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Abstract: Although molecular mechanisms driving tumor progression have been extensively
studied, the biological nature of the various populations of circulating tumor cells (CTCs) within
the blood is still not well understood. Tumor cell fusion with immune cells is a longstanding
hypothesis that has caught more attention in recent times. Specifically, fusion of tumor cells with
macrophages might lead to the development of metastasis by acquiring features such as genetic and
epigenetic heterogeneity, chemotherapeutic resistance, and immune tolerance. In addition to the
traditional FDA-approved definition of a CTC (CD45-, EpCAM+, cytokeratins 8+, 18+ or 19+, with a
DAPI+ nucleus), an additional circulating cell population has been identified as being potential
fusions cells, characterized by distinct, large, polymorphonuclear cancer-associated cells with a dual
epithelial and macrophage/myeloid phenotype. Artificial fusion of tumor cells with macrophages
leads to migratory, invasive, and metastatic phenotypes. Further studies might investigate whether
these have a potential impact on the immune response towards the cancer. In this review, the
background, evidence, and potential relevance of tumor cell fusions with macrophages is discussed,
along with the potential role of intercellular connections in their formation. Such fusion cells could
be a key component in cancer metastasis, and therefore, evolve as a diagnostic and therapeutic target
in cancer precision medicine.
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1. Introduction

Cancer progression and metastasis are highly complex processes consisting of significant
molecular changes [1]. Circulating tumor cells (CTCs) are cancer cells that are shed from a primary
tumor into the vasculature, circulate throughout the body, have the potential to settle in distant
organs and develop into solid organ tumor metastases that are responsible for most cancer-associated
deaths [2]. Detection of CTCs in the blood via a simple and minimally-invasive venous blood draw
as a form of a ‘liquid biopsy’ has significant benefits over invasive tissue biopsies. Invasive tissue

Int. J. Mol. Sci. 2020, 21, 1872; d0i:10.3390/ijms21051872 www.mdpi.com/journal/ijms



Int. ]. Mol. Sci. 2020, 21, 1872 2 of 20

biopsies have significant risks; however, are still the standard for treatment planning in cancer
patients. In addition to potential complexity, high cost, and single time-point limitations of the typical
tissue biopsy, treatment responses, and monitoring are exclusively based on costly and indirect image
interpretation that includes radiation exposure to the patient. To address these risks and limitations,
liquid biomarkers such as CTCs detected via peripheral blood draws are a unique opportunity to
characterize tumor biology and personalize clinical treatment decisions by analyzing whole tumor
cells in real-time. The FDA approved the CellSearch® system in 2007 for immunoaffinity-based CTC
detection and enumeration in 7.5 mL of peripheral whole blood from metastatic breast and colorectal
cancer patients. Since then, a CTC has been defined as having a well-defined 4',6-diamidino-2-
phenylindole (DAPI)+ nucleus that expresses cytokeratin (CK) 8/18 and/or 19 and EpCAM (epithelial
cell markers), but distinctively lacks the expression of CD45 (a pan-leukocyte marker) [3]. This rather
broad definition has been shown to be incomplete as potentially highly relevant circulating cancer-
associated cells might lack EpCAM, or even co-express CD45 and other macrophage/myeloid or
stem-cell markers [4-8] (Table 1). The provocative hypothesis that tumor cells fuse with white blood
cells to migrate and escape the immune surveillance to grow to metastases in other organs, was
developed more than 100 years ago [9]. Recently several groups have proposed cancer cell fusions,
and in particular leukocyte-tumor cell fusions, to have potential significant roles in tumor
progression, cancer metastasis, and chemotherapy resistance in solid cancers [10,11]. Molecular
mechanisms of cellular fusion have been suggested, and intercellular connections (e. g., via tunneling
nanotubes (TNTs)) might play a role in partial and permanent cell fusions [12,13]. Experimental
results indicate that tumor cell fusions with other tumor cells (homotypic) or with non-tumorous cell
types (heterotypic) are associated with more aggressive cancer phenotypes (such as patient survival,
metastatic capabilities, and chemoresistance) [14]. Recent reports on circulating cancer-associated
cells with dual epithelial and macrophage/myeloid phenotypes, combined with genetic analyses,
have supported the idea that fusion events between tumor cells and macrophages might have a
critical role in tumor progression, development of metastatic disease, and poor outcome for cancer
patients [12,15-22]. Beyond the potential clinical utility of these fusion cells as blood-borne liquid
biomarkers, via a simple phlebotomy in precision oncology, further scientific exploration of fusion
molecular mechanisms and the impact of fusion cells could fundamentally advance our
understanding of metastatic cancer biology and lead to the identification of novel therapeutic
strategies.

Table 1. Circulating, cancer-associated cell subtypes (selected).

. Phenotype
Description . .
(+: expression; -: no expression)

EpCAM+/(cytokeratin)CK+/CD45-, intact DAPI+ nucleus,
>8 um
CTC clusters [23] >2 EpCAM+/CK+/CD45-/DAPI+CTCs in aggregate
DAPI fluorescence intensity significantly less compared to
a CTC
Dotted cytoplasmic CK staining pattern (in contrast to

Traditional CTCs [3]

Apoptotic CTCs [24]

filamentous)
CTC debris [24] EpCAM+/CK+, CD45-, DAPI-, <4 um
EMT CTCs [6,7] EpCAM+/CK+/EMT+ (e.g., vimentin, N-Cadherin)
Stem-cell CTCs [25,26] EpCAM+/CK+/CD133+/CD44+/CD24-/ALDH1+
Macrophage-tumor fusion cells (MTFs) EpCAM+/CK+/CD14+/CD45+, 230 um
[21,22,27,28] Diffuse cytoplasmic CK staining pattern
Cancer-associated macrophage-like cells 21 DAPI+ nucleus

