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Abstract: The global depression population is showing a significant increase. Hemerocallis fulva L. is
a common Traditional Chinese Medicine (TCM). Its flower buds are known to have ability to clear away
heat and dampness, detoxify, and relieve depression. Ancient TCM literature shows that its roots have
a beneficial effect in calming the spirit and even the temper in order to reduce the feeling of melancholy.
Therefore, it is inferred that the root of Hemerocallis fulva L. can be used as a therapeutic medicine for
depression. This study aims to uncover the pharmacological mechanism of the antidepressant effect
of Hemerocallis Radix (HR) through network pharmacology method. During the analysis, 11 active
components were obtained and screened using ADME—absorption, distribution, metabolism, and
excretion— method. Furthermore, 267 HR targets and 740 depressive disorder (DD) targets were
gathered from various databases. Then protein–protein interaction (PPI) network of HR and DD
targets were constructed and cluster analysis was applied to further explore the connection between
the targets. In addition, gene ontology (GO) enrichment and pathway analysis was applied to
further verify that the biological process related to the target protein is associated with the occurrence
of depression disorder. In conclusion, the most important bioactive components—anthraquinone,
kaempferol, and vanillic acid—can alleviate depression symptoms by regulating MAOA, MAOB,
and ESR1. The proposed network pharmacology strategy provides an integrating method to explore
the therapeutic mechanism of multi-component drugs on a systematic level.

Keywords: network pharmacology; Hemerocallis radix; depressive disorder; MAOA; MAOB; ESR1;
vanillic acid; anthraquinone; kaempferol

1. Introduction

The burden of depression and other mental health conditions is on the rise globally. Depression
alone accounts for 4.3% of the global burden of disease with more than 300 million people affected.
People with mental health disorders often have higher rates of mortality, 40% to 60% greater than
the general population. Therefore, the World Health Organization (WHO) ranked depression as
the second most important disease to be considered in 2020 [1].

Mental disorders often affect, and are affected by, other diseases. If worse comes to worst, suicide
is the case. Depression and suicide are significant public health concerns, with over 40,000 Americans
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dying by suicide each year [2]. Beyond the lives lost to suicide, death by suicide has significant
emotional and economic costs, resulting in approximately $44.6 billion a year in combined medical
and work loss costs in the United States alone [2]. As such, suicide—and factors that may increase
the risk for suicide, including depression—is a serious public health concern that warrants extensive
empirical investigation. The number of depression patients also grows slowly every year in Taiwan.
According to the Ministry of Health and Welfare (MOHW), there were 1.3 million people—accounted
for 6% of the Taiwanese population—using antidepressive drugs. And more than 60% were above
45 years old [3].

Guidelines on the duration of antidepressant prescriptions differ in detail, but in general, about 6
to 12 months as WHO and NICE (National Institute for Health and Care Excellence) recommended.
However, patients with long-term antidepressant treatment have trade-offs in adherence that might
lead to discontinuation of these drugs. Taiwanese, especially elders, has a special place in their heart
for Traditional Chinese Medicine (TCM). Many of us believe that TCM has benefits toward human
health. In addition, more than 6.4 million people went to a Chinese medication clinic, 3% of them have
been diagnosed with mental or behavioral disorders [4]. As a critical component of complementary
and alternative medicine, TCM plays an important role in treating depression.

Hemerocallis fulva L.—Orange daylily or Nepenthe—is a common TCM. A species of perennial
flowering daylily in genus Hemerocallis (Hemerocallidoideae family). It is native to Himalaya, East
Europe, China, Japan, and Korea [5–8], and was imported into Taiwan in 1661. It was first entered in
the publication Supplement to Compendium of Materia Medica (Bencao Gangmu Shiyi). The root,
seeding, and flower of Hemerocallis fulva are considered to have sweet, cool, and non-toxic properties
and to be associated with the spleen, liver, and bladder meridians [9]. Its flower buds have heat-clearing,
damp-draining, blood-cooling, and detoxifying properties, coursing the liver to relieve depression.
It has been used in many therapeutic prescriptions since ancient times. Ancient TCM literature also
showed that its roots have a beneficial effect in calming the spirit and even the temper, in order to reduce
the feeling of melancholy [10,11]. Therefore, it is inferred that Hemerocallis Radix (HR)—the root of
Hemerocallis fulva L.—can be used as a therapeutic medicine for depression or as an auxiliary medication.

So far, several analytical methods, such as HPLC and LC-MS/MS has been reported to evaluate
the effective compounds [12]. Nevertheless, there is no literature expounds on the underlying
therapeutic mechanism of HR on DD so far. Consider the flaws of traditional experimental and
analytical methods, it is difficult to uncover its association between herb-component-target-disease
due to one of the greatest features of TCM system: multi-component and multi-target. Network
pharmacology is an effective tool to expound the synergistic and potential mechanisms of the networks
between component-target-disease and protein–protein interaction (PPI), it provides a new perspective
on the therapeutic mechanisms of TCM. Therefore, the main purpose of this research is to identify
effective target proteins of bioactive components in HR toward DD through network pharmacology,
which is first introduced by Hopkins [13,14]. The work scheme of this research is shown in Figure 1,
integrating pharmacokinetics synthesis screening, target identification, and network analysis.
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Figure 1. Flowchart of this study.

