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Abstract: Heart disease is the most common cause of death in developed countries, but the medical
treatments for heart failure remain limited. In this context, the development of cardiac regeneration
therapy for severe heart failure is important. Owing to their unique characteristics, including multiple
differentiation and infinitive self-renewal, pluripotent stem cells can be considered as a novel source
for regenerative medicine. Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3)
signaling plays critical roles in the induction, maintenance, and differentiation of pluripotent stem cells.
In the heart, JAK/STAT3 signaling has diverse cellular functions, including myocardial differentiation,
cell cycle re-entry of matured myocyte after injury, and anti-apoptosis in pathological conditions.
Therefore, regulating STAT3 activity has great potential as a strategy of cardiac regeneration therapy.
In this review, we summarize the current understanding of STAT3, focusing on stem cell biology and
pathophysiology, as they contribute to cardiac regeneration therapy. We also introduce a recently
reported therapeutic strategy for myocardial regeneration that uses engineered artificial receptors
that trigger endogenous STAT3 signal activation.

Keywords: JAK/STAT signaling; pluripotent stem cells; differentiation; cardiomyocytes;
regenerative medicine

1. Pluripotent Stem Cells and Their Characteristics

Pluripotent stem cells (PSC) are a cell type characterized by unlimited self-renewal and pluripotency.
Owing to these cellular properties, PSCs, including embryonic stem cells (ESCs), epiblast stem cells
(EpiSCs), and induced pluripotent stem cells (iPSCs), have been extensively studied for advancing
regenerative medicine, including cell therapy with or without gene engineering. Over the past decade,
numerous efforts have been made to address PSC characteristics that vary based on spatiotemporal
regulation in early embryos. During embryonic development, the cells derived from the inner cell
mass in the blastocyst—the origin of ESCs—remain partially pluripotent until the post-implantation
epiblast stage, but, then, gradually differentiate toward later developmental stages [1]. There are two
major states of pluripotency observed in mouse ESCs (mESCs) and EpiSCs (mEpiSCs): the former is
isolated from the pre-implantation embryo and is termed the naïve PSC; the latter is derived from the
post-implantation epiblasts and termed the primed PSC. The common characteristics of pluripotency
are the ability to differentiate into the three germ layers, indicated by marker gene expressions
in vitro, and to form teratomas in vivo [2–4]. In addition, naïve PSCs are germline competent and
can form germline-transmitting chimeric mice, whereas primed PSCs often fail to produce chimeras.
In contrast to dome-shaped naïve mESCs, human ESCs (hESCs) are typically similar to primed mEpiSCs,
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exhibiting a flat shape in colony morphology. Various omics technologies have been developed in
the past ten years, and these have successfully identified a molecular signature for each type of
pluripotency. The gene expression profiling of PSCs also revealed a dozen transcription factors and
surface protein characteristics of the naïve and primed states [5,6]. The naïve pluripotency of the inner
cell mass in the blastocyst presents only for a limited period during development. Determining the
gene expression profiles during embryonic development and how they are dynamically changed
afterward is promising for the identification of the novel molecules or signal pathways involved in
the pluripotency signature, other than Oct4, Sox2, and Nanog, which are common markers of PSCs.
One critical pathway is the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3)
pathway, which has been utilized for the acquisition and maintenance of pluripotency in culture.

In 2006 and 2007, Takahashi and Yamanaka first reported that ESC-like pluripotency could be
induced by the ectopic expression of the master transcription factors OCT4, SOX2, KLF4, and c-MYC,
resulting in iPSC production from murine and human somatic cells [7,8]. Although the use of hESCs has
faced ethical and legal hurdles involving the use of human embryos, increasing the availability of human
iPSCs (hiPSCs) will overcome these issues. The scientific breakthrough by Takahashi and Yamanaka
not only provided a valuable cell source for regenerative medicine, but also opened up a new era of
further investigation into human developmental biology and stem cell biology. Transcriptomics have
characterized global gene expressions at different stages of reprogramming into hiPSCs [7], and this
has demonstrated the high degree of similarity between hiPSCs and hESCs. Other high-throughput
assays using next generation sequencing have identified the epigenetic signature of hiPSCs, such as
DNA methylation and histone modifications. These assays have also addressed multiple features
of hiPSCs [9]. An in-depth understanding of cellular pluripotency is necessary for utilizing PSCs in
clinical applications.