(CAMLs) [29] Polymorph cell shape
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2. Cell Fusion as a Physiological and Pathological Mechanism

Cell fusion is observed in various physiological processes and pathological conditions. A notable
benefit of artificially generated hybrid cells (‘hybridoma’) has been gained by artificially fusing
myeloma cells with lymphocytes to produce monoclonal antibodies in large quantities [30]. However,
cell fusion is fundamental in multiple developmental and biological processes, such as fertilization,
placentation, myogenesis, osteogenesis, wound healing, and tissue regeneration. Fusion has been
described as "homotypic” when it is between two cells of the same cell types (e.g., between two
myoblasts, two trophoblasts [31], two macrophages [31,32], etc.), and as “heterotypic’ when it is
between different cell types (e.g., amongst gametes [31] and tumor cells with various other cell types
[12,15,33,34]). In pathological non-cancerous conditions (such as granulomata from infections
(mycobacteria, viral (herpes, HIV)), foreign body reactions), heterotypic fusion of cells of
myeloid/monocyte/macrophage lineage leads to multinucleated giant cells [32]. These are described
as foreign-body giant cells, osteoclasts, Langhans giant cells, Touton giant cells, giant cells in
temporal arteritis, or Reed—Sternberg cells in Hodgkin’s lymphoma.

Using model organism studies it has been suggested that there is a genetic program for non-
pathological, physiological cell fusion that is separated in three stages—(1) cell induction and
differentiation (competence), (2) cell determination, migration, and adhesion (commitment), and (3)
membrane merging and cytoplasmic mixing (cell fusion) [31]. Fusogens are cellular proteins that
have been identified to mediate fusion of cell membranes. For instance, Syncytins belong to a fusogen
family that contains diverse proteins that originated from endogenous retroviruses related to the HIV
gp41 envelope glycoprotein, and they play a role in the formation of syncytial trophoblasts in mouse
placentation [35]. Then, the F protein family plays a role in cell fusions in the cutaneous,
gastrointestinal, and reproductive organs of the nematode Caenorhabditis elegans [36]. Fusogens in
human cells, and in particular in tumor cells, still needs to be identified, to further understand the
genetic and biological mechanisms of cancer cell fusions with themselves and other cell types.

Tumor cell fusions have also been found to occur homotypically with other tumor cells [37,38],
but also heterotypically with fibroblasts [14,39], stem cells [40], and myeloid-derived cells [15,28,41].
Different techniques have been developed to induce artificial cellular fusion for experimental
purposes. These include electrofusion (causing hydrophilic pores in the membrane lipid bilayer
through electroporation, leading to fusion) [42], incubation with polyethylene glycol (PEG) (causing
redistribution of intramembranous particles of cellular membranes, leading to fusion with little
cellular toxicity) [43], or induction with the Sendai virus (also called the hemagglutination virus of
Japan (HV])), which has been used to generate hybridomas, to make monoclonal antibodies [30].

The molecular mechanisms of cell fusion processes are not well defined or understood. The
interaction of CD40 and CD40L between CD4+ T lymphocytes and monocytes results in T cell
activation and in interferon (IFN)-y secretion, which subsequently leads to secretion of a fusion-
related molecule—dendritic cell-specific transmembrane protein (DC-STAMP)—by monocytes,
resulting in the formation of Langhans giant cells [44]. Additionally, apoptosis and pro-inflammatory
cytokines, such as the tumor necrosis factor (TNF)-«, have been shown to promote cell fusions [13].
Fusion between mesenchymal/multipotent stem cells and breast tumor cells is significantly increased
under hypoxic conditions, with the apoptotic neighboring cells leading to enhanced fusion [13].
Apoptotic cells can promote fusion of myoblasts, an observation that is linked to the signaling process
via the phosphatidylserine receptor brain specific angiogenesis inhibitor 1 (BAI1) pathway [45]. BAI1
triggers the internalization of apoptotic cells with the ELMO/Dock180/Rac signaling segment. ELMO
and Dock180 are combined guanine nucleotide exchange factors for the GTPase Rac, and they
regulate the actin-mediated cytoskeleton changes necessary for phagocytosis of apoptotic cell
fragments [46]. Myoblasts and macrophages mediate their fusions via a similar molecular mechanism
[47]. As expected, the cytoskeleton plays a key role in cell fusion, and studies in Drosophila flies have
demonstrated membranous juxtaposition and cell fusion that is driven by the mechanical tension of
cell membranes via a non-muscle Myosin II-mediated mechanosensory response to the invasive force
from the partnering fusion cell [48]. It is not yet known whether tumor cells use similar molecular
mechanisms for homo- and heterotypic cell fusion.
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It is well-known that various cell types spontaneously form homo- and heterotypical fusions in
co-culture in vitro. Spontaneous fusion was observed in vitro between breast tumor cells themselves
[37], but also between breast tumor cells and other cells (e.g.,, normal breast epithelium [49],
endothelial [50], stromal cells, and stem cells [13,51]). Heterotypic fusions between tumor cells and
stem cells, in addition to other cell types, have been specifically suggested to contribute to tumor
progression [13]. In xenograft experiments in non-obese diabetic—severe combined immunodeficient
(NOD/SCID) mice, fusion was described between human lung tumor cell line cells and bone marrow-
derived mesenchymal stem cells [51]. Breast tumor cells can spontaneously fuse with mesenchymal
stem cells to form hybrid cells that have increased invasion and migratory capacity, which is clearly
a cancer-promoting feature [13]. After fusion of human hepatocellular carcinoma cells with
mesenchymal stem cells, these hybrid cells have a higher metastatic potential in mice than the non-
fused hepatocellular carcinoma parental cells [52].

