609/EEC. We have gained permission for 

the use of animals in research (ESAVI/8893/04.10.07/2014). According to our recent documentation, 

dry AMD-like NFE2L2/PGC-1α dKO [15] 1-year-old male mice (n = 3, six eyes) and sex- and age-

matched wild-type controls (n = 3, six eyes) were used in the study. All animals were bred and housed 

in the Laboratory Animal Centre of University of Eastern Finland, Kuopio. The 3R-principles were 

implemented in the animal studies.  

4.2. Genotyping and Tissue Preparation  

The global double knockout (dKO) mice were made by knocking down PGC-1α and NFE2L2. 

The animals were genotyped using PGC-1α with four-primer PCR. The primer sequences were: WTA, 

5′-CCA GTT TCT TCA TTG GTG TG; WTB, 5′-ACC TGT CTT TGC CTA TGA TTC; KOA, 5′-TCC 

AGT AGG CAG AGA TTT ATG AC; KOB, 5′-CCA ACT GTC TAT AAT TCC AGT TC. The following 

NFE2L2 genotypes were studied with three primers: LacZ, 5′-GCG GAT TGA CCG TAA TGG CAT 

AGG; NFE2L2-5′, 5′-TGG ACG GGA CTA TTG AAG GCT G; NFE2L2-3′, GCC GCC TTT TCA GTA 

GAT GGA CG [15].  

Both reactions included 4 µL of DNA extracted from mouse ears, reaction buffer, 100 µM of each 

dNTPs, 1.5 mM of MgCl2, 1 µM of each primer and 1.2 U of DreamTaq DNA polymerase (Thermo 

Fisher Scientific Waltham, MA USA), in a reaction volume of 30 µL. For the PGC-1α, samples were 

denatured at 95 °C for 5 min, followed by 39 cycles at 95 °C for 30 s, 58 °C for 30 s, 72 °C for 30 s, and 
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a final extension at 72 °C for 7 min. For the NFE2L2 genotyping, the reaction conditions were 

denaturation at 95 °C for 5 min, followed by 35 cycles at 95 °C for 30 s, at 59 °C for 30 s, at 72 °C for 

45 s, and a final extension at 72 °C for 7 min. The amplicon sizes for the wild-type and KO alleles of 

PGC-1α were 600 and 400 bp, respectively; the WT and KO alleles for NFE2L2 were 700 and 400 bp, 

respectively (Supplementary Figure 2).  

In the tissue preparation, the animals were sacrificed with cervical dislocation and the eyes were 

immediately carefully enucleated and placed in PBS (pH 7.4), followed by fixation in 4% 

paraformaldehyde in 0.1 M phosphate buffer for 24–48 h and ethanol dehydration. Five-micrometer-

thick parasagittal serial sections were cut from embedded blocks with a microtome (SM2000 R, Leica, 

Heidelberg, Germany) for immunohistochemical analysis.  

4.3. Immunohistochemical Staining 

Tissues sections were deparaffinized using xylene and rehydrated. Then, the glass sections were 

incubated for 25 min in the dark with 0.5% Sudan black B (Acros Organics, USA) in 70% EtOH. The 

washed slides were pretreated with Tris-based antigen unmasking solution (Vector Laboratories Inc., 

CA) for 7.5 min at 90 °C. In the analysis of autofluorescence with Rab5 and Rab7 (Table 1), the slides 

were pretreated with Tris- and Citrate-based antigen unmasking solutions (Vector Laboratories Inc., 

CA), respectively, for 5 min at 90 °C. The sections were encircled with a PAP pen and quenched with 

0.1 M glycine in PBS for 10 min prior to a 0.1% Triton-X wash for 10 min before continuing with 

blocking for 30 min. Quenched slides were incubated with 20% goat serum for 30 min before adding 

the first primary antibodies (Table 1) and incubated overnight at 4 °C. The sections were incubated 

at room temperature for 30 min and washed in the dark for 10 min. Then, the first secondary 

antibodies were added and incubated for 3 h, followed by a second primary antibody incubation for 

3 h. Finally, DAPI (Sigma Aldrich, USA) was added at a ratio of 1:10,000 and incubated for 30 min 

followed by a 5-min wash with TBS. Then, the slides were mounted using Mowiol mounting media 

and stored in the dark at room temperature.  

