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Abstract: Actin plays a critical role in the rhizobium–legume symbiosis. Cytoskeletal rearrangements
and changes in actin occur in response to Nod factors secreted by rhizobia during symbiotic
interactions with legumes. These cytoskeletal rearrangements are mediated by diverse actin-binding
proteins, such as actin depolymerization factors (ADFs). We examined the function of an ADF in the
Phaseolus vulgaris–rhizobia symbiotic interaction (PvADFE). PvADFE was preferentially expressed in
rhizobia-inoculated roots and nodules. PvADFE promoter activity was associated with root hairs
harbouring growing infection threads, cortical cell divisions beneath root hairs, and vascular bundles
in mature nodules. Silencing of PvADFE using RNA interference increased the number of infection
threads in the transgenic roots, resulting in increased nodule number, nitrogen fixation activity,
and average nodule diameter. Conversely, overexpression of PvADFE reduced the nodule number,
nitrogen fixation activity, average nodule diameter, as well as NODULE INCEPTION (NIN) and
EARLY NODULIN2 (ENOD2) transcript accumulation. Hence, changes in ADFE transcript levels
affect rhizobial infection and nodulation, suggesting that ADFE is fine-tuning these processes.
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1. Introduction

Legumes have the ability to establish a symbiotic association with Gram-negative soil bacteria
belonging to several genera, including Rhizobium, Bradyrhizobium, Sinorhizobium, and Azorhizobium,
commonly called rhizobia [1]. This mutualistic interaction is initiated by a molecular dialogue in which
plant roots exude flavonoids that activate the expression of bacterial genes (nod genes) encoding proteins
involved in the synthesis and secretion of lipochitooligosaccharides, called Nod factors (NFs). These
signal molecules are specifically recognized by the root hair, where they activate a signaling pathway.
The NFs perceived by legume root hairs trigger a variety of physiological responses, such as calcium
fluxes, including perinuclear calcium oscillations, reactive oxygen species production, ion influxes
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and effluxes, cell-membrane depolarization, cytoplasm alkalinization; cytoskeletal rearrangements,
and early nodulin gene expression changes [2–7]. These changes allow the bacteria to enter the
root hair through a structure called an infection thread (IT) and simultaneously induce cortical cell
divisions. When the ITs reach the nodule primordia cells, rhizobia are released into the host cell within
a peribacteroid membrane; subsequently, they differentiate into nitrogen-fixing bacteroids [8,9]. After
root hair curling, the rhizobia trapped in an infection chamber inside the root hair curl, which is
followed by an invagination of the host cell plasma membrane and the subsequent formation of an
IT [10]. The growing IT induces changes in the plasmodesmata, cytoskeleton and cell membrane and
wall synthesis machineries [11–13].

Actin cytoskeleton rearrangements take place at different stages of the symbiotic interaction
between rhizobia and their host plants, i.e., during root hair growth and curling, IT formation, bacterial
internalization from root hairs to nodule cells, symbiosome organization within the infected cells of
root nodules, and cell trafficking [3,14–16]. In response to NFs, the actin cytoskeleton changes within
5–10 min; the longitudinal bundles of actin filaments become fragmented and short and fine actin
bundles accumulate in the apical and subapical region, and there is a rapid increase in the number of
F-actin plus ends at the tips of the responding root hairs [3,17,18].

In nodule cells, the actin cytoskeleton encloses IT and infection droplets, guiding the elongation
of IT and the rhizobial release. During later steps of cell colonization, actin microfilaments embraces
the developing symbiosomes and, in a mature nodule, actin reorganizes in several short or dot-like
actin filaments aligned with mature symbiosomes [19]. Actin cytoskeleton architecture and dynamics
are temporally and spatially modulated by diverse actin-binding proteins (ABPs), including profilin,
villin, formin, ARPs, and actin depolymerizing factor (ADF/cofilin) [20]. The functions of ABPs
include G-actin sequestration, actin nucleation, polymerization, depolymerization, and stabilization
of F-actin filaments [20,21]. In general, it is well known that in plant cells upon several stimuli, the
actin remodeling and assembly is triggered by small GTPases (ROPs in plants) [22]. These ROPs can
activate the nucleation promoting factors (NPFs) such as Wave Regulatory Complex (WRC) consisting
of SCAR/WAVE, nap1, pir1, abi and brick, which are a WASP family members that induce actin
nucleation and rearrangements via recruitment and activation of the Arp2/3 complex [15]. Then, the
Arp2/3 complex (consisting of 7 subunits), induces F-actin formation and the turnover is promoted
by ADF/cofilins [23]. In Lotus japonicus, mutants of two components of the SCAR/WAVE complex,
nap1 (for Nck-associated protein 1) and pir1 (for 121F-specific p53 inducible RNA), result in disruption
of actin rearrangements, short root hairs, impaired formation and progression of ITs into the root
cortex, and uncolonized nodule primordia [15]. In fact, silencing of the gene ARP3 causes defects in
symbiosome development in Medicago truncatula nodules [24] and L. japonicus mutants in SCARN
(encoding suppressor of cAMP receptor defect-nodulation, a protein that binds to the ARP3 complex),
present a strong phenotype with reduced root hair growth and aberrant formation and progression of
ITs, resulting in uninfected nodules [25]. These results add weight to the idea that actin assembly is an
important player during the symbiotic interaction.