In addition to fusion between tumor cells and macrophages, it appears that other heterotypic
fusion events clearly also need to be further explored to understand metastatic cancer biology.
However, promising experimental pilot data have been developed that deserve further molecular
investigation to understand the cancer biology of tumor cell/macrophage fusions.

3. Genetic Evidence for Presence of Fusion Cells in Cancer Patients

Few data exist on the presence of fusion cells in the primary cancer tissue, and it is unknown
which compartment fusion between tumor and other cells types occur in cancer patients (primary
tumor site, peritumoral microvessels, intravascular, lymphatic system, bone marrow, etc.) [16]. The
most convincing proof of the existence of fusion cells in human cancers has been the demonstration
of hybrid genomes in sex-mismatch bone marrow transplantation recipients that developed cancers
later on [17,18,53]. Donor DNA was found in a pediatric patient that developed a renal cell carcinoma,
after bone marrow transplantation [54]. In another genetic analysis of a female recipient of a sex-
mismatch bone marrow transplant who also developed a renal cell carcinoma, the Y chromosome of
the male donor and a trisomy of chromosome 17 —consistent with the trisomy found in the primary
renal cell carcinoma and the Y chromosome from the male donor—were co-located presumably in
tumor cells [53]. In human melanoma tissue samples, cells carrying the BRAFV6®t mutation were
found among cells surrounding the primary tumor, in the stroma of melanoma metastases, and in
melanoma cells of a local recurrence re-excision specimen [39]. These findings were most likely due
to a heterotypic fusion of melanoma cells with other cells, as these BRAFV6®E mutations were present
in peritumoral Melanoma Antigen Recognized by T cells (MART1)+/smooth muscle antigen (SMA)+
fibroblasts and MART1+/CD68+ macrophages [39]. In addition to primary melanoma tissue samples,
these peritumoral stromal cells carrying the melanoma-derived BRAFV®®E mutations were also
identified in melanoma metastases, implicating a role of these fusion cells in the cancer spread [39].
Then, the circulating macrophage-melanoma fusion cells in patient blood morphologically and
ultrastructurally looked like macrophages in electron microscopy, and they carried highly abnormal
DNA contents with melanoma-specific mutations in the BRAF gene, consistent with the mutations
found in the corresponding primary melanomas [22]. In another study, tumor tissue specimens from
seven female cancer patients who had received sex-mismatched bone marrow transplants and later
on developed solid cancers (renal cell carcinoma, head and neck squamous cell carcinoma, and lung
adenocarcinoma) contained evidence of tumor cell fusion in the form of CK+ epithelial tumor cells
with Y chromosomes in the nuclei [55]. Another report applied DNA short tandem repeat length
polymorphism analysis, demonstrating that a melanoma brain metastasis contained tumor cells that
were the result of fusion between melanoma cells and bone marrow transplant-derived cells [17].
Taken together, there is significant genetic evidence supporting the existence of fusion cells in cancer
patients.

4. Fusion of Tumor Cells with Macrophages

Recent reports on circulating cancer-associated cells with both epithelial and
macrophage/myeloid phenotypes in cancer patients, combined with genetic evidence, have
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supported the idea that fusion has a critical role in cancer progression (Figure 1) [12,15,16,56].
Macrophage M1 or M2 polarization appears to be critical for various aspects of immune responses to
cancer and its progression [57]. Macrophage infiltration of the primary tumor and polarization
depend on cytokines in the tumor microenvironment (TME) [58]. Within the TME, tumor-associated
macrophage polarization to the M1 phenotype can be triggered through bacterial lipopolysaccharide
(LPS) and by T helper 1 (Th1) cytokines, such as IFN-y and also by TNF-a [59]. The M1 phenotype is
associated with anti-tumor properties [60]. M2 phenotype macrophages have pro-tumoral effects,
leading to increased cancer cell survival, proliferation, invasiveness, and immunosuppression in
favor of the tumor [57]. M2 polarization is induced by T helper 2 cytokines interleukin (IL)-4, IL-13,
macrophage colony-stimulating factor (M-CSF), and transforming growth factor (TGF)-f3 [60]. M2
macrophages are anti-inflammatory, immunosuppressive, and promote cancer progression,
chemoresistance, and metastasis [61,62]. M2 macrophages have critical interactions with tumor cells,
but also with cells associated with tumor progression, such as Th2 cells, cancer-associated fibroblasts,
regulatory T cells (Tregs), and myeloid-derived suppressor cells [57]. M2 polarization phenotypes
have also been observed in tumor fusion cells [63]. Importantly, macrophages also have a high
fusogenic potential, which is also likely to occur with tumor cells [18,20,58,64]. In vitro and in vivo
studies suggest that metastatic cells can be the result of the fusion of tumor cells with cells of
hematopoietic/myeloid lineage, specifically with macrophages [17-22,34,54]. Importantly, patient-
derived tumor-macrophage fusion cells were shown to have M2 macrophage phenotypes [21,22]. In
a murine melanoma metastasis model, certain clones of lung metastasis cells had properties of
melanoma cell —macrophage fusion cells [65]. Importantly, fusion of tumor cells with macrophages
is supported through the observation of these fusion cells in cancer patients [21,22,27,28].
Macrophage fusion receptor DAP12 expression is associated with higher metastatic rates in breast
cancer patients [20,66,67]. It remains unclear whether tumor-associated macrophages fuse within the
tumor microenvironment at the site of the tumor, in the blood, or in the lymphatic system.
Understanding molecular fusion mechanisms between macrophages and tumor cells and the impact
that fusion cells have on the immune system is of high interest in identifying therapeutic targets.
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Figure 1. Concepts of fusion between tumor cells and macrophages. It is hypothesized that tumor-
associated M2-polarized macrophages (TAMs) fuse their membranes with tumor cells, forming a
tumor—-macrophage hybrid cell. These fusion cells are large, mononuclear/polynuclear, and express
both epithelial and myeloid markers. Importantly, fusion cells exert pro-tumorigenic and pro-
metastatic effects through the outlined mechanisms.
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5. Fusion Cell Detection in the Peripheral Blood of Cancer Patients

