Supplementary Material

Tuning the Polymorphism of the Anti-VEGF G-rich V7t1 Aptamer by Covalent Dimeric Constructs

Claudia Riccardi ¹, Domenica Musumeci ^{1,2}, Chiara Platella ¹, Rosa Gaglione ¹, Angela Arciello ^{1,3} and Daniela Montesarchio ^{1,*}

- ¹ Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126, Napoli, Italy; claudia.riccardi@unina.it (C.R.); domenica.musumeci@unina.it (D.Mu.); chiara.platella@unina.it (C.P.); rosa.gaglione@unina.it (R.G.); angela.arciello@unina.it (A.A.)
- ² Institute of Biostructures and Bioimages (IBB), CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
- ³ National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
- * Correspondence: daniela.montesarchio@unina.it

Table of contents

Figure S1. Schematic representation of the sequences of the covalent V7t1 dimers	pag. S3			
Figure S2. Molecular structure of the functionalized CPG-based solid supports and linker building				
blocks used for the oligonucleotide synthesis	pag. S4			
Figure S3. 20 % polyacrylamide denaturing gel electrophoresis analysis	pag. S5			
Figure S4. 10 % polyacrylamide native gel electrophoresis analysis	pag. S6			
Figure S5. 2 % agarose native gel analysis in amine-free buffers	pag. S7			
Figure S6. Size exclusion HPLC analysis in HEPES/Na ⁺ buffer solution	pag. S8			
Figure S7. Size exclusion HPLC analysis in TRIS/K ⁺ buffer solution	pag. S9			
Figure S8. TDS profiles in HEPES/Na ⁺ buffer solution	pag. S10			
Figure S9. TDS profiles in TRIS/K ⁺ buffer solution	pag. S11			
Figure S10. UV analysis on bisV7t1T7 at 260 nm	pag. S12			
Figure S11. CD analysis on bisV7t1T7 in HEPES/Na ⁺ buffer solution	pag. S13			
Figure S12. CD analysis on bisV7t1HEG2 in HEPES/Na ⁺ buffer solution	pag. S14			
Figure S13. CD analysis on bisV7t1TEG2D in HEPES/Na ⁺ buffer solution	pag. S15			
Figure S14. CD analysis in the selected TRIS/K ⁺ buffer solution	pag. S16			
Table S1. T_m values obtained by CD-monitored thermal denaturation experiments	pag. S17			
Figure S15. EMSA experiments with BSA	pag. S18			

I) $5' \rightarrow 3' - - X - - 5' \rightarrow 3'$ II) $5' \rightarrow 3' - - X - - 3' \rightarrow 5'$

Figure S1. Polarity of the two strands in the V7t1 tandem sequences linked by a generic linker, indicated with ---X---. Scheme (I) represents the overall structure present in **bisV7t1T7** and **bisV7t1HEG2** in which both V7t1 strands have the $5' \rightarrow 3'$ direction, while Scheme (II) was exploited in **bisV7t1TEG2D** with an inversion of polarity site.

Figure S2. Molecular structure of the functionalized CPG-based solid supports and linker building blocks used for the oligonucleotide synthesis: (a) CPG-³symmetric doubler DNA solid support for **bisV7t1TEG2D**; (b) CPG-³'dA^{5'DMT} solid support for **bisV7t1TF** and **bisV7t1HEG2**; (c) HEG- and (d) TEG-based spacer-CE phosphoramidites, respectively used for **bisV7t1HEG2** and **bisV7t1TEG2D**.

Figure S3. 20 % polyacrylamide denaturing gel electrophoresis (8 M urea) at 9 μM sample concentration, run at constant 200 V at r.t. for 3.5 h in TBE 1X as running buffer. Lane 1: V7t1; lane 2: **bisV7t1T7**; lane 3: **bisV7t1HEG2**; lane 4: **bisV7t1TEG2D**.