2. STAT3 in Maintenance of Pluripotency

To maintain naïve pluripotency in culture, several different protocols have been established based
on the understanding of the molecular network of transcriptional regulation. The leukemia inhibitory
factor (LIF) is the first growth factor necessary for the maintenance of mESCs. LIF is a member of the
interleukin (IL)-6-cytokine family and binds to the LIF receptor (LIFR), hetero-dimerizing with the
signal transducer glycoprotein 130 (gp130). After ligand binding, the LIFR/gp130 complex enhances
the kinase activity of JAK, resulting in the subsequent phosphorylation of STAT3. The phosphorylated
STAT3 forms homodimers, translocates to the nucleus, and then activates the transcription of the
target genes. In embryonic development, the STAT3-knockout mice exhibit embryonic lethality by
day 7 post-coitum [10], suggesting that STAT3 activation is crucial in early development. This may
underlie a mechanism that mESCs can maintain their undifferentiated state in the presence of STAT3
activation, even without LIF supplementation [11,12]. The link between the LIFR/JAK/STAT3 signaling
pathway and the core circuitry of pluripotency-associated transcription factors composed of OCT4,
SOX2, KLF4, and NANOG has also been thoroughly analyzed in a previous paper [13]. In mESCs,
the JAK/STAT3 pathway regulates KLF4 expression, followed by SOX2 transcription, whereas NANOG
is upregulated by TBX3, induced by the phosphatidylinositol-3 kinase (PI3K)/AKT pathway. Similar to
the STAT3 overexpression maintaining naïve pluripotency in mESCs, the exogenous expression of
KLF4 is sufficient to keep pluripotency. Moreover, the inhibition of the mitogen-activated protein
kinase (MAPK), which is another signaling molecule activated by LIFR/gp130, also upregulates TBX3
and NANOG. This is consistent with a report that the MAPK pathway is activated by the fibroblast
growth factor (FGF) signal, promoting the ESCs to exit from the pluripotent state [14]. The inhibition
of glycogen synthase kinase 3β (GSK3β, a Wnt pathway regulator) also contributes to cell propagation
and limiting the differentiation in cultured mESCs [14]. In this regard, a basic formula has been widely
used for the maintenance of pluripotency in naïve mESCs. A combination of two kinase inhibitors
against GSK3β and MAPK kinase (an upstream molecule of ERK signaling) together with LIF (named
as 2i/LIF) is contained in the culture medium [14–18]. Therefore, the regulation of both JAK/STAT and
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Wnt/GSK3β signaling through LIF-dependent and –independent pathways are crucial to maintain the
pluripotent state in mESCs.

Compared to mESCs, hESCs require different growth factors for their maintenance, and they
exhibit the distinctive gene expression profile for primed pluripotency. The hESCs need FGF2
and transforming growth factor-β (TGF-β)/activin/nodal signaling to sustain self-renewal and
pluripotency [19]. Achieving the conversion from a primed to naïve state in hESCs has been challenging,
but is important, as the naïve pluripotency is more immature and can be more widely applied for
disease modeling, drug screening, and regenerative medicine. A previous study revealed that the
gene introduction of OCT4, KLF4, and KLF2, or the agonist-induced activation of KLF4 and KLF2 in
combination with 2i/LIF achieved the entry of hESCs toward the naïve-like state [18,20]. Another study
demonstrated that cell culture using 3i (MAPK kinase, GSK3β, and bone morphogenic protein 4 (BMP4)
inhibitors) also promotes the responsiveness of hESCs to LIF to acquire naïve-like pluripotency through
the upregulation of gp130 [21]. More recently, Chen et al. reported that the transient expression of
STAT3 contributes to the induction of hESCs toward naïve-like pluripotency that can be maintained in
2i/LIF culture [22]. They showed that temporal STAT3 activation by a tamoxifen-inducible system in
combination with LIF stimulation in hESCs sustained their self-renewal capacity and also resulted in
genetic and epigenetic characteristics similar to those in mouse naïve ESCs [22]. Therefore, the activation
of LIF/STAT3 signaling is critical for hESCs to acquire naïve-like pluripotency independently of FGF2
and TGF-β/activin/nodal signaling.

3. STAT3 in Acquisition of Pluripotency

As LIF/STAT3 signaling regulates the maintenance of the self-renewal and pluripotent properties
in ESCs, the role of STAT3 in somatic cell reprogramming has also been documented in several studies
focusing on the regulation of LIFR/gp130 signaling. The LIF/STAT3 axis has been demonstrated to
complete the reprogramming of mEpiSCs, neural stem cells, and partially reprogrammed cells [23].
STAT3 is known to directly bind to the promoters of the genes constituting the core pluripotent circuitry,
such as OCT4 and NANOG [13,24]. Yang et al. engineered a hybrid granulocyte colony-stimulating
factor (G-CSF) receptor (GCSFR)/gp130 Y118F receptor to specifically activate endogenous STAT3
signaling in vitro. G-CSF stimulation to the cells expressing this engineered receptor has the capacity to
phosphorylate endogenous STAT3. By utilizing this system, they demonstrated that STAT3 activation
is required for the conversion from mEpiSCs to naïve iPSCs [23,25]. The involvement of LIF/STAT3
signaling in the epigenetic regulation of reprogramming to pluripotency was also proposed by
a previous study [26]. Tang et al. performed experiments using mouse embryonic fibroblasts and
showed that a constitutively active form of STAT3 promoted the reprogramming induced by the
transgene of OCT4, SOX2, and KLF4 (OSK), or OCT4, SOX2, KLF4, and c-MYC (OSKM). They also
found that the inhibition of JAK/STAT3 signaling blocked the demethylation of the OCT4 and NANOG
regulatory elements accompanied by a significant increase in DNA methyltransferase 1 (DNMT1) and
histone deacetylases (HDACs) expressions. In contrast, the treatment of the DNMT or HDAC inhibitor
rescued the reprogramming efficiency repressed by the inactivation of JAK/STAT3 signaling [26].