Numerous techniques have been developed for the identification of CTCs in peripheral human
blood [5]. Most of these detection platforms rely on the tumor cell expression of epithelial surface
markers or on their biophysical characteristics, such as size or density [27,68]. CellSearch® has
established clinically prognostic value in a variety of cancers, yet it does not detect and even excludes
certain circulating cancer-associated cells [69]. Other CTC isolation techniques (e.g., microfilters
based on size [70]) allow additional phenotypic analysis and identification of other potentially
relevant circulating cancer-associated cells, including cells that have undergone epithelial-
mesenchymal transition (EMT) and down-regulated EpCAM, or which express
myeloid/macrophage-markers CD45/14+ [4,5,8,27,28,71,72].

In different solid cancers, we and other groups have identified a distinct circulating cancer-
associated cell that is large, polymorphic in shape, often polynuclear (>1 DAPI+ nucleus), with a dual
epithelial and macrophage/myeloid phenotype (dual CK+/EpCAM+ and CD14/CD45+) (Table 2)
[5,27,28,73,74]. Other groups refer to these likely identical cells as tumor-macrophage fusion cells
(TMFs), macrophage-tumor cell fusion cells (MTFs), or cancer-associated macrophage-like (CAMLs)
cells [8,27-29,73]. While some investigators attributed these cells with equivalent and similar features
to be cellular fusion products between tumor cells and macrophages (MTFs), other groups described
these large cells in a rather broader way as CAMLs, not clearly hypothesizing on the cellular fusion
events but rather describing giant macrophages that contain phagocytosed tumor debris
[15,21,22,27,29,73,75,76]. Based on the multiple studies that are discussed in this review, the authors
believe that these cells are all identical and are actually a product of tumor cell and macrophage
fusion events. In studies by our own group, we enriched large (230 um diameter), polymorphic,
mononuclear or polynuclear (syn- or heterokaryon), with microfilters or gradient centrifugation
techniques from the peripheral blood of melanoma, pancreatic ductal adenocarcinoma, and colorectal
cancer patients [27]. These hybrid cells from patients” blood could be grown through multiple
passages and grown into solid tumors in xenograft models [5,21]. In addition to CD14/45, other cell
biomarkers that have been used to imply heterotypic fusion of CICs are hematopoietic or
myeloid/macrophage lineage receptors CD68 or CD163 [5,20-22,27,28,39,73]. In these fusion cells, the
CK pattern appears to have a rather diffuse cytoplasmic distribution, as described in CTCs with a
mesenchymal phenotype, in contrast to the typical filamentous cytoplasmic CK orientation typically
found in ‘traditional’ CK+/CD45- CTCs [73]. The detection frequency of macrophage/myeloid tumor
fusion cells in the blood of cancers patients can be >40%, depending on the detection techniques used
[16,20,53,55,77,78]. Analyzed patients were suffering from breast cancer [20,66], colorectal cancer
[21,28,77], pancreatic ductal adenocarcinoma [21,55], ovarian cancer [16], renal cell carcinoma [53,54],
head and neck squamous cell carcinoma [55], non-small cell lung cancer [55], malignant melanoma
[17,18,39], or multiple myeloma [78]. In pancreatic ductal adenocarcinoma, presence of these fusion
cells was associated with a higher cancer stage and poorer survival [55]. Metastatic breast cancer
patients with macrophage/tumor cell fusions in the blood have higher cancer stages and worse
clinical outcomes, when measured in terms of progression-free and overall survival [79]. In a cohort
of 269 patients with solid cancers of different origins (breast, prostate, pancreatic, lung, kidney, and
esophagus) and clinical stages, an association with poor survival was shown if 26 fusion cells were
present in 7.5 mL of whole blood or if fusion cells were 250 um in size [76]. Importantly, in a study
of the same group, a high prevalence of fusion cells in the blood of early-stage cancer patients was
observed, making them a potential liquid biomarker for early cancer detection in screening settings
[29,73]. The authors also described the large and heterogeneous cell morphologies and distinct
marker expression staining patterns for CK and CD14/45 of these cells, in detail [29,73]. These
interesting findings on the negative impact of tumor cell/macrophage fusion cells on cancer patients’
outcome suggest a highly-informative correlation of fusion cells with aggressive tumor biology in
humans.
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Table 2. Detection of fusion cells in human cancers.

Marker Co-Expression

Cancer Type Fusion (Detection Method) References
Shabo et al.
Breast cancer Tumor cell- CK, CD163, MAC387, DAP12 [20,66,67], Tang et
macrophage CD14, CD45 (IHC) al. [76], Adams et al.
[29]
Colorectal cancer Tumor cell- CK, CD14, CD45 (IHC) Clawson et al. [27],
macrophage Kaifi et al. [28]
Esophageal cancer Tumor cell- CK, CD14, CD45 (IHC) Tang et al. [76]
macrophage
EpCAM, CK, CD14, CD45,
. CD163, CD204, CD206,
mimsoma macophage | ALCAMMLANA @), Tt T
BRAF mutations (PCR) Short
tandem repeat analysis (PCR)
. Tumor cell- TRACP (IF), specific
Multiple myeloma osteoclasts translocations 1ZFISH) Andersen et al. [78]
Non-small cell Tumor cell- CK, CD14, CD45 (IHC) Tang et al. [76]
lung cancer macrophage
EpCAM, CD45, CA125
Tumor cell-bone (IHC/IF); EpCAM, CD14, Ramakrishnan et al
Ovarian cancer marrow-derived CD34, CD44, CD68, CD117, [16] ’
cell CD133, CD163, CD204, CD206,
CA125, CXCR4 (FC)
EpCAM, MIF, ALDH1A1,
CDa4, CD68, CD163, Clawson et al. [21]
Pancreatic ductal Tumor cell- CD204/MSR1, CD206, CXCR4, Tang et al. [76] /
adenocarcinoma macrophage S100PBP, Pan-keratin, ZG16B Adams et e;l 2 9']
(IHC/IF) '
CK, CD14, CD45 (IHC)
Prostate cancer Tumor cell- CK, CD14, CD45 (THC) Tang etal. [76],
macrophage Adams et al. [29]
Tumor cell-l?one PCR and blood group alleles, Chakraborty et al.
Renal cell marrow-derived FISH analysis and Y .
. . [54], Yilmaz et al.
carcinoma cell, Tumor cell- chromosome detection, CK, (53], Tang et al. [76]
macrophage CD14, CD45 (IHC) ’ '