ADFs are a family of small proteins of approximately 15–22 kDa found in all eukaryotes [26].
They share a conserved structural motif known as the actin-depolymerizing factor homology (ADF-H)
domain consisting of five β-strands surrounded by three or more α-helices [27,28]. These proteins
regulate actin filament depolymerization through binding both G-actin and F-actin in a twisted
region of the actin filament, which further increases the twisting of the neighboring region [29]. This
over-twisting results in the severing of actin filaments into shorter fragments and enhanced dissociation
of G-actin from the minus ends of actin filaments [28]. The binding between actin and ADFs is regulated
by phosphorylation, pH, phosphoinositides, and Ca2+ signaling [30–33], demonstrating that ADF
activity is highly regulated [20]. Whereas metazoan animals harbour 1–4 ADF/cofilin genes [34], plant
ADF genes form a large family in angiosperms; for example, the Arabidopsis thaliana genome contains at
least 11 members (AtADF1 to AtADF11) showing organ-specific expression patterns [35]. Although a



Int. J. Mol. Sci. 2020, 21, 1970 3 of 20

role for ADFs in defense signaling following pathogen infection has been reported [36–40], information
about legume ADFs and their relationship to the symbiotic process are lacking.

We previously demonstrated that actin dynamics and polymerization regulate the early infection
process in Phaseolus vulgaris root hairs incubated with purified specific NFs [3,18]. These actin dynamics
could be mediated by ADFs, which are involved in F-actin depolymerization. Herein, we examined
the function of a P. vulgaris ADF during symbiotic interactions with rhizobia. We found that promoter
activity PvADFE was detected in the rhizobially infected root hairs and vascular bundles of mature
nodules. The participation of PvADFE in the common bean symbiosis with Rhizobium tropici by
down-regulating or overexpressing PvADFE in transgenic composite plants revealed a role of ADFE
likely fine-tuning nodulation.

2. Results

2.1. ADF Genes Constitute a Family of Nine Members in P. vulgaris

To investigate the participation of P. vulgaris ADF during symbiosis with R. tropici, first we
searched the Phytozome v12 database (http://phytozome.jgi.doe.gov/pz/portal.html#) [41]. Nine ADF
genes were identified in the P. vulgaris genome. The deduced protein sequences were arbitrarily
denominated PvADFA through PvADFI. The size of the PvADF gene family in P. vulgaris is similar to
that of other legumes (Table S1). Based on gene structure analysis, the coding region of each PvADF
gene is organized in three exons (Figure S1A), similar to the two- to three-exon organization of Glycine
max (Figure S1B), A. thaliana, and Solanum lycopersicum ADF genes [42,43]. In eight of the nine PvADF
genes, the first or first few amino acids are encoded by a separate exon, as described for A. thaliana ADF
genes [28]. The nucleotide identity among PvADF genes varied from 48.9% to 85.2% (Table S2), whereas
the identity between deduced amino acid sequences of PvADF ranged from 40.0% to 89.5% (Table S3).
Multiple sequence alignment of the deduced protein sequences of PvADF and Arabidopsis AthADF1
revealed several conserved residues (Figure S2A). Ser-6, identified in other ADFs as a phosphorylation
site [44], is followed by a G-actin binding motif (amino acids 6, 7, 125, and 128). This actin-binding
motif is accompanied by a second signature specific for F-actin binding, with the amino acids 82, 84,
98, 136, and 137 conserved [45]. In addition, PvADF proteins contain a predicted nuclear localization
signal (amino acids 22–28) [46]. The short sequence Trp90 through Met102 is also highly conserved in
all PvADF proteins and has been identified as a binding site for both actin and phosphatidylinositol
4,5-bisphosphate (PIP2) [47]. Next, we predicted the three-dimensional structure of PvADFE using
the crystal structure of AthADF1, which shares 82% amino acid sequence identity (Table S3), as the
template. The predicted tertiary structure of PvADFE is similar to that of Arabidopsis AthADF1 [48],
showing three α-helices surrounded by five β-sheets and a putative actin-binding surface (Figure
S2B), a feature conserved among ADFs that is critical for binding and/or depolymerization of actin
filaments [48]. In addition, there is 82% amino acid sequence identity among AthADF1 and PvADFE,
as noted in Table S3.

To study the relationship between PvADF proteins, full-length ADF sequences from legumes
(G. max, L. japonicus, M. truncatula, and Vigna unguiculata) and nonlegumes (A. thaliana, Oriza sativa,
and Zea mays) were used to reconstruct a maximum likelihood phylogenetic tree. In relation to the
Arabidopsis ADF gene family, which is grouped phylogenetically into four ancient subclasses based on
differential expression [35], PvADFD and PvADFE protein sequences and other legume ADFs clustered
in a subclade (Figure S3) closely related to AthADF1 through AthADF4 (Arabidopsis subclass I), which
showed high transcript levels in roots, seedlings, mature leaves, and flowers [35].

2.2. PvADF Genes Are Expressed in Roots and after Rhizobial Inoculation

In A. thaliana, transcript accumulation of certain ADF genes is especially high in particular
tissues; for example, AthADF8 and AthADF11 transcripts are elevated in roots compared with other
tissues [35,49]. We analyzed transcript abundance of the nine PvADF genes using RT-qPCR in root
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hairs, apices, and stripped roots from common bean. As shown in Figure S4, accumulation of PvADF
transcripts showed different patterns in the tissues examined. Transcripts of PvADFA and F were
barely detected in root sections, and PvADFI expression was not detectable. The remaining PvADF
genes were expressed in all root sections, with considerably higher expression of PvADFD and H than
the other genes. In root hairs, transcripts of PvADFD, E, and H were the most abundant. However,
PvADFD transcript abundance was highest in all tissues tested.