Figure S4. 10 % polyacrylamide gel electrophoresis under native conditions of V7t1 and its covalent dimers (here indicated for simplicity as bisT7, bisHEG2, bisTEG2D) in both N.A. (-) and A. (+) form at 4 μ M concentration in the selected HEPES/Na⁺ (**a**) and TRIS/K⁺ (**b**) buffer solutions. Gels were run at constant 70 V at r.t. for 1.75 h (**a**) and 2 h (**b**) in TBE 1X as running buffer.

Figure S5. 2 % agarose gel electrophoresis under native conditions of V7t1 and its covalent dimeric analogues (here indicated as **bisT7**, **bisHEG2**, **bisTEG2D**) in both N.A. (–) and A. (+) form at 4 μ M concentration in the amine-free 150 mM NaCl (pH = 7.4), as Na⁺-rich buffer (a) and 100 mM KCl (pH = 7.3), as K⁺-rich buffer (b) buffer solutions. Gels were run at constant 60 V at r.t. for 2 h in TBE 1X as running buffer.

Figure S6. Size exclusion HPLC analysis of V7t1 (black line) and **bisV7t1T7**, **bisV7t1HEG2** and **bisV7t1TEG2D** (green, blue and red lines, respectively) in both N.A. (**a**) and A. (**b**) form in the selected HEPES/Na⁺ buffer at 2 μ M concentration. On each peak, the observed retention time (t_R) is also reported. The error associated with the t_R determination is within ± 5 %.

Figure S7. Size exclusion HPLC analysis of V7t1 (black line) and **bisV7t1T7**, **bisV7t1HEG2** and **bisV7t1TEG2D** (green, blue and red lines, respectively) in both N.A. (**a**) and A. (**b**) form in the selected TRIS/K⁺ buffer at 2 μ M concentration. On each peak, the observed retention time (t_R) is also reported. The error associated with the t_R determination is within ± 5%.

Figure S8. Thermal difference spectra (TDS) profiles of covalent V7t1 dimers, in both N.A. and A. form at 2 μ M concentration in the selected HEPES/Na⁺ buffer solution, resulting from the subtraction of the 15 °C spectrum from the 90 °C one.

Figure S9. Thermal difference spectra (TDS) profiles of V7t1 and covalent V7t1 dimers, in both N.A. and A. form at 2 μ M concentration in the selected TRIS/K⁺ buffer solution, resulting from the subtraction of the 15 °C spectrum from the 90 °C one.

Figure S10. UV analysis on **bisV7t1T7** at 2 μM concentration in the selected HEPES/Na⁺ (**a**, **b**) or TRIS/K⁺ buffer solution in both N.A. (**a**, **c**) and A. (**b**) form: overlapped UV-melting and UV-annealing profiles (green and black lines, respectively) recorded at 260 nm using a scan rate of 1 °C/min. n.d. = not determined.

Figure S11. CD analysis performed on **bisV7t1T7** at 2 μM concentration in the selected HEPES/Na⁺ buffer solution in both N.A. and. A. form. Overlapped CD spectra of: (**a**) N.A. **bisV7t1T7** at 15 °C before melting, 90 °C after melting and 15 °C after annealing (green, black and blue lines, respectively); A. **bisV7t1T7** every 5 °C during the melting (**b**) and annealing (**c**) processes; (**d**) A. **bisV7t1T7** at 15 °C before melting, 90 °C after annealing, 90 °C after annealing (green, black and blue lines, respectively); **e**) N.A. **bisV7t1T7** at 15 °C after annealing (green, black and blue lines, respectively); **e**) N.A. **bisV7t1T7** at 15 °C after annealing (blue and green lines, respectively). Arrows in panels **c** and **d** indicate the evolution of the CD signal over time.