Abbreviations: IHC —immunohistochemistry; IF—immunofluorescence; PCR-polymerase chain
reaction; FISH—fluorescence in situ hybridization; FC—flow cytometry.

6. Cancer-Associated Properties of Fusion Cells

Cancer progression and metastasis is a highly complex process consisting of various molecular
changes. A critical component in cancer progression is epithelial-mesenchymal transition (EMT),
during which tumor cells lose intercellular adhesions, downregulate epithelial molecules (e.g.,
EpCAM), and up-regulate the expression of mesenchymal molecules, such as N-cadherin and
vimentin [80]. EMT leads to migratory and invasive properties of tumor cells, which allows
detachment from the primary cancer, to migrate and form metastases in distant organs [6]. Later on,
those hybrids transition back to epithelium-like morphology, consistent with the process of reverse
EMT, which is described as a mesenchymal-epithelial transition (MET) of tumor cells [81]. The
detachment of tumor cells from the primary tumor, intravasation, and transit in the bloodstream and
extravasation into distant organ sites requires a complex adaptation to new microenvironments with
subsequent cellular proliferation to generate a metastatic cancer nodule [82]. The idea of tumor cells
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acquiring mobility by fusion with naturally migratory macrophages appears to be an attractive
theory (Table 3) [83]. Obviously, the blood vasculature is a liquid biopsy compartment to detect
fusion cells in cancer patients with a localized tumor and no evidence of distant metastases on staging
imaging. Therefore, fusion cells should be detectable in early-stage cancer patients as a
micrometastatic (or minimal residual) disease, even before any solid organ metastases are present [2].
One study demonstrated in melanoma patients with no radiographic evidence of distant metastases
that in histologically negative lymph nodes, unique macrophage-like cells expressed mRNA for
Melanoma Antigen Recognized by T cells 1 (MART-1) and contained melanin granules [84]. The
authors suggested that some of these cells might represent macrophage-melanoma hybrids, such as
a CD68 protein that is co-expressed with MART-1 mRNA [84].

Table 3. Cancer-associated features associated with tumor cell fusions.

Features Cancer Type References
Berndt et al. (2013)
Breast cancer [85]

Enhanced migration

Increased invasive and

migratory potential

Metastatic potential
after xenografting

EMT properties

Stem cell properties

Genetic evidence of
fusion events

Ovarian cancer

Breast cancer
Breast cancer

Non-small cell lung cancer
Malignant melanoma
Malignant melanoma

Pancreatic ductal adenocarcinoma

Hepatocellular carcinoma

Non-small cell lung cancer
Breast cancer

Ovarian
Non-small cell lung cancer

Malignant melanoma
Endometrial cancer
Multiple myeloma

Renal cell cancer

Ramakrishnan et
al. (2013) [16]
Noubissi et al.

(2015) [13]
McArdle et al.
(2016) [86]

Xu et al. (2014) [51]
Chakraborty et al.
(2000) [65]
Clawson et al.
(2015) [22]
Clawson et al.
(2017) [21]

Li et al. (2014) [52]
Xu et al. (2014) [51]
Zhang et al. (2019)
[87]
Ramakrishnan et
al. (2013) [16]
Xu et al. (2014) [51]
Lazova et al. (2013)
[17]

Varley et al. (2009)
[88]
Anderson et al.
(2007) [78]
Yilmaz et al. (2005)

[53]
Yang et al. (2010)
[89]
Breast cancer Ozel et al. (2012)
. Breast cancer [90]
Chemoresistance Breast cancer Nagler et al. (2011)
Hepatocellular cancer [91]
Wang et al. (2015)
(40]
Pancreatic ductal adenocarcinoma Gast et 5a; (2018)
Patients’ survival and Pooled analysis of solid cancers: breast/esophagus/non-small cell Tang e[t al] 018)
cancer recurrences lung/prostate/renal cell cancer, pancreatic ductal adenocarcinoma (=6 7 6]'

fusion cells/7.5 mL whole blood; 250um cell size)

Abbreviations:  IHC/IF—immunohistochemistry/-fluorescence, =~ FISH—fluorescence in situ
hybridization, PCR—polymerase chain reaction, FC—flow cytometry, and TRACP —tartrate-resistant
acid phosphatase.
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A cell motility gene signature that included p38 mitogen-activated protein kinase (p38 MAPK)
signaling pathways (known to be involved in cancer cell migration) has been described in CTCs
derived from pancreatic ductal adenocarcinoma patients [92]. Another study also indicated that
fusion between tumor cells of ovarian and lung origin and myeloid lineage cells leads to a
significantly higher expression of chemokine receptor CXCR4, which is associated with the migration
of tumor cells to the bone marrow [16,93]. The enhanced migration capability of in vitro generated
breast cancer tumor and normal cell fusions is also linked to chemokine receptor CCR7 and a ligand
CCL21 interaction that is associated with the migration of breast cancer cells to the lymph nodes
[49,85]. Increased migratory and metastatic potential of fusion cells was also observed in vivo when
human breast tumor cell lines injected in nude mice formed hybrids that metastasized to the lungs
and bones [37]. The majority of hybrids produced by in vitro fusion of macrophages with melanoma
cells showed enhanced metastatic potential in vivo in mice, increased motility in vitro, increased
ability to produce melanin, and higher responsiveness to melanocyte stimulating hormone (MSH),
compared to non-fused melanoma cells [65]. The metastatic potential of fused macrophages and
melanoma cells in vitro correlated with increased expression of malignancy-associated GnT-V and
1,6-branching in glycoproteins, which has been previously described in tumor associated
macrophages [94].