Furthermore, a recent discovery by Mai et al. revealed that NKX3-1, a homeobox transcription
factor, is transiently expressed in the early phase of reprogramming and that it can be used as a substitute
for OCT4 for mouse and human iPSC induction [27]. They found that the dynamic expression pattern
of NKX3-1 mirrored that of the IL-6 receptor (IL-6R) during heterokaryon reprogramming; they also
observed that IL-6R signaling is essential to iPSC reprogramming. Mai et al. further confirmed that
the NKX3-1-dependent mechanism of iPSC reprogramming required STAT3 signaling as a direct
downstream target of IL-6R. NKX3-1, thus, acts as a downstream target of the IL-6/STAT3 axis during
OSKM reprogramming. Figure 1 is an illustration that summarizes the molecular regulatory network
of LIF signaling involved in the acquisition and maintenance of the pluripotent circuitry.
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4. STAT3 in Cardiomyocyte Differentiation from Pluripotent Stem Cells

PSCs have long been a focus in practical regenerative medicine, particularly for any organ
comprising of terminally differentiated cells, such as cardiomyocytes or neurons, in which the
proliferation capacity is considerably limited. Initially, the differentiation protocol of ESCs resulted in the
formation of the embryoid body (EB), which contains variably differentiated cell types of all three germ
layers, including beating cardiomyocytes. Although the beating cell aggregate exhibits cardiomyocyte
features, including cardiac marker molecules, intracellular calcium oscillation, and contractile property,
the incidence of the beating cell population was significantly low among the whole cell population [28].
To efficiently obtain cardiomyocytes ex vivo, researchers to date have made huge efforts, using chemical
compounds, microRNA, and cytokines that facilitate cardiomyocyte differentiation from PSCs [29–35].
For example, the efficiency of cardiomyocyte differentiation can be improved by adding BMP4, WNT3A,
and the subsequent supplementation of a WNT signaling inhibitor [36–38]. G-CSF and L-ascorbic acid
are also known factors to improve cardiac differentiation efficiency by facilitating cardiac progenitor
cell propagation [39,40], whereas insulin-like growth factor 1 (IGF1) and IGF2 are reported to stimulate
the proliferation capacity in hPSC-derived cardiomyocytes [41].

In terms of the role of STAT3 in cardiac development, a previous comprehensive study
demonstrated that in the embryonic heart, there are high expression levels of G-CSF and GCSFR,
an upstream signaling molecule of STAT3 at the midgestational stage and onward [40]. G-CSF is
a hematopoietic cytokine that stimulates neutrophil colony growth [42,43], and positively regulates
stem cell mobilization [44,45]. According to the study by Shimoji et al., intrauterine treatment by G-CSF
causes cardiac hyperplasia due to high cardiomyocyte proliferation, whereas deficiency of the GCSFR
during the late stages of embryogenesis causes embryonic death because of myocardial thinning.
They also found high expression levels of GCSFR in primate ESC- and hiPSC-derived cardiomyocytes,
and showed the enhancement of myocardial cell proliferation by G-CSF treatment [40]. These findings
suggest the crucial role of G-CSF/JAK/STAT3 signal activation in cardiomyocyte proliferation in the
developing heart and PSC-derived cardiomyocytes.

5. STAT3 in Heart Disease

The therapeutic roles of STAT3 in heart disease have been reported in previous studies using several
models of heart failure, including gene-altered mice and cultured cardiomyocytes. The majority of these
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studies demonstrate that STAT3 is cardioprotective in pathological conditions through modulating cell
survival/death, cell proliferation, neovascularization, and energy metabolism. This beneficial effect of
STAT3 may lead to the development of a novel therapeutic strategy for heart disease.

5.1. STAT3 in Myocardial Infarction

Ischemic heart diseases, such as myocardial infarction, are a major cause of cardiac death
in humans. The occlusion of coronary arteries by atheroma and thrombus disrupts the blood
supply to the distal myocardium, resulting in cell death. In addition to the importance of STAT3
in myocardial differentiation from hPSCs, STAT3 plays a pivotal role in cardiomyocyte survival
in adult hearts. As an upstream factor of STAT3, G-CSF has been known to promote myocardial
regeneration through inducing the mobilization of bone marrow stem cells (or bone marrow stromal
cells: BMSCs), a type of multipotent mesenchymal stem cell, to the injured tissue [46–52]. Although
mobilized BMSCs had been thought to differentiate to cardiomyocytes in the infarcted heart, a series
of studies published in later years suggested that BMSCs contribute to cardiac regeneration by
promoting residual cardiomyocyte survival, possibly owing to the paracrine effect [53–55]. In addition,
a recent study by Cai et al. supported the evidence that the myocardial differentiation from BMSCs
occurs via miRNA-involved modulation [56]. They reported that miR-124 inhibition activates STAT3
and enhances differentiation efficiency from BMSCs, whereas miR-124 overexpression reduced the
efficiency [56]. Thus, although there is still controversy regarding the underlying mechanism of
BMSC-based myocardial repair, BMSCs have advantages, including relatively high availability and
proliferation capacity, as well as multipotent property and the secretion of growth factors and
cytokines [57]. BMSCs, in comparison with PSCs, are also expected as another optimal cell source in
regenerative medicine. Uncovering the mechanisms involving miRNAs would provide novel insights
into cardiac differentiation from BMSCs, thereby facilitating the clinical application of BMSC-based
regeneration therapy.