To examine the expression patterns of individual ADF genes after rhizobial inoculation, we
performed an in silico analysis based on RNA-sequencing data reported in the Phaseolus vulgaris Gene
Expression Atlas (PvGEA, http://plantgrn.noble.org/PvGEA/). According to PvGEA, the nine PvADF
genes are expressed in aerial tissues, seeds, roots, and nodules. Interestingly, the PvADFE gene has
the highest transcript levels expression among PvADF genes in both inoculated roots and nodules,
at 5 and 21 days post-inoculation (dpi); PvADFA, B, C, and F are barely detected in all tissues tested,
whereas PvADFG, H, and I are expressed weakly (Figure S5). Besides, ADFE encodes a protein of
interest previously identified by our group using a phosphoproteomic approach in which the relative
abundance of PvADFE increased after NF treatment in bean roots at 30 min. Then PvADFE was selected
for further analysis during symbiosis with R. tropici.

2.3. PvADFE Promoter Activity in Transgenic P. vulgaris after Rhizobial Inoculation

PvADFE promoter activity was monitored by measuring β-glucuronidase (GUS) activity or
green fluorescent protein (GFP) fluorescence in hairy roots from composite plants. We analyzed
the activity of the PvADFE promoter in infected root hairs of transgenic roots inoculated with R.
tropici–DsRed. Promoter activity was detected in root hairs harboring growing ITs and in adjacent
cortical cells undergoing division (Figure 1A–D). Furthermore, GUS activity was observed in cortical
cells undergoing the initial cell divisions that form the nodule primordium at 5, 7, and 14 dpi
(Figure 1E–G), and was restricted to vascular bundles in mature nodules (Figure 1H). Promoter activity
was also found at sites of lateral root primordia, and subsequently became confined to the apical region
and vascular bundles of fully developed lateral roots (Figure 1I–L). These spatiotemporal expression
patterns of the PvADFE promoter compared to control roots (Figure 1M–O) suggest that PvADFE
participates in IT progression and nodule organogenesis, as well as lateral root development.
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Figure 1. Spatiotemporal activity of the Phaseolus vulgaris–rhizobia symbiotic interaction (PvADFE)
promoter in P. vulgaris transgenic roots during nodulation. Promoter activity was observed in transgenic
roots expressing 1.3 kb of the PvADFE promoter region fused to β-glucuronidase (GUS) activity and
green fluorescent protein (GFP) (pPvADFE:GUS-GFP). (A–D) Activity of the promoter observed
by confocal microscopy in infected root hairs of transgenic roots inoculated with R. tropici–DsRed
at 5 dpi. (A) Transmitted light image; (B) red fluorescence emitted by R. tropici CIAT899–DsRed;
(C) pPvADFE:GUS-GFP expression; (D) overlay image. (E–H) Promoter activity detected by GUS
staining in a nodule primordium, young nodule, and vascular bundles of a mature nodule at (E) 5, (F) 7,
(G) 14, and (H) 21 dpi, respectively. (I–L) GUS staining during development of a lateral root: (I–K)
root primordium, and (L) apical region and vascular tissue (indicted by arrows) of a fully developed
lateral root. (M–O) GUS staining in control roots. (M) Nodule primordium, (N) mature nodule, (O)
root vascular tissue, and (P) root apical region. cc, cortical cells; IT, infection thread; Rh, root hair; vb,
vascular bundles.

2.4. PvADFE Down-Regulation Increases the Number of Infection Events, Nodule Number, and Nitrogen
Fixation in Rhizobium-Inoculated Transgenic Roots

To gain an insight into PvADFE gene function in symbiotic nodulation, its expression was altered
by either RNAi knockdown or overexpression. The effectiveness and specificity of RNAi silencing
were assessed by RT-qPCR expression analysis of PvADF genes in several independent transgenic
roots. The PvADFE transcript level was 60% lower in RNAi transgenic roots than in control transgenic
roots (Figure S6). Transcript levels of the other eight PvADF genes indicated that the PvADFE-RNAi
construct specifically down-regulated PvADFE transcript in transgenic roots, validating the specificity
of the construct designed (Figure S7).

The participation of PvADFE in symbiosis was investigated in silenced inoculated roots and
nodules. At 7 dpi, both PvADFE-RNAi and control transgenic roots showed ITs within cortical cells
(Figure 2A and B, respectively); however, the number of infection events in PvADFE-RNAi transgenic
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roots was significantly higher than that in controls within root hair cells and cortical cells (Figure 2C).
These results indicate that ITs in silenced roots can progress to characteristic nodule primordia that
will develop determinate nodules.
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dpi with R. tropici expressing GUS. Micrographs show (A) branched infection threads (ITs) invading 

Figure 2. Analysis of infection events in root hairs of PvADFE-RNAi and control transgenic roots at 7 dpi
with R. tropici expressing GUS. Micrographs show (A) branched infection threads (ITs) invading root
cell layers in control transgenic roots and (B) ITs within the cortical cells in PvADFE-RNAi transgenic
roots. (C) Number of infection events per root in PvADFE-RNAi and control transgenic roots at 7 dpi.
Values are mean ± SEM with n > 9 roots per condition. * p < 0.05 and *** p < 0.005 according to Student’s
t-test. Bars (A,B), 50 µm.