In general, in vitro tumor cell fusion study results need to be interpreted with caution as there
might potentially be significant differences in the expression and cellular behavior patterns between
spontaneous fusions or artificial PEG-induced fusions. A recent study demonstrated that artificial
fusion between breast tumor cells and macrophages using PEG promotes proliferation, migration,
invasion, and colony formation of breast tumor cells by activating the tumor-promoting Wnt/j3-
catenin signaling pathway [87]. These fusion cells displayed EMT with a significant downregulation
of E-cadherin and up-regulation of N-cadherin, vimentin, and snail, as well as an increased
expression of MMP-2, MMP-9, uPA, and S100A4 [87]. Mechanistically, the TCF/LEF transcription
factor activity of the Wnt/p3-catenin pathway and downstream target genes, including cyclin D1 and
c-Myc, were increased in the fusion cells [87]. Proliferation, migration, and invasion caused by fusion
could be blocked by treatment with XAV-939, a Wnt/3-catenin signaling pathway inhibitor [87]. At
the site of the primary tumor, macrophage migration inhibitory factor (MIF) can induce EMT and
tumorigenicity in many cancer types [95]. MIF has a role in M2 polarization of macrophages, and MIF
has been shown to be expressed by melanoma macrophage fusion cells derived from patients [22].

Tumorigenicity of patient-derived tumor fusion cells is demonstrated by their ability to form
tumors in murine xenograft experiments. In vitro/vivo expansions of CTCs are very challenging and
rarely succeed beyond the brief culturing time and rarely convert to a stable cell line or CTC-derived
xenograft tumor models (CDX) [96]. Even culturing of CTCs from widely metastatic breast cancer
patients carrying large numbers of CTCs were unsuccessful to form metastatic foci in NOD/SCID
mice [97]. However, using gradient centrifugation techniques, followed by xenografting, cultures of
macrophage/tumor cell fusion cells from the blood of melanoma and pancreatic ductal
adenocarcinoma patients led to dissemination and metastatic lesions in distant organ sites of nude
mice [21,22]. These cells expressed both primary melanocytic tumor markers (MLANA, ALCAM) and
tumor-promoting M2 macrophage markers (CD206, CD208) [21,22]. Despite the limitations of
circulating cancer-associated fusion cell clonal expansions in the culture and xenografting, patient-
derived models will need to be further explored to shed light on the biological and clinical impact of
tumor cell fusions.

7. Intercellular Connections between Tumor Cells and Macrophages Lead to Partial Cell Fusion,
and Favor Cell Migration and Invasion

Permanent cell fusion between tumor cells and macrophages represents the final stage of a
transformative biological process of progressively evolving cell-to-cell interactions (Figure 2). In the
highly hypoxic and acidic milieu of the tumor microenvironment, intercellular communication
between tumor cells and stromal cells (including macrophages) is achieved by paracrine signaling
that exploits secreted signaling molecules and exosomes, or by juxtacrine signaling that instead uses
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transient cell-to-cell contacts (e.g., gap junctions or membrane protrusions) [98,99]. Interestingly, cell-
to-cell communication mechanisms that exploit membrane protrusions were only discovered in
recent years [100,101]. These protrusions enable exchange of specific signals by direct cell-to-cell
contact over short (tens of microns) and long (hundreds of microns) distances. Thin and transient
membrane protrusions have been found, both in vitro [102-104] and in vivo [105-107] in different
tissues from various organisms and in several disease models. Each protrusion type possesses distinct
structural and functional characteristics. Among them, filopodia-derived protrusions, such as
cytonemes, and Tunneling NanoTubes (TNTs), are the most studied [108,109]. Several recent reviews
have investigated the biological properties and structural characteristics of these thin membrane
protrusions and their roles in developmental biology and pathogenesis (including cancers and
infectious diseases) [98,110-112]. In this section, we focus mostly on TNTs (open-ended cellular
projections that display diameters ranging from 20 to 500 nm) and their role in tumor cell interactions
with macrophages (Figure 2).

Partial cell fusion via TNTs Permanent cell fusion
Tumor cell Macrophage Hybrid cell

metastatic/invasive phenotype

Membrane . .
receptor Migration toward
Cargoes of blood vessels

various size

T Intravasation

N S — -

TNTs: Tunneling Nanotubes

Figure 2. Illustration of partial cell fusion via tunneling nanotubes (TNTs) and permanent cell fusion.
(up-arrow: increased capacity).

TNTs are membrane protrusions typically composed of filamentous (F)-actin, and to a lesser
extent, of microtubules [110,113]. They allow a direct physical connection between the cytoplasms of
two or more cells that belong to different cell types (heterotypic) or the same cell type (homotypic),
in addition to establishing continuity of their plasma membranes. Notably, formation of TNTs lead
to “partial cell fusion” [114], which enables the mobilization and exchange of cargoes of various
sizes—ions (e.g., calcium) [115], molecules (e.g., membrane receptors and signaling proteins) [102],
vesicles (e.g., endosomes or lysosomes) [102], and even organelles (e.g., mitochondria) [116]. TNTs
that connect the cytoplasms of two cells are named “open-ended TNTs” [98,110]. In addition, “close-
ended TNTs” have also been identified, although it is still unclear whether they represent an
intermediate status in the process of open-ended TNT formation or if instead the signaling is
transported using a different mechanism (such as synapse-like mechanisms). For instance, it has been
demonstrated that transfer of viral HIV-1 particles through close-ended TNTs from infected to
uninfected T cells was dependent on the interaction between viral protein Env and its host receptor
CD#4 at the tip of the TNTs [117]. This mechanism is known as the virological synapse.