Harada et al. reported that GCSFR signaling is therapeutic in cardiomyocytes and
non-cardiomyocytes in an injured heart [58]. The underlying mechanism was that G-CSF
administration prevents post-infarction ventricular remodeling through the activation of the JAK/STAT
pathway. The beneficial effect of G-CSF administration occurs in the early phase after infarction.
The G-CSF/JAK/STAT-mediated improvement of cardiac function is attributed to the upregulation of
Bcl-2 and Bcl-xL (anti-apoptotic molecules), leading to the inhibition of the apoptosis of the ischemic
myocardium and the survival of endothelial cells necessary for neovascularization. A previous
study using AG490, a JAK/STAT pathway inhibitor, also supports the above findings [59]. Moreover,
loss-of-function experiments using transgenic mice overexpressing a dominant-negative mutant of
STAT3 in cardiomyocytes showed that STAT3 is a key molecule for the G-CSF-mediated cardiomyocyte
survival and the prevention of ventricular remodeling [58]. In addition, the cardiac-specific knockout
of STAT3 exacerbated ventricular remodeling during the subacute phase of myocardial infarction in
mice [60]. According to a previous study, cardioprotective roles of STAT3 are involved in the suppression
of miR-199a-5p transcription, because miR-199a-5p disrupts protein turnover in cardiomyocytes
and elevates oxidative stress in cardiac endothelial cells [61]. In terms of the STAT3 effects on
endothelial cell survival promoting neovascularization, this is also supported by the evidence that the
JAK/STAT pathway induces angiogenic factors, which has been investigated in cardiac and cancer
research fields [62–65].

5.2. STAT3 in Ischemic/Reperfusion Injury

In acute coronary syndrome leading to life-threatening myocardial infarction, recanalization
with catheter intervention causes ischemia/reperfusion injury, owing to excessive oxidative stress.
Similar to the role of STAT3 in myocardial infarction, STAT3 is protective against ischemia/reperfusion
injury by decreasing oxidative stress, apoptosis, and mitochondrial dysfunction, and by increasing
angiogenesis [66,67]. This is supported by a study using STAT3-deficient mice exhibiting severe
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myocardial damage following ischemia/reperfusion [68,69]. Oxidative stress is elevated by the
increased generation of reactive oxygen species and/or decreased antioxidant production. STAT3 is
known to increase the level of antioxidant metallothioneins and manganese superoxide dismutase
(MnSOD), whereas STAT3 decreases the production of reactive oxygen species by the modulation of
complexes I and III of the electron transport chain [66,67,70].

5.3. STAT3 in Doxorubicin-Induced Cardiomyopathy

Doxorubicin is widely used in cancer chemotherapy and commonly known to have cardiotoxicity if
its accumulated dose exceeds 550 mg/m2 [71,72]. The underlying mechanisms of doxorubicin-mediated
cardiotoxicity have been demonstrated as follows: (1) excessive oxidative stress, (2) impaired
mitochondrial iron transport and mitochondrial dysfunction, and (3) topoisomerase II inhibition
and DNA damage [71,73,74]. All of these result in cell death, leading to heart failure. In particular,
many studies supported the conclusion that oxidative stress corresponds to the pathophysiology of
doxorubicin-induced cardiomyopathy. As mentioned, STAT3 plays a role in reducing oxidative stress
in the physiological and pathological conditions of the heart. There are several studies that found
myocardial protection by STAT3 against doxorubicin-induced cardiomyopathy. The cardiac-specific
overexpression of STAT3 resulted in a significant increase in the survival rate following doxorubicin
administration and maintained the expression of hypertrophy-responsive genes, such as the atrial
natriuretic factor, β-myosin heavy chain, and cardiotrophin-1 genes. As STAT3 gene expression was
downregulated in the heart of doxorubicin-treated mice, STAT3 potentially protected the myocardial
tissue from doxorubicin toxicity [75]. A couple of molecular mechanisms of STAT3-mediated protection
against doxorubicin have been proposed so far. Rong et al. reported that JAK2/STAT3 activation
increases the expression of metallothionein 1 and 2 anti-oxidative genes in response to doxorubicin
stimulation, thereby decreasing oxidative stress [76]. Another report by Wu et al. demonstrated
that S-propargyl-cysteine, an endogenous hydrogen sulfide initiator, is cardioprotective against
doxorubicin-induced toxicity through STAT3 activation by gp130-dependent signaling [77].

5.4. STAT3 in Cardiac Fibrosis and Hypertrophy

In addition to the protective effect, STAT3 is involved in cardiac fibrosis and hypertrophy. In the
physiological condition, in vitro experiments revealed that STAT3 is activated in cardiac fibroblasts by
IL-6 involved in normal collagen synthesis to maintain tissue homeostasis [78]. The upregulation of
IL-6 in cardiomyocytes was observed in a hypertension animal model through renal artery ligation,
showing significantly increased cardiac fibrosis [79]. Moreover, the treatment of angiotensin II—a
pathological stimulus—in cultured cardiac fibroblasts induces STAT3 activation via Rac1 indirectly
(paracrine effect), leading to increased fibrosis [80]. Another previous study also reported that the
activation of the gp130/STAT3 pathway by LIF treatment induces cardiomyocyte hypertrophy, and this
effect was blunted by SOCS3, a suppressor of cytokine signaling [81]. These studies suggest the link
between the cytokine-mediated inflammation response in fibroblasts and STAT3-involved hypertrophy
in cardiomyocytes. Interestingly, a recent study showed that STAT3-dependent hypertrophy is at least
in part regulated by the inhibition of cellular autophagy [82]. In H9c2 cells (mouse atrial myocyte
line), angiotensin II induced hypertrophy via JAK/STAT3 signal activation, and this hypertrophic
response was abolished by the knockdown or pharmacological inhibition of STAT3 through increased
autophagy-related proteins and decreased phosphorylated AMP-activated protein kinase α (AMPKα)
and mammalian target of rapamycin (mTOR). These findings suggest that STAT3 contributes to a balance
between autophagy and hypertrophy in response to angiotensin II stimulation [82]. Furthermore,
STAT3 has been shown to regulate various mitochondrial functions involved in energy metabolism in
the heart. The healthy heart relies on fatty acids rather than glucose for fuel. Altara et al. demonstrated
that chronic hypertension induced by angiotensin II infusion tends to switch the energy metabolism
toward glycolysis from fatty acid oxidation in cardiac-specific STAT3 knockout mice [83], suggesting the
role of STAT3 in metabolism regulation.
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Several studies reported that the deficiency of gp130 in pressure-overloaded hypertrophy model
mice exacerbated heart failure through the inactivation of STAT3. These mice displayed the early onset
of dilated cardiomyopathy and a low survival rate without an increase in hypertrophy or fibrosis [84–86].
Another study using cardiac-specific STAT3 knockout mice demonstrated that myocardial infarction
increased myocardial fibrosis associated with the upregulation of fibrosis-related genes and enhanced
cardiomyocyte hypertrophy [60]. Although either the overactivation or inhibition of STAT3 appears to
exacerbate cardiac pathophysiology, the fibrotic and remodeling responses would vary among types of
heart failure. Thus, for proper heart failure treatment, STAT3 activation should be fine-tuned at the
physiological level.