We next monitored the transcript accumulation profiles of NIN and ENOD2, which are associated
with changes in nodulation signaling. Transcriptional activation of NIN [50] regulates the early
steps of nodulation, such as NF-induced gene expression, IT formation, and initiation of nodule
primordia [51]; hence, NIN is a specific marker for IT formation. ENOD2 is induced during cortical cell
division in the early phases of nodule development [52]. Even though we did not observe increased
expression of NIN at 7 dpi (Figure 3A), a significantly increased transcript abundance of ENOD2 in
PvADFE-RNAi transgenic roots relative to controls was found (Figure 3B). Cyclin genes are suitable
markers of dividing cells and are used in studies of plant developmental processes, such as nodule
formation [53]. The B-type cyclins are highly expressed in meristem [54]. For this reason, we also
analyzed cyclin B transcript levels at the same time points, and observed that the down-regulation of
PvADFE significantly reduced cyclin B gene expression at 3 and 7 dpi (Figure 3C).
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and average nodule diameter on silenced roots was similar to that on control roots at all time points 

Figure 3. Reverse-transcription quantitative PCR analysis of early nodulins in PvADFE-RNAi and
control transgenic roots after inoculation with R. tropici CIAT-899. (A) NIN, (B) ENOD2, and (C) Cyclin
B transcript accumulation profiles determined by RT-qPCR of total RNA isolated from PvADFE-RNAi
and control transgenic roots at 3 and 7 days after inoculation with rhizobia. Elongation factor EF1α was
used as an endogenous reference gene for normalizing expression levels. Each bar represents mean ±
SEM of two independent biological replicates with three technical repeats. * p < 0.05, ** p < 0.005, and
*** p < 0.0001 based on Student’s t-test.

PvADFE-RNAi transgenic roots had 55 and 33% more nodules at 21 and 30 dpi than was observed
in the control, respectively (Figure 4A). Interestingly, the overall distribution of nodule size and average
nodule diameter on silenced roots was similar to that on control roots at all time points examined
(Figure S8A,B). Furthermore, PvADFE-RNAi nodules at 21 dpi were 55% more effective in nitrogen
fixation than control nodules, whereas the nitrogen-fixing ability of the PvADFE-RNAi nodules was
28% lower than that of controls at 30 dpi (Figure 4B). Altogether, our data point toward a fine-tuning
role of the nodulation process mediated by PvADFE.
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Figure 4. Nodulation and nitrogen fixation capacity of PvADFE-RNAi and control transgenic roots. (A)
Nodules were collected and counted from control and PvADFE-RNAi transgenic roots inoculated with
R. tropici CIAT-899 at 21 and 30 dpi. (B) Nitrogenase activity determined by acetylene reduction in
control and PvADFE-RNAi nodules of transgenic roots at 21 and 30 dpi. NDW: Nodule dry weight.
Bars represent mean ± SEM for three biological replicates with n > 7. ** p < 0.005, *** p < 0.0005, and
**** p < 0.0001 based on Student’s t-test.

2.5. IT Progression, Nodule Number, and Nitrogen Fixation Are Impaired in PvADFE-Overexpressing
Hairy Roots

To further evaluate the function of ADF in inoculated roots and nodules, we overexpressed
PvADFE (using the 35S promoter) in P. vulgaris transgenic roots. The PvADFE transcript level was
32-fold higher (p < 0.001, Student’s t-test) than in control transgenic roots, which contained an empty
pH7WG2tdT vector (Figure S9). Contrary to the PvADFE-RNAi results, ITs were arrested at the base
of the root hairs of PvADFE-overexpressing (PvADFE-OE) transgenic roots, although cell division
was still observed in the outer cortex (Figure 5A,B, respectively), which can eventually develop into
nodule primordia. The number of infection events in PvADFE-OE transgenic roots was significantly
smaller than that in control roots. The 58% of the ITs were confined within the root hairs whereas 97%
of ITs reached the cortical cells in control roots (Figure 5C). These results reinforce those obtained by
PvADFE-RNAi, suggesting a role of PvADFE in fine-tuning nodulation.
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was observed at 7 dpi in comparison with control transgenic roots (Figure 6C). The low expression 
levels of NIN and ENOD2 at 7 dpi could explain the inefficiency of IT formation and progression, as 
well as the reduced number of nodules on PvADFE-OE roots; however, the levels of cyclin B transcript 
in PvADFE-OE roots were only affected at 3 dpi. We therefore next addressed whether this also 
affected cell division, primordia, and nodule development. 

Figure 5. Infection events in root hairs of PvADFE-OE and control transgenic roots at 7 dpi with
R. tropici expressing GUS. Micrographs show (A) branched ITs invading root cell layers in control
transgenic roots and (B) ITs arrested within the epidermal cells in PvADFE-OE transgenic roots. Cortical
cell division is indicated by black arrows. (C) Number of infection events per root in PvADFE-OE
and control transgenic roots at 7 dpi. Values are mean ± SEM with n > 9 roots per each condition.
**** p < 0.0001 according to Student’s t-test. Bars (A,B), 50 µm.