TNTs can be formed between previously unconnected cells through an extension of filopodia-
like protrusions. This mechanism is known as “protrusion elongation” [100,110] and involves actin
polymerization factors, including the Rho GTPase family proteins Racl and Cdc42 [110,118].
Alternatively, formation of TNTs can occur by dislodgement of two initially attached cells in which
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short filopodia-like protrusions enable direct cytoplasm connection. Upon migration of cells in
opposite directions, these protrusions are elongated in the intercellular space to maintain the cell-cell
connection and thus lead to the formation of TNTs. This mechanism is called “cell dislodgement”
[101,113]. Macrophages and other cell types can use both mechanisms of TNT formation. Recent
reports have shown that a protein known as M-Sec or Tumor Necrosis Factor-a-Induced Protein 2
(TNFAIP2) plays a key role in TNT formation in macrophages [119].

Development of TNTs is enhanced under stress conditions, such as oxidative stress, serum
starvation, viral infection, UV irradiation, and high glucose [98]. Several of these stress conditions are
often found in the tumor microenvironment, including hypoxia, acidity, low nutrient levels, and
metabolically stressed conditions [98,120]. Thus, several indications suggest that TNT formation
represents a defensive mechanism that helps to protect cells from death and damage, or to escape
from a hostile microenvironment.

An example of such defensive/rescue mechanisms dependent on the TNT-based cellular
communication was described by Wang and Gerdes in 2015 [116]. UV-stressed tumor PC12 cells that
displayed mitochondrial failure and early apoptosis were co-cultured with healthy PC12 cells.
Damaged PC12 cells were able to project TNTs toward healthy PC12 cells. Intact mitochondria were
then transferred between cells, thus, reversing the apoptotic status of the UV-stressed PC12 cells.

Several reports have further suggested that TNT formation and cell fusion are tightly associated
and can be triggered by similar cues. For instance, cell apoptosis not only triggers formation of TNTs,
as described above, but can also enhance cell fusion. In a recent study, increased cell fusion events
were detected between early apoptotic breast cancer cells kept in hypoxic conditions and
mesenchymal stem/multipotent stromal cells (MSCs) [13]. Upon fusion, cell hybrids possessed higher
migratory and survival capacity compared to the parental healthy breast cancer cells.

In a different study using a co-culture model, live-cell time lapse imaging demonstrated that
glioma-initiating cells (GICs) could fuse with macrophages [121]. However, before cell fusion
occurred, these two types of cells were connected through intercellular membrane protrusions with
different structural characteristics. Thin protrusions had the same morphological features as TNTs,
in addition to thicker protrusions (called intercellular microtubes that display diameters ranging
from 5 to 20 um) called intercellular microtubes. Nevertheless, TNTs and microtubes facilitated
partial cell fusion between GICs and macrophages that connected their cytoplasms. Hence, cell-to-
cell interactions between GICs and macrophages ultimately have been shown to lead to spontaneous
cell fusion and formation of multinucleated hybrid cells in a subset of the cell population. In fact,
incidence of spontaneous cell fusion in this co-culture model was ~3%. Surprisingly, these same
hybrid cells were shown to fuse again with each other. Fusion cells generated offspring hybrid cells
through symmetrical and asymmetrical division, while a small percentage (<10%) of the population
underwent apoptosis [121].

Partial cell fusion due to TNT-based cellular interactions between macrophages and tumor cells
could also lead to intravasation into the blood circulation. In fact, recent studies have found that
juxtacrine signaling via TNTs and paracrine signaling between tumor cells and macrophages shared
certain molecular signaling pathways that favor cell migration and invasion [119,122]. Macrophages
interact with tumor cells in the tumor microenvironment, exploiting a well-studied paracrine
interaction. In brief, macrophages secrete epidermal growth factor (EGF), which interacts with its
target receptor (EGFR) on the surfaces of tumor cells [123]. This binding event activates EGFR
signaling, thus, leading to the secretion of colony stimulating factor 1 (CSF-1), which in turn attracts
macrophages via CSF-1 receptor (CSF-1R) [123,124]. This paracrine interaction between CSF-1-
secreting tumor cells and EGF-secreting macrophages drives the migration of tumor cells and the
macrophages toward blood vessels. Interestingly, a recent paper demonstrated that when the ability
of macrophages to secrete EGF was inhibited (by blocking metalloproteinase-dependent EGF
shedding), only macrophages that were connected to tumor cells via TNTs were still able to promote
tumor cell elongation via an EGFR-dependent signaling mechanism [122]. This finding suggests that
membrane-bound EGF on the surface of the macrophages might be mobilized along the TNT
membrane, where it is able to interact with EGFR on the tumor cell surface. This EGF-EGFR
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interaction on the surface of TNT might lead to an extended activation of EGFR signaling, since EGFR
downregulation via its internalization might be hampered on the TNT membrane. In addition, this
paper showed that these partially fused hybrids between macrophages and tumor cells were able to
directionally migrate towards endothelial cells [122].