6. STAT3 Activation for Myocardial Regeneration

Despite the cardiomyocyte differentiation from PSCs to replace damaged tissue, STAT3 activation
promotes myocardial regeneration in residual living tissue. The protective roles of the JAK/STAT
pathway, including proliferation, survival, and cell competition, are evolutionally conserved among
vertebrates and Drosophila. Several studies have demonstrated the JAK/STAT-mediated regeneration
of various tissues in Drosophila, such as the intestine, wing disc, and testis [87,88]. Similarly, it is
known that the myocardium in amphibians and fish can be completely regenerated by the proliferation
of mature cardiomyocytes after injury, even in adult creatures [89,90]. In this context, it was also
reported that the regeneration of zebrafish tissues, including cardiomyocytes, is promoted by JAK/STAT
signal activation [91–94]. Fang et al. investigated the underlying mechanism of injury-induced heart
regeneration in zebrafish [91]. Using translating ribosome affinity purification (TRAP), a special
technology for the profiling of actively translated mRNAs in a specific cell type, they discovered that
protein expressions associated with the Jak1/Stat3 axis are dynamically induced following tissue injury.
Using transgenic zebrafish, in which cardiac Stat3 is inhibited by dominant-negative Stat3, they also
confirmed that Jak1/Stat3 stimulates cardiomyocyte proliferation and regeneration. The activation
of the Jak1/Stat3 pathway by injury induces the secretion of Rln3a and interleukin 11α (Il11α).
Rln3a is an orthologue of mammalian relaxin3, a peptide hormone acting against myocardial injury,
oxidative stress, fibrosis, and inflammation in the cardiovascular system, and known to be required
for cardiomyocyte proliferation [95]. Il11α is a ligand of the Jak1/Stat3 pathway that is produced
from the endocardium. Based on these findings, they proposed a dynamic flow of the mechanism
as follows: 1) Jak1/Stat3 downstream mediators are activated at the damaged myocardium; 2) this
promotes cytokine production in the endocardium and inflammatory cells in the whole heart; 3) these
cytokines are then localized and activated at the injury site, where they stimulate Rln3a production [91].
The secreted Il11α may also be cardioprotective, as reported in mice with myocardial infarction [96].

As observed in zebrafish, myocardial regeneration in response to injury has also been reported
in neonatal mice [97]. The regeneration capacity of the myocardial tissue declines during the first
week after birth, and afterward, cardiomyocytes exit the cell cycle. Then, cardiomyocytes begin
to grow by hypertrophy to become mature [98]. A terminally differentiated adult mammalian
heart displays a limited capacity for self-renewal when damaged [99–101]. In terms of mechanisms
underlying myocardial regeneration in neonatal mice, a recent comprehensive study examined how
the transcriptional characteristics of differentiated myocytes reverts to the immature form during
regeneration in response to injury [102]. O’Meara et al. analyzed dynamic transcriptional changes
during myocardial regeneration after apex resection in mouse neonates. They revealed a transcriptional
reversion of differentiation processes, such as the reactivation of cell cycle genes and developmental
programs. In vitro and in vivo cardiomyocyte differentiation and the explant myocyte model also
displayed similar dynamic profile changes. The study further identified that interleukin 13 (IL-13)
is a potential upstream regulator for the transcriptional reversion during regeneration that induced
STAT3/periostin and STAT6 signaling, as well as the cell cycle entry of cardiomyocytes [102]. Periostin is
a component of the extracellular matrix and is induced after myocardial injury [103–105]. As periostin
delivery promotes myocyte proliferation and reduces injury size and fibrosis in myocardial infarction
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model rats [106], IL-13 presumably facilitates STAT3 and periostin induction for heart regeneration.
Altogether, the cardiac-specific activation of the STAT3 pathway by ligand stimulation would be
a favorable strategy for cardiac regeneration therapy.