Figure S12. CD analysis performed on **bisV7t1HEG2** at 2 μM concentration in the selected HEPES/Na⁺ buffer solution in both N.A. and. A. form. Overlapped CD spectra of: N.A. **bisV7t1HEG2** recorded every 5 °C during the melting (**a**) and annealing (**b**) processes; A. **bisV7t1HEG2** recorded every 5 °C during the melting (**c**) and annealing (**d**) processes; **e**) N.A. **bisV7t1HEG2** at 15 °C before melting, 90 °C after melting and 15 °C after annealing (green, black and blue lines, respectively); **f**) A. **bisV7t1HEG2** at 15 °C before melting, 90 °C after melting, respectively); **g**) N.A. **bisV7t1HEG2** at 15 °C after annealing (green, black and blue lines, respectively); **g**) N.A. **bisV7t1HEG2** at 15 °C after annealing and A. **bisV7t1HEG2** at 15 °C before melting (blue and green lines, respectively). Arrows in panels **a-d** indicate the evolution of the CD signal over time.

bisV7t1TEG2D

Figure S13. CD analysis performed on **bisV7t1TEG2D** at 2 μM concentration in the selected HEPES/Na⁺ buffer solution in both N.A. and. A. form. Overlapped CD spectra of: N.A. **bisV7t1TEG2D** recorded every 5 °C during the melting (**a**) and annealing (**b**) processes; **c**) N.A. **bisV7t1TEG2D** at 15 °C before melting, 90 °C after melting and 15 °C after annealing (green, black and blue lines, respectively); **d**) A. **bisV7t1TEG2D** at 15 °C before melting, 90 °C after melting and 15 °C after annealing (green, black and blue lines, respectively); **d**) A. **bisV7t1TEG2D** at 15 °C before melting, 90 °C after melting and 15 °C after annealing (green, black and blue lines, respectively); **e**) N.A. **bisV7t1TEG2D** at 15 °C after annealing and A. **bisV7t1TEG2D** at 15 °C before melting (blue and green lines, respectively). Arrows in panels **a** and **b** indicate the evolution of the CD signal over time.

Figure S14. CD analysis performed on V7t1 and its covalent V7t1 dimers at 2 μ M concentration in the selected TRIS/K⁺ buffer solution in both N.A. and. A. form. CD-melting and -annealing profiles of: (a) N.A. V7t1, recorded at 263 nm; (b) N.A. and (c) A. **bisV7t1T7**, recorded at 264 and 268 nm, respectively; (d) N.A. and (e) A. **bisV7t1HEG2**, both recorded at 263 nm; (f) N.A. and (g) A. **bisV7t1TEG2D**, recorded at 263 and 264 nm, respectively. All the annealing profiles are depicted as orange lines while melting curves are represented as black, green, blue and red lines respectively for **V7t1**, **bisV7t1TFG2D**. All the thermal profiles were recorded using a scan rate of 1 °C/min. n.d. = not determined.

Table S1. Melting temperature values obtained by CD-monitored thermal denaturation experiments for heating and cooling profiles of V7t1 and the here investigated covalent V7t1 dimers in the selected HEPES/Na⁺ and TRIS/K⁺ buffer solutions (n.d. = not determined).

	HEPES/Na*		TRIS/K ⁺	
	CD T _m (°C) ± 1			
	Not-annealed	Annealed	Not-annealed	Annealed
	Melting/Annealing	Melting/Annealing	Melting/Annealing	Melting/Annealing
V7t1	n.d. / n.d.	50 / 48	n.d. / n.d.	n.d. / n.d.
bisV7t1T7	n.d. / n.d.	n.d. / n.d.	63 / 54	58 / 53
bisV7t1HEG2	n.d. / n.d.	n.d. / n.d.	64 / 56	59 / 56
bis V7t1TEG2D	n.d. / 52	55 / 54	n.d. / 56	60 / 54

Figure S15. Native 7 % EMSA of A. (**a**) and N.A. (**b**) V7t1 and covalent V7t1 dimers incubated in the presence (+) or absence (–) of BSA. GelGreen- and Coomassiestained gels (left and right, respectively). 30 pmol of each aptamer were incubated with 40 pmol of the protein in a final volume of 9 μ L in the selected HEPES/Na⁺ buffer, thus obtaining a final 1:1.3 oligo/protein ratio. Gels were run at constant 45 V for 2.3 h at r.t. in TAE 1X buffer.