Several recent studies have demonstrated that tumor cells and macrophages undergo partial
fusion in the tumor microenvironment through formation of transient heterotypic TNTs. Whether
this partial cell fusion leads to permanent cell fusion likely depends on several cues (e.g., biochemical
signals or mechanical forces) that regulate tumor microenvironment conditions. Migration of these
partially fused hybrid cells toward the blood vessels can also alter the stability of these transient
heterotypic membrane connections. In addition, transformative processes, such as epithelial-
mesenchymal transition might also contribute to tumor cell migration toward blood vessels. These
phenotypic changes in the tumor cells can either trigger permanent fusion with macrophages or lead
to the loss of TNTs or any intercellular connection. Thus, upon intravasation into the blood
circulation, tumor cells can be detected as circulating hybrid cells or CTCs. As detailed above,
circulating hybrid cells are consistently found in patients with cancers of all stages [29,73]. Therefore,
further investigations are needed to shed light on the precise molecular mechanisms and series of
events that regulate partial and permanent cell fusion.

8. Tumor Cell Fusion Leads to Tumor Heterogeneity and Chemoresistance

Fusion between tumor cells and other cells (homo- and heterotypic) might represent a key
process generating genetic heterogeneity required to metastasize and develop therapy resistance
[12,19,34,41,65,125,126]. Heterogeneity caused by the fusion of stromal cells with breast tumor cells
leads to mixed gene expression profiles, transition to a carcinoma phenotype [56], and likely
contributes to abnormal chromosomal ploidy [125]. Normal intestinal crypt epithelial cells from rats
can generate cell fusion that leads to tumor formation with geno-/phenotypic heterogeneity and
capacity to form invasive tumors with distinct rates of growth, differentiation, and invasiveness [126].
Hybrids formed between human breast tumor cells MCF-7 were heterogeneous with regard to
chemoresistance to doxorubicin [89]; however, hybrids derived from MDA-MB-435 and breast
epithelial cells showed altered sensitivity to the phosphoinositide 3-kinase (PI3K) inhibitor Ly294002,
as a consequence of differential Rapidly Accelerated Fibrosarcoma-Akt (RAF-AKT) crosstalk
between hybrid cells [90]. Further, co-cultivation of murine breast carcinoma and bone marrow-
derived cells resulted in significantly increased expression of multi-drug resistance ATP binding
cassette (ABC) transporters Abcbla and Abcblb [91]. Fusion of hepatocellular cancer and stem cells
generated hybrids with significantly increased tumorigenicity and chemoresistance [40]. Finally, it
has been suggested that fusion of tumor cells with macrophages might induce immune tolerance
towards tumor antigens and immune escape (Figure 3) [5,15,21]. Recognition of peptide-MHC class
I by CD4+ T cells stimulates their activation and also mediates interactions between antigen-specific
B cells and T helper cells. One tumor-promoting mechanism could be immune response inhibition
by tumor antigen presentation via MHC class II receptors present on the macrophage-tumor cell
hybrids, directly affecting the CD4+ T cell responses, which could be targeted therapeutically [5,127].
However, although this theory is very attractive it remains to be further studied and experimentally
proven.

Taken together, mechanistic studies on the impact of tumor cell fusions on drug resistance might
be a successful way to deliver new insights on molecular targets for cancer treatments, including
immunotherapies.
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Figure 3. Fusion of tumor cells with macrophages might impact the immune response (Abbreviations:
MDSC—myeloid-derived suppressor cell; NK—natural killer cell; Treg—regulatory T cell).

9. Summary and Perspective for Precision Medicine on Fusion Cells in Cancer

The molecular biology of cancer and the fate of circulating tumor associated cells in the blood
remains unclear. A number of reports associate fusions of tumor cells with macrophages and cells of
other origins with cancer-promoting features [128]. Circulating cancer-associated cells that have
features of fusion are found in many patients with solid cancers and are associated with poor
outcome. There is considerable genetic evidence that these cells are a product of cellular and nuclear
fusion leading to genetic heterogeneity, and not just a product of phagocytosis with a resulting tumor
cell-macrophage hybrid phenotype. Although it might be possible that tumor cells and macrophages
use similar mechanisms for cellular fusion as has been described in physiological processes mediated
by Syncytins and F proteins, the molecular and biological mechanisms of tumor-cell-macrophage
fusions need to be further investigated [31]. The underlying triggers and molecular mechanisms of
cellular fusion and the role of intercellular connections like TNTs in cell fusions need to be further
studied. The actual fusion sites (primary tumor site, peritumoral microvessels, intravascularly,
lymphatic system, and bone marrow) also have to be identified. In the era of evolving cancer
immunotherapy, the effects of tumor-cell-macrophage fusion on the immune system deserves to be
further explored. The understanding of how tumor cells manipulate the immune response might
significantly increase the options for and the response rates of oncological treatments.

Additionally, reliable and repeatable liquid biopsies have a significant potential to have an
important clinical impact. This includes cancer screening, diagnostic profiling for personalized
treatments, prognostication, detection of minimal residual disease, real-time monitoring of treatment
responses, evaluation for therapeutic resistance, and early detection of recurrence. Prospective and
large-scale translational studies are needed to further evaluate these avenues, in order to develop
strategies for more widespread clinical use. Further, wider improvements in enrichment and
characterization techniques for CTC subtypes will enhance our understanding of metastasis biology.
Genetic characterization of single tumor cells (fused and non-fused), in the blood through next
generation sequencing methods might provide new insights into the complex biology of cancers, with
important implications for the clinical management of oncological patients. Expansion of fusion cells
through culturing and patient-derived xenograft models will likely play a significant role in studying
the tumor biology of these cancer fusion cells and whether the effective inhibition of tumor cell fusion
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might be formally investigated as a therapeutic target in cancer patients. Taken together, there is
convincing evidence to further develop the fascinating field of circulating tumor-associated cells to
better understand the biology of metastasis and cell-based liquid biomarkers for the improvement of
care in patients with cancer.
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