In the clinical setting, there are several therapeutic strategies for cardiac repair,
including pharmacological, gene-based, and cell-based therapy. G-CSF administration, which could
trigger STAT3-mediated myocardial regeneration as mentioned, has been performed to improve
cardiac function in patients with angina and/or acute myocardial infarction [107]. The gene delivery
of a vascular endothelial growth factor or hepatocyte growth factor has also been evaluated in
several clinical trials, showing only modest-to-partial effects for the treatment of ischemic heart
disease [108–111]. Beside cytokine- or growth factor-based approaches, cell-based cardiac regeneration
therapy has been investigated in many clinical trials for the last 20 years. BMSCs were commonly
used for cell transplantation via intracoronary catheter intervention or direct myocardial injection,
and some studies showed the effectiveness in failing hearts [112]. In reality, however, their outcome
was controversial due to different study conditions, including the types and numbers of cells to be
transplanted, administration methods, lack of control, and variations of disease type, disease stage,
and end-point, which were not standardized [112]. Even several well-designed clinical studies did
not show a significant improvement of the cardiac function [113,114]. Therefore, further clinical trials
must be standardized to reliably evaluate the feasibility, efficiency, and safety of cell-based cardiac
regeneration therapy. Recently, the first clinical trial to treat severe heart failure using a tissue sheet of
iPSC-derived cardiomyocytes was approved and started [115]. The clinical outcome of this new type
of cell therapy may contribute to deciding the future of cardiac regenerative medicine.

Considering the limited effects of stem cell-based therapy on clinical outcome, another therapeutic
strategy, direct cardiac reprogramming, was developed to apply for myocardial regeneration. Ieda et al.
first reported the direct conversion from fibroblasts to cardiomyocytes in vitro by the gene introduction
of Gata4, Mef2c, and Tbx5, which are cardiac-specific transcription factors [116]. Later, Qian et al. and
Inagawa et al. demonstrated that the intramyocardial injection of Gata4-, Mef2c-, and Tbx5-expressing
retroviral vectors succeeded to reprogram residual non-myocytes to cardiomyocytes and improved
cardiac function after myocardial infarction in mice [117,118]. Although further studies have been
conducted to enhance the reprogramming efficiency using additional transcription factors (e.g.,
Hand2), a combination of miRNAs (e.g., miR-1, miR-133, and miR-408), or other type of viral vectors
(e.g., Sendai virus) [119–121], the efficacy of direct reprogramming to cardiomyocytes is still being
improved. Therefore, uncovering the mechanisms underlying direct reprogramming as well as
cytokine-, growth factor-, and cell-based cardiac regeneration therapy will shed light on further
development of these therapeutic options and the current knowledge of the molecules involved in
cardiac regeneration, such as STAT3, would help to accelerate the advancement. Table 1 is a summary
of STAT3-mediated diverse functions in early embryos, stem cells, and developing and diseased hearts.
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Table 1. STAT3-mediated biological functions in early embryos, stem cells, and developing and
diseased hearts.

Ligand/Stimulus Receptor/Effector Cell/Tissue Type Functions Mechanisms References

LIF LIFR/gp130 mouse early
embryo

early development possible role in visceral
endoderm

[10]

LIF LIFR/gp130 mESC pluripotency
maintenance

induction of KLF4
expression subsequently
activating SOX2
transcription

[11–13]

LIF LIFR/gp130 hESC naïve pluripotency
acquisition

NA [22]

G-CSF GCSFR/gp130
Y118F chimeric
receptor

mEpiSC naïve pluripotency
acquisition

NA [23,25]

LIF LIFR/gp130 MEF reprogramming to
miPSCs

demethylation and
deacetylation of OCT4 and
Nanog

[26]

IL-6 IL6R MEF, human
fibroblast

reprogramming to
miPSCs and hiPSCs

activation of activates
endogenous OCT4 by
NKX3-1

[27]

G-CSF GCSFR mouse embryonic
heart

cardiac development cardiomyocyte
proliferation

[40]

G-CSF GCSFR BMSC (mouse,
rabbit, human)

cardioprotective
against MI

mobilization to injured
myocardium

[46–52]

G-CSF GCSFR BMSC (mouse,
non-human
primate)

cardioprotective
against MI

cardiomyocyte survival as
paracrine effect

[53–55]

NA miR-124 BMSC (rat) pathological factor inhibition of
cardiomyocyte
differentiation

[56]

G-CSF GCSFR mouse and rat
cardiomyocyte

cardioprotective
against MI

anti-apoptosis, prevention
of ventricular remodeling

[58–60]

G-CSF GCSFR mouse and rat
endothelial cell

cardioprotective
against MI

cell survival,
neovascularization

[58–60]

NA miR-199-5p mouse and rat
cardiomyocyte

pathological factor disruption of protein
turnover

[61]

NA miR-199-5p mouse and rat
endothelial cell

pathological factor oxidative stress elevation [61]

NA NA adult mouse heart cardioprotective
against I/R injury

decreasing of oxidative
stress, apoptosis and
mitochondrial dysfunction;
increasing angiogenesis

[67–69]

NA NA adult mouse heart cardioprotective
against I/R injury

increase in antioxidants
(metallothioneins,
MnSOD): decrease in ROS
production via complexes
I and III activation

[66,67,70]

NA NA adult mouse heart cardioprotective
against
doxorubicin-induced
cardiomyopathy

cell survival, increase in
antioxidants
(metallothionein 1 and 2)

[76]

NA gp130 adult mouse heart cardioprotective
against
doxorubicin-induced
cardiomyopathy

in response to
S-propargyl-cysteine
(hydrogen sulfide initiator)

[77]

IL-6 NA rat cardiac
fibroblast

physiological and
pathological fibrosis

collagen synthesis [78,79]

Angiotensin II
/Rac1

NA rat cardiac
fibroblast

fibrosis collagen synthesis [80]
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Table 1. Cont.