The secondary antibodies were goat anti-rabbit Alexa Fluor 488 and 594 (A11034/ A11037) and 

goat anti-mouse Alexa Fluor 488 and 594 (A11029/ A11032) (ThermoFisher Scientific, USA) diluted 

at 1:500.  

Table 1. List of primary antibodies. 

Primary antibodies against Isotope Working dilution Supplier/catalogue number 

ATP synthase β Monoclonal 1:100 TF-A-21351 

AMBRA1 Polyclonal 1:100 NBP2-32640 

Bnip3 Polyclonal 1:200 NBP1-77683 

FUNDC1 Polyclonal 1:200 NBP1-81063 

HSP75 (TRAP1) Monoclonal 1:100 AB2721 

LAMP2 Polyclonal 1:500 NB300-591 

LC3B Monoclonal 1:100 CT-3868 

PARKIN Monoclonal 1:100 NBP2-29838 

Phospho-ubiquitin-Ser65 Polyclonal 1:100 ABS1513-I 

PINK1 Polyclonal 1:250 BC-100-494 

Rab5 Monoclonal 1:50 SC-46692 

Rab7 Monoclonal 1:100 AB-50533 

TOM20 Monoclonal 1:100  SC-17764 

4.4. Confocal Imaging 

The stained sections were examined with a confocal microscope (Zeiss AX10 Imager A2, Zeiss, 

DE) using a 63× (NA:1.42. Plan Apochromat) oil (Zeiss Immersol™, DE) immersion objective. The 

microscopic settings were kept identical for all pictures taken and held constant during imaging. 

Representative high-power microphotos were taken close to the vicinity of the optic nerve with ZEN 
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blue v2.3 (Carl Zeiss Microscopy, DE). At least nine repetitive images were taken from each section 

for all markers. Images were color enhanced using Adobe photoshop for visual representation.  

4.5. Colocalization Analysis 

All the captured images were converted into 8-bit and processed using ImageJ v1.52a 

(https://imagej.nih.gov/ij/). The background was subtracted using a default rolling ball radius 

method. Regions of interest (ROI) were drawn over RPE cell layer followed by colocalization analysis 

using 2 channel spots colocalization analyzer ComDet v0.3.7 

(https://imagej.net/Spots_colocalization_(ComDet)), an ImageJ plugin. All the colocalization analysis 

were blind quantified at least by three independent researchers. The total number of puncta from 

each color (channel) was calculated and the corresponding correlations of colocalization were 

measured. The degree of colocalization between WT and dKO was analyzed after normalization of 

the total number of puncta.  

4.6. Transmission Electron Microscopy (TEM) Preparation and Mitochondria-Specific Autophagosome and 

Autolysosome Analysis 

Samples were processed and analyzed according to our recent publication [15]. Briefly, the 

specimens were washed in 0.1 M cacodylate buffer containing 3.7% (w/v) saccharose and sequentially 

dehydrated in 30% (v/v) ethanol at 4 °C, 50% (v/v) ethanol at 0 °C and 70% (v/v) ethanol at −20 °C. 