Next, the transcript accumulation profiles of NIN and ENOD2 genes were evaluated. Levels of
NIN in PvADFE-OE transgenic roots were significantly lower (30-fold) than those in control roots
at 7 dpi (Figure 6A). This down-regulated expression of NIN in PvADFE-OE transgenic roots was
associated with a decreased number of ITs in the cortical cells at 7 dpi (Figure 5C). ENOD2 transcript
level was significantly higher in PvADFE-OE transgenic roots at 3 dpi compared with control roots;
however, ENOD2 transcript accumulation was significantly lower in the PvADFE-OE roots compared
with the control transgenic roots at 7 dpi (Figure 6B). At 3 dpi, cyclin B transcript levels were slightly
lower in PvADFE-OE transgenic roots compared with control roots, while only a slight difference was
observed at 7 dpi in comparison with control transgenic roots (Figure 6C). The low expression levels
of NIN and ENOD2 at 7 dpi could explain the inefficiency of IT formation and progression, as well
as the reduced number of nodules on PvADFE-OE roots; however, the levels of cyclin B transcript in
PvADFE-OE roots were only affected at 3 dpi. We therefore next addressed whether this also affected
cell division, primordia, and nodule development.
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Figure 6. Reverse-transcription quantitative PCR analysis of early nodulins in PvADFE-OE and control
transgenic roots after inoculation with R. tropici CIAT-899. (A) NIN, (B) ENOD2, and (C) Cyclin B
transcript accumulation profiles determined by qRT-PCR of total RNA isolated from PvADFE-OE and
control transgenic roots at 3 and 7 days after inoculation with rhizobia. Elongation factor EF1αwas
used as an endogenous reference gene for normalizing expression levels. Each bar represents mean ±
SEM for two independent biological replicates with three technical repeats. * p < 0.05, ** p < 0.005, and
*** p < 0.001 according to Student’s t-test.

Overexpression of PvADFE resulted in a 45% reduction in nodule number at 21 dpi in comparison
to control roots. However, no changes in nodule number were observed at 30 dpi (Figure 7A). Although
50% less of ITs reach the cortical cells in PvADFE-OE transgenic roots (Figure 5C); roots are continuously
infected by rhizobia, which may explain the similar number of nodules in control and PvADFE-OE
transgenic roots at 30 dpi (Figure 7A). Based on an acetylene reduction assay, nodules from PvADFE-OE
transgenic roots had 75% less nitrogen-fixing ability than control roots at 21 dpi and 50% less at 30 dpi
(Figure 7B). We also found that the diameter and distribution of nodule size differed in PvADFE-OE and
control transgenic roots at 7, 14, 21, and 30 dpi (Figure S10). Specifically, at all time points, PvADFE-OE
had a higher proportion of small nodules (Group I, see Materials and Methods Section) compared to
control transgenic roots (Figure S10A). In PvADFE-OE transgenic roots, the proportion of large nodules
(Group III) at 30 dpi was low (24%), whereas this proportion was 39% in control roots. In addition,
the average diameter of nodules in PvADFE-OE was smaller than that of nodules in control roots at
the same stages (Figure S10B). These results indicate that overexpression or the general presence of
PvADFE transcripts affects nodule development and function, confirming a role of PvADFE under
silencing conditions.
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Figure 7. Nodulation and nitrogen fixation capacity of PvADFE-OE and control transgenic roots. (A)
Nodules were collected and counted from control and PvADFE-OE transgenic roots inoculated with R.
tropici CIAT-899 at 21 and 30 dpi. (B) Nitrogenase activity determined by the acetylene reduction assay
in control and PvADFE-OE nodules of transgenic roots at 21 and 30 dpi. NDW: Nodule dry weight.
Bars represent mean ± SEM for three biological replicates with n > 7. ** p < 0.005 and **** p < 0.0001
according to Student’s t-test.

3. Discussion

Plant ADF genes in angiosperms comprise a large family, which can be classified into four
subclasses according to their tissue-specific expression and phylogeny. For example, Arabidopsis
subclass I ADFs, ADF1 to ADF4, are expressed strongly and constitutively in all vegetative tissues [35].
This ADF subclass has been shown to function in plant resistance to pathogenic microbes, fungi,
and pests. Arabidopsis ADF4 functions as a susceptibility factor between the host plant and the
powdery mildew fungus [55]. Control of Myzus persicae Sülzer infestation in adf3 was restored by
overexpression of the related ADF4 or treatment with the actin cytoskeleton destabilizers cytochalasin
D and latrunculin B [40]. Despite symbiotic and pathogenic interactions being different manifestations
of the bacteria–host interaction, similar mechanisms exist in both processes to facilitate successful
colonization. Here, we suggest that PvADFE participates fine-tuning the signaling pathway leading to
the infection process and nodule organogenesis in P. vulgaris symbiosis.

In previous studies, we described early actin cytoskeleton rearrangements in bean root hair cells
in response to specific NFs [3,18]. Actin dynamics are the result of highly regulated polymerization and
depolymerization processes. A proteomics analysis conducted by our group showed that one of the P.
vulgaris ADFs, PvADFE, increases 11.7-fold in relative abundance 30 min after rhizobial NF treatment.
Herein, we establish that ADFE is required for both early and late symbiotic processes in bean.