Ligand/Stimulus Receptor/Effector Cell/Tissue Type Functions Mechanisms References

LIF LIFR/gp130 mouse and rat
cardiomyocyte

hypertrophy cytokine-mediated
hypertrophy and
anti-apoptosis

[81]

Angiotensin II NA H9c2 cell line anti-hypertrophy inhibition of
autophagy-related
proteins; activation of
AMPKα and mTOR

[82]

NA NA adult mouse heart cardioprotection
against hypertension

inhibition to shift energy
metabolism from fatty acid
oxidation to glycolysis

[83]

NA gp130 adult mouse heart cardioprotection
against early onset of
dilated
cardiomyopathy
induced by pressure
overload

anti-apoptosis [84–86]

Il11α NA zebrafish heart myocardial
regeneration after
injury

cardiomyocyte
proliferation through
cytokine production in
endocardium and
inflammatory cells

[91–94]

IL-11 NA adult mouse heart cardioprotective
against MI

Prevention of apoptosis,
fibrosis and ventricular
remodeling;
neovascularization

[96]

IL-13 NA neonatal mouse
heart

myocardial
regeneration after
injury

reversion of transcription
profiles for cardiomyocyte
development and
maturation

[102]

Surrogate
ligand
(BSA-FL)

chimericantigen/GCSFRmiPSC cardiomyocyte
differentiation

NA [122]

AMPKα, AMP-activated protein kinase alpha; BMSC, bone marrow stem cell (bone barrow stromal cell); BSA-FL,
fluorescein-conjugated bovine serum albumin; G-CSF, granulocyte colony-stimulating factor; GCSFR, G-CSF
receptor; gp130, glycoprotein 130; hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem
cell; IL-6, interleukin 6; IL-6R, IL-6 receptor; IL-11, interleukin 11; Il11α, interleukin 11α; IL-13, interleukin 13; I/R,
ischemia/reperfusion; LIF, leukemia inhibitory factor; LIFR, LIF receptor; mEpiSC; mouse epiblast stem cell; mESC,
mouse embryonic stem cell; MEF, mouse embryonic fibroblast; MI, myocardial infarction; miPSC, mouse induced
pluripotent stem cell; miR, micro-RNA; MnSOD, manganese superoxide dismutase; mTOR, mammalian target of
rapamycin; ROS, reactive oxygen species; scFV, single chain FV against fluorescein; NA, not applicable.

7. STAT3 Activation through Artificial Receptors for Myocardial Differentiation

Stem cell-based myocardial regeneration therapy for heart failure remains challenging despite
the extensive efforts made over the last decade. Most protocols to induce cardiomyocytes from
PSCs require growth factors or chemical compounds, some of which are expensive [31,32,34,123,124].
This financial hurdle limits clinical application, since a huge number of cardiomyocytes are needed
for cell therapy. To overcome this problem, recent bioengineering technologies have enabled us to
develop artificial receptors that can respond to an inexpensive surrogate ligand. For STAT3 activation,
Kawahara and colleagues have developed several artificial cytokine receptors, named signalobodies,
to control cellular functions. The scFv-c-Fms (S-Fms) signalobody activates downstream signaling
molecules, including MEK, ERK, AKT, and STAT3 [125–127]. A heterodimeric signalobody of VH/EpoR
and VL/gp130 could also induce the activation of JAK/STAT signaling [128].