The specimens were then immersed in a 1:1 mixture of 70% ethanol and medium grade LX112 resin 

(Ladd Research Industries, USA) at 4 °C with several changes of pure resin at 4 °C and room 

temperature and finally polymerized in gelatin capsules for 1 day at 45 °C. One-micron semithin 

sections were cut with a Reichert Ultracut E microtome (Leica Microsystems Inc, IL, USA), stained 

with 1% toluidine blue and examined with a light microscope to find the localization of interest (RPE) 

prior to further TEM sectioning. Ultrathin sections were cut with a microtome (Ultracut; Leica, 

Bensheim, Germany) and mounted on uncoated nickel grids. Mitochondria-specific autophagosome 

and autolysosome were assessed using JEM-1010 TEM (Tokyo, Japan) transmission electron 

microscope. Similarly, as conducted with the histological samples, representative areas per sample 

were selected by collecting RPEs from each of the individual one-year-old WT and dKO samples 

which were close to the vicinity of the optic nerve. In the subsequent analysis, the cells in the region 

of interest were randomly selected (n = 18). The morphological criteria for healthy and damaged 

mitochondria selection are shown in Supplementary Figure 2. 

4.7. Postembedded Immunolabelling  

In the postembedding immunogold labeling, tissue specimens (approximately 5 × 5 mm in size) 

were fixed immediately after death in freshly prepared 3% (w/v) paraformaldehyde and 0.1% (v/v) 

glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4), and the eyeballs were processed according to our 

previous publication [15]. Briefly, the specimens were washed in 0.1 M cacodylate buffer containing 

3.7% (w/v) saccharose and sequentially dehydrated in 30% (v/v) ethanol at 4 °C, 50% (v/v) ethanol at 

0 °C and 70% (v/v) ethanol at −20 °C. The specimens were then immersed with a 1:1 mixture of 70% 

ethanol and medium grade LX112 resin (Ladd Research Industries, USA) at 4 °C with several changes 

of pure resin at 4 °C and room temperature and finally polymerized in gelatin capsules for 1 day at 

45 °C. One-micron semithin sections were cut with a Reichert Ultracut E microtome (Leica 

Microsystems Inc, IL, USA), stained with 1% toluidine blue and examined with a light microscope to 

find the localization of interest (RPE) for further TEM sectioning. Ultrathin sections were cut with a 

microtome (Ultracut; Leica, Bensheim, Germany) and mounted on uncoated nickel grids. 

The method of postembedding immunogold labeling was based on previous reports [64,65]. The 

mouse monoclonal antibody PARKIN (sc-32282, Santa Cruz Biologicals, Dallas, TX, USA) and rabbit 

polyclonal PINK1 (BC100-494, Novus Biologicals, Briarwood Avenue, Building IV Centennial, CO, 

USA) antibodies were applied to detect respective epitopes. Appropriate secondary antibodies 

conjugated to 10 nm (PINK1) and 15 nm (PARKIN) colloidal gold particles (diluted 1:30; Bio Cell, 
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Cardiff, Wales, UK) were used to detect the primary antibodies. Briefly, in the postembedding 

immunogold labeling, ultrathin sections of WT and dKO samples were incubated for 90 min 

successively in drops of the mixture of these antibodies followed by a mixture of gold-conjugated 

goat anti-mouse (15 nm) and gold-conjugated goat anti-rabbit (10 nm) secondary antibodies for 2 h 

[66]. After several washing steps, grids were briefly stained with uranyl acetate and lead citrate and 

examined with a transmission electron microscope (JEM-1010 TEM, Jeol, Tokyo, Japan). In the 

quantification of PINK and PARKIN immunogold particles in RPE from WT and dKO animals, a 

total of 40 mitochondria from each group were analyzed, and mitochondria with double PINK1 (10 

nm) and PARKIN (15 nm) immunogold labeling were identified. 

4.8. Statistics 

All data are presented as mean ± SEM (standard error of the mean). A two-tailed, unpaired 

Student’s t-test was used to determine the statistical significance in the double-staining colocalization 

study as well as in signal intensity analysis. P < 0.05 was considered statistically significant; “ns” 

represents statistical nonsignificance. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/21/6/1976/s1. 
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Abbreviations 

AMD Age-related macular degeneration 

RPE Retinal pigment epithelial cells 

dKO Double knockout 

WT Wild type 

NFE2L2 Nuclear Factor, Erythroid 2 Like 2 

PGC1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

LC3B Microtubule-associated proteins 1A/1B light chain 3B 

PINK1 PTEN-induced kinase 1 

PARKIN E3 ubiquitin ligase 

LAMP2 Lysosome-associated membrane protein 2 

Rab(5/7) RAS-related GTP-binding proteins (5/7) 