Some reports have described actin cytoskeleton remodeling at the site of plant cell contact with
pathogens [56–59]. Similar remodeling has been observed in symbioses; for instance, IT development
requires the rearrangement of the actin cytoskeleton [60]. NF perception leads to fragmentation
of longitudinal thick actin bundles, causing accumulation of finer and more diffuse actin at the
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root-hair tips [3,17]. The number of F-actin plus ends also increases, and F-actin is relocalized to the
IT initiation sites [18]. ADFs are the first regulators of actin cytoskeleton organization and function
in the disassembly of actin filaments [61]. We showed that the PvADFE promoter is activated in
infected root hairs and in cortical cells during division (Figure 1A–D). Knockdown and overexpression
of PvADFE had opposing effects on the number of infection events, nodule number, and nitrogen
fixation. PvADFE silencing increased the number of infection events (Figure 2C), whereas PvADFE
overexpression resulted in 58% of the ITs being confined within the root hairs (Figure 5C). Although
the link between ADF and actin during symbiosis is unknown, cytoskeletal rearrangements have been
linked to ADF after pathogen perception [37,55,62]. In A. thaliana, the adf4 mutant fails to undergo
actin rearrangements during innate immune signaling in response to treatment with a bacterial
microbe-associated molecular pattern, elf26, but responds normally to a fungal microbe-associated
molecular pattern, chitin [62]. Also, AtADF4 is specifically required for the activation of RPS5-mediated
resistance as well as MAPK signaling via the coordinated regulation of actin cytoskeletal dynamics
and R-gene transcription [37]. The knockdown of AtADF1 to AtADF4 genes enhances resistance to
the powdery mildew fungus Golovinomyces orontii [55], which is contrary to our results, suggesting a
different role of ADF in symbiosis and fungal pathogen response. Then, we propose that cytoskeletal
changes triggered by the depolymerization of F-actin during rhizobial invasion might be mediated by
the participation of PvADFE, which may decrease the viscosity of the cytoplasm, and the relaxation of
the cytoskeleton may facilitate successful infection, as previously suggested for nematode-infected
roots [63]. However, in excess of ADF, this leads to actin filament stabilization and interferes with
actin severing [64,65]. For instance, NtADF1 inhibits pollen tube growth in a dose-dependent manner,
and very high levels of GFP-NtADF1 expression result in bundled or patchy regions of actin [44]. A
similar scenario may occur in root hairs infected with rhizobia, in which PvADFE excess stabilizes
actin filaments, blocking the required reorganization of actin in root hairs during IT initiation and IT
progression, which has been widely reported [3,17]. It is possible that during rhizobial infection, ADF
protein is accumulated; however, it might remain inactivated (e.g., by phosphorylation or pH) in order
to mediate a successful rhizobial infection process.

The initiation of IT growth following NF perception in root hairs includes early changes in
nodulin gene expression [9]. In the current study, we observed down-regulation of NIN and ENOD2
in PvADFE-overexpressing transgenic roots at 7 dpi (Figure 6A,B), supporting the idea that PvADFE
participates in nodulin signaling, in a similar manner to AtADF4, which is required for MAPK signaling
in the presence of the bacterial effector AvrPphB [37]. Surprisingly, overexpression of PvADFE slightly
affects the cyclin B expression at 3 dpi, suggesting that, at this stage, PvADF is involved in IT growth
rather than primordia development. This role has also been suggested for L. japonicus Nap and Pir1,
components of the Suppressor of cAMP receptor defect/WASP family verpolin homologous protein
(SCAR/WAVE) complex, which induces actin nucleation and rearrangements via recruitment and
activation of the Arp2/3 complex [15].

The silencing and overexpression of PvADFE also cause defects in nodule development. At
21 dpi, PvADFE-RNAi transgenic roots had 41% more nodules and these were 55% more effective in
nitrogen fixation compared to the control (Figure 4), whereas 63% fewer nodules and a low level of
nitrogen fixation were observed in transgenic roots overexpressing PvADFE (Figure 7). We revealed
that the PvADFE promoter is also activated in the vascular bundles of mature nodules (Figure 1H).
In this direction, gene expression was reported in vascular bundle tissue of petunia (PhADF1) and
rice (OsADF1 and OsADF3) [66,67]. Thus, overexpression of PvADFE might alter the actin filaments
in vascular bundles of nodules, compromising the supply of nutrients and water transport to the
nodule cells. In addition, nitrogen-fixing symbiosomes develop highly dynamic actin networks to
support vesicle transport and promote growth [19,24]. Actin organization and remodeling associated
with rhizobium release and symbiosome development can be described in three steps: (a) F-actin
arrays channel elongating ITs and mediate the release of infection droplets, (b) a network of actin
microfilaments embraces the developing symbiosomes, and (c) short F-actin fragments and actin dots
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align with the mature symbiosomes [19]. Therefore, the small nodules and low level of nitrogen fixation
observed in transgenic roots overexpressing PvADFE suggest that an altered actin rearrangement
within infected nodule cells impairs bacteroid functional maturation within symbiosomes. By contrast,
as reported [19], actin cytoskeleton channel formation that facilitates the infection droplet release, and
symbiosome development and maturation are processes that might be facilitated by ADF silencing.

This work presents evidence that ADF is fine-tuning the symbiotic interaction between legumes
and rhizobia. ADFE affects root hair infection, nodule development and nodule fixation. We are
currently analyzing adfe mutations affecting Ser-6 (phosphomimetic PvADFE), and colocalization
with actin cytoskeleton to better understand the function of this ADF and the actin dynamics in the
rhizobia–P. vulgaris symbiosis.

4. Materials and Methods

4.1. Plant Growth Conditions and Rhizobia Inoculation

Seed of P. vulgaris cv. Negro Jamapa (obtained from the local farmers’ markets, Cuernavaca, Mexico)
were surface-sterilized and germinated at 28 ◦C for 2 days in the dark. At 2 days post-germination, the
apex of root was sectioned from seedlings and frozen in liquid nitrogen. Separately, the root hairs
were gently broken off from roots without apex using a magnetic stir bar in a stainless-steel tank with
liquid nitrogen. Consequently, the tripped roots were separated by filtering through a colander, and
the root hairs were collected in the liquid nitrogen remained. All the material was stored at −70 ◦C
until subsequent RNA extraction and reverse-transcription quantitative PCR (RT-qPCR) assays.