Using the above technologies, we recently reported a novel strategy to improve the differentiation
efficiency from miPSCs to cardiomyocytes by the economical activation of G-CSF/STAT3 signaling in
response to a surrogate ligand [122]. As mentioned in the previous section, G-CSF is a well-known
hematopoietic cytokine that regulates stem cell mobilization and anti-apoptosis via JAK/STAT signal
activation [42,43,129,130]. It was also reported that G-CSF stimulation promotes cardiomyocyte
differentiation from ESCs and iPSCs [40]. Although recombinant G-CSF is clinically used for
chemo-associated neutropenia treatment in cancer patients, G-CSF is expensive for repetitive
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usages. Thus, we constructed a chimeric antigen/GCSFR responsive to cognate artificial antigens,
fluorescein-conjugated bovine serum albumin (BSA-FL) [122]. BSA-FL is inexpensive, chemically
stable, and physiologically inactive compared to recombinant G-CSF, and it is expected to bind to
this artificial receptor, specifically activating the downstream signaling pathways in the targeted
cells. Regarding the molecular structure of the chimeric antigen/GCSFR, an anti-FL single-chain
Fv (scFv) was fused to the transmembrane/intracellular domains of the native GCSFR that could
trigger endogenous JAK/STAT signal activation following the ligand binding. We then generated
a stable miPSC line introduced with chimeric antigen/GCSFRs. The administration of BSA-FL as
an inexpensive surrogate ligand (about 20 times less expensive than recombinant G-CSF) in this cell
line successfully and dose-dependently triggered STAT3 phosphorylation, and, in turn, improved
the efficiency of cardiomyocyte differentiation demonstrated by an increased incidence of beating
EB formation. The beating EBs also exhibited the upregulation of cardiac transcription factors and
structural molecules, such as TBX5, GATA4, α-actin, and α-myosin heavy chain, whereas other
mesodermal marker gene expressions seemed not to be affected by BSA-FL treatment. There was
a downregulation of ecto- and endo-dermal marker genes by BSA-FL. In addition, JAK Inhibitor I
perturbed BSA-FL-mediated increases in the STAT3 phosphorylation and myocardial differentiation
efficiency. These findings suggest that the artificial GCSFR-mediated signal transduction in response
to a surrogate ligand activates the JAK/STAT pathway, contributing to differentiation preferential to
cardiomyocytes rather than to other cell types [122]. Therefore, the artificial GCSFR we constructed
would be a favorable and economical tool to enhance the cardiomyocyte creation from PSCs (Table 1).
Furthermore, applying cardiomyocytes derived from artificial GCSFR-expressing PSCs, together with
the systemic administration of surrogate ligands instead of recombinant G-CSF, could be beneficial
after cell implantation, considering the effects of the JAK/STAT pathway activation on myocardial
regeneration, as discussed above [58,91,102]. As the phosphorylation levels of STAT3 depend on
the ligand dose, stimulating the artificial GCSFR by a proper dose of BSA-FL could finely tune the
activity of the JAK/STAT pathway. Further investigations will optimize the temporal activation of
STAT3, using engineered chimeric receptor-expressing cells for effective myocardial regeneration with
minimal fibrosis. In Figure 2A, we summarize the structure and signal transduction of several types of
artificial chimeric antigen receptors that can trigger JAK/STAT signal activation in response to surrogate
ligands; we also show the strategy of cardiac regeneration therapy based on the transplantation of
cardiomyocytes derived from the artificial GCSFR-expressing PSCs (Figure 2B).
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receptor; EpoR: erythropoietin receptor; G-CSF: granulocyte colony-stimulating factor; GCSFR: 
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Figure 2. (A). Schematic illustrations of artificial receptors activating STAT signaling in response
to a surrogate ligand (BSA-FL or HEL). (B). A strategy of cardiac regeneration therapy based on
transplantation of cardiomyocyte-derived from chimeric antigen/GCSFR-expressing PSCs. BSA-FL:
fluorescein-conjugated bovine serum albumin; D2; extracellular D2 domain of erythropoietin receptor;
EpoR: erythropoietin receptor; G-CSF: granulocyte colony-stimulating factor; GCSFR: G-CSF receptor;
HEL: hen egg lysozyme; JAK: Janus kinase; PM: plasma membrane; scFv: single chain Fv; STAT: signal
transducer and activator of transcription; VH: variable region of heavy chain; VL: variable region of
light chain.
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8. Conclusions and Perspectives

Cardiac regenerative medicine is currently a high hope because heart disease is the leading cause
of death in the developed countries. Although serious research has been conducted, obtaining the
sufficient number and quality of cardiomyocytes derived from PSCs still presents challenges. Therefore,
it is important to identify key molecules and signal pathways, such as JAK/STAT3 signaling for the
induction, maintenance, and differentiation of PSCs, while a numerous number of cytokines and
secretary factors, such as G-CSF, have also been screened to underpin their utility for cardiac regeneration
therapy. Accumulating evidence revealed that: (1) STAT3 maintains pluripotency in naïve mouse and
human PSCs as a downstream regulator of LIF; (2) STAT3 promotes proliferation in the developing
PSC-derived cardiomyocytes; (3) in adult hearts, STAT3 plays a role in cardioprotection through G-CSF
and gp130 signal activation in various cardiovascular diseases; (4) STAT3 is involved in myocardial
regeneration mediated by the dedifferentiation and proliferation of cardiomyocytes, observed in the
myocardium of neonatal rodents, as well as amphibians and fish. Cardiac regeneration therapy relies
on a couple of issues to be achieved: stem cell differentiation, the re-entry and enhancement of cell
cycle progression, the prevention of cell death, and improving the function of residual myocytes.
Although STAT3 is involved in most of them, its overactivation is rather harmful to the heart because
it may lead to cardiac fibrosis. Therefore, it is important to develop the strategies to regulate STAT3
activity. In this context, the artificial activation of the JAK/STAT3 pathway at proper levels by chimeric
antigen/GCSFR, using an inexpensive surrogate ligand, would possibly be a powerful tool to establish
an economical and innovative cardiac regeneration therapy.
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Abbreviations

AMPKα AMP-activated protein kinase α

BMSC bone marrow stem cell or bone marrow stromal cell
BSA-FL fluorescein-conjugated bovine serum albumin
DNMT DNA methyltransferase
EB embryoid body
EpiSC epiblast stem cell
ESC embryonic stem cell
FGF fibroblast growth factor
FL Fluorescein
G-CSF granulocyte colony-stimulating factor
GCSFR granulocyte colony-stimulating factor receptor
gp130 glycoprotein 130
GSK3β glycogen synthase kinase 3β
HDAC histone deacetylase
hESC human embryonic stem cells
hiPSC human induced pluripotent stem cell
hPSC human pluripotent stem cell
IGF insulin-like growth factor
IL-6 interleukin 6
Il11α interleukin 11α
IL-13 interleukin 13
iPSC induced pluripotent stem cell
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JAK Janus kinase
LIF leukemia inhibitory factor
MAPK mitogen-activated protein kinase
mEpiSC mouse epiblast stem cell
mESC mouse embryonic stem cell
miPSC mouse induced pluripotent stem cell
MnSOD manganese superoxide dismutase
mTOR mammalian target of rapamycin
OSK OCT4, SOX2, and KLF4
OSKM OCT4, SOX2, KLF4, and c-MYC
PI3K phosphatidylinositol-3 kinase
PSC pluripotent stem cell
scFv single chain variable domain of antibody
STAT signal transducer and activator of transcription
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