2. Results

Based on the network pharmacology model we constructed, the therapeutic mechanisms of
HR toward DD were clarified. HR components were collected from databases. Next, numerous
ADME—absorption, distribution, metabolism, and excretion—methods were used to screen for
potential active components. Then the obtained data were used for gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis. All PPI networks will be further studied
through cluster analysis. Finally, Component-Target-Pathway network is calculated and analyzed by
the network visualization tool Cystoscape.

2.1. Components in Hemerocallis Radix and Pharmacokinetic evaluation

Although every TCM herb contains multiple components, only a couple of them lives up to
the standard of pharmacokinetic property. In this study, four ADME-related models were used to
screen out the active components in HR, including oral bioavailability (OB), Caco-2 permeability
(Caco-2), drug-likeness (DL), and GI absorption. Beyond that, all screen-out components should
follow Lipinski’s rule of five. After this process, a few components that did not meet the ADME
criteria were added back into the database because of their high bioactive or curative effect proved in
previous studies. Therefore, a total of 28 components were collected through databases. All identified
components were subjected to ADME screening, and 11 of the 28 passed the ADME criteria. That is to
say, these are the active component of HR. The detail information is shown in Table 1.
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Table 1. The information of active components in Hemerocallis Radix (HR).

ID Molecule
Name MW AlogP nHdon nHacc TPSA OB Caco-2 DL GI

Absorption
Lipinski’s

Rule

HR01 Aloe-emodin 270.25 1.67 3 5 94.83 83.38 −0.12 0.24 High Yes

HR02 α-Boswellic
acid 456.78 6.42 2 3 57.53 39.32 0.6 0.75 Low Yes

HR03 Anthraquinone 208.22 2.81 0 2 34.14 56.1 0.86 0.14 High Yes

HR04 β-Boswellic
acid 456.78 6.47 2 3 57.53 39.55 0.59 0.75 Low Yes

HR05 Chrysophanol 254.25 2.76 2 4 74.6 18.64 0.62 0.21 High Yes
HR06 Colchicine 385.45 1.47 2 7 94.09 39.34 0.12 0.57 High Yes
HR07 Hemerocallone 356.35 2.59 0 7 76.36 63.01 0.77 0.54 High Yes
HR08 Kaempferol 286.25 1.77 4 6 111.13 41.88 0.26 0.24 High Yes
HR09 Puerarin 416.41 −0.06 6 9 160.82 24.03 −1.15 0.69 High Yes
HR10 Rhein 284.23 1.88 3 6 111.9 47.07 −0.2 0.28 High Yes
HR11 Vanillic acid 168.16 1.15 2 4 66.76 35.47 0.43 0.04 High Yes

2.2. Component-Target Network Construction

According to the pharmacokinetic evaluation of HR, aloe-emodin, α-boswellic acid, anthraquinone,
β-boswellic acid, chrysophanol, colchicine, hemerocallone, kaempferol, puerarin, rhein, and vanillic
acid were selected to be the active components of this herb, which were chosen in the following
network pharmacology investigation. Thus, a network pharmacology approach was established to
uncover the treatment mechanism of depression.

Three databases were engaged to assemble component-related targets. Total of 357 identified
targets were collected through PubChem. 178 remain after deleting those overlapping targets. Among
these components, chrysophanol, kaempferol, and aloe-emodin have the highest number of targets,
where α-Boswellic acid and Hemerocallone have no identified target at all. For predicted targets,
two databases were put into use. Total of 22 targets were predicted by HitPick under the condition
of precision ≥ 50%. Twenty remains after deleting those overlapping the targets with colchicine
having the highest number of targets, and hemerocallone has 0 predicted target. A total of 138 targets
were predicted by SEA under the condition of MaxTc ≥ 0.5 which stands for the maximum tanimoto
similarity between compounds. Total of 92 remain after deleting those overlapping the targets. Among
these components, vanillic acid, kaempferol, and anthraquinone have the highest number of targets,
whereas β-Boswellic acid, α-Boswellic acid, and Hemerocallone have less number of predicted targets.

To explore the therapeutic mechanism of HR in the treatment of DD, 267 targets and 11 components
were used to construct the component-target (C-T) network (Figure 2). All of these active components
are related to multiple targets, resulting in 509 component-target associations between 11 active
components and 267 targets. The average number of targets per component is 24.3, and the mean
degree of components per target is 1.9. This clearly shows that HR fits the multi-component and
multi-target characteristics of TCM. Aloe-emodin (HR01, degree = 99) has the highest number of targets,
followed by chrysophanol (HR05, degree = 77), rhein (HR10, degree = 72), and kaempferol (HR08,
degree = 71), indicating these components of HR have great possibility of becoming key components
of treating depressive disorder.
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Figure 2. Component-target network of HR. The blue ellipse are active components of Hemerocallis
Radix, and the orange eclipse nodes are the related targets. (A) The network of the identified targets.
(B) The network of the predicted targets by HitPick. (C) The network of the predicted targets by
similarity ensemble approach (SEA). (D) The network of all HR active component-related targets.