PRCs Photoreceptor cells 

POS Photoreceptor outer segments 

p62/SQSTM1 Sequestosome-1/ ubiquitin-binding protein p62 

OMM Outer mitochondrial membrane 

NBR1 Neighbor of BRCA1 gene 1 protein 

OPTN Optineurin 
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AMBRA1 Autophagy and beclin-1 regulator 1 

LIR LC3-interacting region 

Bnip3 BCL2 interacting protein 3 

Nix/Bnip3L BCL2-like 3 

FUNDC1 FUN14 domain-containing 1 

Bcl2L13 BCL2-like 13 

TOM20 Mitochondrial import receptor subunit TOM20 

TEM Transmission electron microscopy 

TMN Total mitochondrial number 

pS65 Phospho-ubiquitin serine 65 

ATP Adenosine triphosphate 

AF Autofluorescence 

ROS Reactive oxygen species 

RNS Reactive nitrogen species 

AMPK 5′-adenosine monophosphate-activated protein kinase 

NaIO3 Sodium iodate 

NAC N-acetylcysteine 

Appendix A 

Since mitophagy may be activated without PINK1/PARKIN, we attempted to test the roles of 

other mitophagy receptors. Recent studies have identified eight mechanistically different mitophagy 

receptors. One group contains a ubiquitin-binding domain which binds to ubiquitinated 

mitochondria [20], such as p62/SQSTM1, NBR1 (Neighbor of BRCA1 gene 1 protein), optineurin 

(OPTN) [67,68] and AMBRA1 (autophagy and beclin-1 regulator 1) [69,70]. The second group of 

mitophagy receptors [20] contains a transmembrane domain that can directly bind to the OMM and 

stimulate autophagosome formation via their LIR motifs, namely Bnip3 (BCL2 interacting protein 3) 

[71], Nix/Bnip3L (BCL2-like 3) [72], FUNDC1 (FUN14 domain containing 1) [73] and Bcl2L13 (BCL2-

like 13) [74]. Their roles in the regulation of cell proliferation, cytosolic protein degradation and cell 

death have also been reported [75–77]. However, their importance in mitochondrial clearance is not 

clearly known. It has been reported that high-glucose-induced ROS generation inhibited mitophagy 

via ROS/PINK1/PARKIN signaling pathway in RPE cells, whereas overexpression of PINK1 or 

PARKIN could reverse this effect [78]. 

In conditions of oxidative stress and elevated mitochondrial damage, we anticipated that it 

would be possible to detect colocalization of AMBRA1, Bnip3 and FUNDC1 with a mitochondrial 

marker ATP synthase β in dKOs. The colocalization of mitochondria with respective mitophagy 

activated receptors would be one way of gaining insights into their role in our dKO animals. 

Although there was a ~3% increase in the total number of puncta, the colocalization of AMBRA1 with 

ATP synthase β was reduced by ~18% as compared to WT (Figure A1, a). In the evaluation of the 

amount of mitophagy receptor Bnip3, the total number of puncta was reduced by ~13% with a ~27% 

reduction in colocalization as compared to WT (Figure A1, b). Interestingly, FUNDC1 in dKO RPE 

showed a ~30% increase in total puncta along with a ~45% increase in colocalization. However, the 

differences between all these stainings were not statistically significant in comparison to WT (Figure 

A1, c). Based on these results, these ubiquitin-independent selective autophagy receptors are not 

involved in the mitophagy initiation process in our dKO model. 
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Figure A1. Representative graphical data from double-staining of AMBRA1 (a, p = 0.4), Bnip3 (b, p = 

0.4) and FUNDC1 (c, p = 0.7) with ATP synthase β. There was no statistically significant difference in 

the colocalization analysis between one-year-old WT and dKO. ns—Nonsignificant. 
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