Composite common bean plants were generated according to the protocol developed by
Estrada-Navarrete et al. [68]. Hairy roots (10–13 days post-emergence) were generated using Rhizobium
rhizogenes strain K599 [69]. Transgenic composite plants carrying the corresponding construct were
observed under epifluorescence microscopy to confirm the presence of the reporter gene (GFP or
DsRed), and untransformed roots were removed. Composite common bean plants were planted in
pots with vermiculite and inoculated with 20 mL of R. tropici–GUS or R. tropici–DsRed suspension at
an optical density at 600 nm (OD600) of 0.05 (undiluted suspension had OD600 = 0.8–1.0). Plants were
grown under greenhouse conditions with a controlled environment (26–28 ◦C, 16 h light:8 h dark) and
were watered with B&D medium [70].

4.2. Identification of PvADF Sequences, Three-Dimensional Structure Analysis, and Relative Transcript
Accumulation in Different Organs and Tissues

Using the Phvul006G132700.1 sequence as template, searches for ADFs in the Phytozome v12
database (http://phytozome.jgi.doe.gov/pz/portal.html) were performed for P. vulgaris, G. max, M.
truncatula, A. thaliana, O. sativa, and Z. mays. L. japonicus, and V. unguiculata protein sequences
homologous to ADF were identified and downloaded from the LIS (http://legumeinfo.org) and
CGKB (http://cowpeagenomics.med.virginia.edu/CGKB/) databases, respectively (Table S4). PvADF
sequences were arbitrarily named from PvADFA to PvADFI based on homology with Arabidopsis
ADFs. A phylogenetic tree was generated by the maximum likelihood method based on the JTT
matrix and FreeRate with 3 categories using IQ-TREE software version 1.3.11.1 for Linux [71] from
10,000 bootstrap replicates [72]. Multiple sequence alignment of the ADF amino acid sequences was
performed using MUSCLE software for Linux [73] and edited using the web service Gblocks 0.91b
(http://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?task_type=gblocks). The generated data in Newick
tree format were visualized and edited in MEGA X [74].

PvADFE was selected for further analysis. A three-dimensional model of PvADFE was constructed
using the I-TASSER server, http://zhanglab.ccmb.med.umich.edu/I-TASSER/ [75], based on homology
with the Arabidopsis ADF1 crystal structure, PDB accession number 1FS7 [48]. The model was
analyzed using Protean 3D software (DNAStar).

http://phytozome.jgi.doe.gov/pz/portal.html
http://legumeinfo.org
http://cowpeagenomics.med.virginia.edu/CGKB/
http://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?task_type=gblocks
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
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The P. vulgaris Genome Expression Atlas (PvGEA, http://plantgrn.noble.org/PvGEA/) was used in
order to estimate the PvADF transcript accumulation profile from different organs and tissues of P.
vulgaris analyzed by RNA sequencing and expressed as reads per kilobase of transcript per million
mapped reads.

4.3. RT-qPCR Assays

High quality RNA was isolated from frozen tissues using TRIzol®Reagent (Invitrogen, Life
Technologies, USA) following the manufacturer’s recommendations. RNA integrity and concentrations
were determined by electrophoresis and NanoDrop (2000c, Thermo Scientific) spectrophotometry,
respectively. Genomic DNA contamination from RNA samples was removed by incubating the samples
with RNase-free DNase (1 U·µL−1) at 37 ◦C for 15 min and then at 65 ◦C for 10 min. RT-qPCR assays
were performed using an iScript™ One-step RT-PCR Kit with SYBR®Green (Bio-Rad) from DNA-free
RNA samples, according the manufacturer’s recommendations, in a LightCycler®Nano cycler (Roche).
RNA template concentration was 40 ng (10 ng·µL−1) in each reaction. DNA-free RNA samples were
used as a control to confirm the absence of DNA contamination. Relative expression values were
calculated using the formula 2−∆CT, where cycle threshold value (∆Ct) is the cycle threshold (Ct) of
the gene of interest minus the Ct of the reference gene [76]. RT-qPCR data were generated from at
least two biological replicates with three independent plants each one, together with three technical
replicates. The gene encoding elongation factor 1-alpha (EF1α) was used as a reference gene to
normalize the experimental data. The genes analyzed are listed in Table S5, together with their specific
oligonucleotides used.

4.4. Plasmid Construction

To generate the RNAi construct, a fragment corresponding to the 3′-untranslated region of
PvADFE was amplified from cDNA isolated from common bean roots at 2 days post germination
using the following primers: PvADFE-RNAi-Up (5′-GTACGCTTTCTGGTGGGAGCAC-3′) and
PvADFE-RNAi-Lw (5′-ACAAAAGAAAGCATATATCGTCCAAA-3′). The resulting PCR product was
cloned into pENTR/D-TOPO (Invitrogen) and transformed by heat-shock into Escherichia coli TOP10
chemically competent cells. The recombination into the destination vector pTdT-DC-RNAi [77] was
performed with the LR clonase, using the Gateway System (Invitrogen). The appropriated orientation
of the insert was confirmed by PCR and sequencing using the PvADFE-RNAi-Up primer for the
pTdT-PvADFE-RNAi plasmid together with WRKY-5-Rev (5′-GCAGAGGAGGAGAAGCTTCTAG-3′)
or WRKY-3-Fwd (5′-CTTCTCCAACCACAGGAATTCATC-3′) primer. As a control, a truncated and
irrelevant sequence from A. thaliana pre-mir159 (kindly provided by Dr. José Luis Reyes), lacking
the target sequence of miR159 (ACAGTTTGCTTATGTCGGATCCATAATATATTTGACAAGATA
CTTTGTTTTTCGATAGATCTTGATCTGACGATGGAAGTAGAGCTCTACATCCCGGGTCA), was
cloned into the pTdT-DC-RNAi vector. The correct orientation of the sequence in the construct was
confirmed by DNA sequencing.

To construct an overexpression vector for PvADFE, the 833-bp ORF of PvADFE (Phvul006G132700.1)
including the 5′-untranslated region (154 bp) and a 3’-untranslated (169 bp) fragment was isolated from
P. vulgaris cDNA. This region was amplified from P. vulgaris root cDNA at 2 days post-germination
using PvADFE-OE-Up and PvADFE-OE-Lw primers (Table S5). The fragment was cloned into the
pENTR/D-TOPO vector (Invitrogen) and sequenced. The resulting pENTR-PvADFE plasmid was
recombined into the binary vector pH7WG2tdT (constructed by Marco A. Juárez-Verdayes) under
the control of the constitutive 35S promoter (Figure S11). Briefly, this vector was derived from vector
pH7WG2D [78]; the cassette pEgfpER and the 35S terminator were respectively replaced by a TdTomato
(red fluorescent protein) reporter obtained from the pTd-DC-RNAi vector [77] and an E9 terminator.
Empty pH7WG2tdT vector was used as the control.

To develop a pPvADFE:GUS-GFP construct, a 1383-bp fragment upstream of the PvADFE
translation start site was amplified using bean genomic DNA and primers pPvADFE-Up and

http://plantgrn.noble.org/PvGEA/
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pPvADFE-Lw (Table S5) and cloned into vector pENTR/SD/D-TOPO (Invitrogen). The Gateway
LR reaction was performed between the entry vector pENTR/SD/D-TOPO-PvADFE and the destination
vector pBGWFS7.0 [78], according to the manufacturers’ instructions (Invitrogen). Control transgenic
roots harbored a cassette with no promoter sequences upstream of the GFP-GUS sequence.

4.5. Promoter Activity Analysis

Composite P. vulgaris plants harboring pPvADFE:GUS-GFP were transferred into pots of
vermiculite and each plant was inoculated with 20 mL of R. tropici–DsRed suspension (with an
OD600 of 0.05). Roots and nodules were collected at 5, 7, 14, and 21 dpi (days post-inoculation).
Samples were histochemically analyzed for GUS activity according to the method of Jefferson [79] and
images were acquired with a Retiga 4000R CCD camera coupled to a Nikon TE300 inverted microscope.
Promoter activity during early infection events was detected using an inverted confocal microscope
(Nikon eclipse Ti in combination with a Yokogawa CSU-W1 spinning disk confocal system) and images
were processed using ImageJ version 1.48 (US National Institutes of Health). GFP fluorescence was
excited at 488 nm, while DsRed fluorescence was excited at 543 nm.

4.6. Analysis of Infection Events, Nodule Number, and Nodule Diameter

Transgenic roots expressing red fluorescent protein (TdTomato from vector pH7WG2tdT) were
selected as described above. These roots were transferred to pots with vermiculite and inoculated
with R. tropici–GUS to analyze IT progression, nodulation, and nitrogen fixation. Infection events
were analyzed in the control and PvADFE transgenic roots under a Zeiss Axioskop light microscope
(Carl Zeiss, Jena, Germany) equipped with a ×63 objective. Images were captured by a Nikon Coolpix
5000 camera with a UR-E6 adapter and an MDC lens attached to the microscope. GUS activity was
analyzed according to the method of Jefferson [79]. Images of nodulated transgenic roots at 7, 14, 21,
and 30 dpi stained with GUS were taken using a Perfection 4490 scanner (Epson) and captured in TIFF
format at a resolution of 6108 × 6108 pixels. Nodule diameter was measured using ImageJ 1.48 (US
National Institutes of Health) and classified according to their diameter (d) into four groups: Group
I (d < 0.5 mm), Group II (0.5 < d ≤ 1.0 mm), Group III (1.0 < d ≤ 1.5 mm), and Group IV (1.5 < d <

2.0 mm). The number of nodules was counted manually at 21 and 30 dpi.

4.7. Acetylene Reduction Analysis

Acetylene reduction [80] was used to quantify the nitrogenase activity in transgenic nodules at 21
and 30 dpi. Nodulated plant roots were transferred to bottles with rubber seal stoppers by injecting
acetylene to a final concentration of 10% of the gas phase. Each sample was incubated for 120 min at
room temperature, and ethylene production was determined by gas chromatography in a Variant model
3300 chromatograph. Specific activity is expressed as µmol ethylene−1

·(g nodule dry weight)−1
·h−1.

4.8. Statistical Analysis

Statistical analyses were computed using GraphPad Prism version 6.00 for Windows, (GraphPad
Software, San Diego, CA, USA). Significance tests were performed using an unpaired Student’s t-test.
Differences were considered significant if p < 0.05. Results are presented as means ± standard error of
the mean.

5. Conclusions

In this study, we demonstrated that ADFE is preferentially expressed in rhizobia-inoculated roots
and nodules. Functional characterization showed that ADF overexpression and silencing affect infection
threads number, nodule number, average nodule diameter, and nitrogen fixation. Altogether, our
results revealed that ADFE is fine-tuning the symbiotic interaction between common bean and rhizobia.
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