2.3. Disease PPI Network Construction

Based on the result from gene database DisGeNET, there were a total of 740 candidate targets
relevant to depressive disorder. Gene IDs of these targets were input into String, species were limited
to “Homo sapiens,” and confidence score was set at 0.7. Then, it was imported into Cytoscape3.7.1
(http://www.cytoscape.org/) [15] to construct the network. After PPI was acquired, superfluous entries
were removed and 709 nodes were found in the PPI network, which means there are 709 targets related
to this specific disease.

http://www.cytoscape.org/


Int. J. Mol. Sci. 2020, 21, 1868 6 of 24

There are 709 nodes and 5506 edges in the DD target PPI network (Figure 3). The closer the nodes
are, the more they are prone to show the color red and the larger the nodes are, the higher the degree
of freedom they have. This demonstrates that these genes are closely related to other genes in this
network, suggesting that these genes may play an important role in depressive disorder. Pathogenic
factors may directly influence DD-related genes or indirectly influence DD-related genes by affecting
these genes, thereby affecting the development of DD, which suggests that these genes may be the key
to the treatment development of depressive disorder. The top 10 proteins with the highest degree
of freedom are APP, GNB1, GNB3, PIK3CA, AKT1, AGT, IL6, TP53, EGFR, and INS. The respective
degrees of freedom are 119, 113, 103, 100, 97, 87, 87, 86, 84, and 84.

Figure 3. Protein–protein interaction (PPI) network of depressive disorder (DD). The closer, redder and
the larger the nodes are, the higher the degree of freedom they have.

2.4. Clusters of DD Target Network

Seven clusters were found after DD target network was analyzed through MCODE (K-core = 5).
This demonstrates that these clusters may be the most relevant to DD in studies at present. The details
are described in Table 2 and Figure 4.

Table 2. Clusters of DD target PPI network.

Cluster Score Nodes Edges Gene IDs

1 33.613 63 1042

ADRA2C, CNR2, ADRA2A, GNRH1, CNR1, GNA11, AGTR1,
PIK3CA, CHRM2, NTS, CX3CR1, ADRBK1, OPRK1, TAC3,

GNRHR, TAC1, POMC, KISS1, GALR3, GALR2, EDN1, HCRT,
AVPR1B, HCRTR1, PYY, GAL, AVP, GNAQ, OXTR, PNOC,

NPS, NPY, CXCL8, KISS1R, DRD2, DRD3, OXT, DRD4, GRM1,
GRM3, GRM5, GRM7, HTR1D, HTR1A, HTR1B, TACR3,

F2RL3, TACR1, OPRM1, GRPR, HTR2C, NPSR1, HTR2A, TRH,
ADCY1, ADCY8, NPY1R, ADCY7, PROK2, PENK, ADCY5,

PROKR2, PDYN

2 16.667 25 200

NMS, DRD1, ADRB1, AGT, ADRB2, CRH, DRD5, MCHR1,
MC4R, PMCH, HTR4, ADCYAP1R1, ADCYAP1, HTR6, HTR7,
CRHR1, CASR, CRHR2, GNB1, APP, GNAS, GNB3, TAAR6,

VIPR2, MC1R
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Table 2. Cont.

Cluster Score Nodes Edges Gene IDs

3 11 35 187

MAPK1, SERPING1, MAPK3, AP2B1, ORM1, CSF3, CSF2,
M6PR, FGF2, PDGFB, CLU, PLG, IL17A, SIRT1, TP53, TGFB1,

UBQLN2, IL10, ESR1, CREB1, IL13, IFNG, IL18, ARRB1,
ARRB2, IL4, IL1A, IL6, PTGS2, IL1B, OCRL, A2M, HGS, IGF1,

INS

4 7.946 38 147

AR, STIP1, ERBB4, CALM1, CLOCK, VEGFA, PER2, PER1,
CRP, PER3, RORA, NOS1, MAPK14, GATA3, RAC1, ATF2,
NR3C1, SERPINE1, HSP90AB1, NTRK1, NR3C2, ADIPOQ,
CRY2, CRY1, PDGFRB, FKBP4, KIT, FKBP5, AKT1, NR1D1,

EGFR, HSP90AA1, NTF3, TIMELESS, ARNTL, FGF13, NPAS2,
FGFR1

5 7.4 11 37 CDKN2A, BRCA1, OGG1, ATM, MSH6, RFC2, PMS2, MSH2,
MLH1, MLH3, PMS1

6 6.72 26 84

PRKAR1A, STAT3, MET, BDNF, NOS3, PRL, WFS1, TNF,
PNPLA2, ALB, KRAS, VGF, NTRK2, RAPGEF3, RAPGEF4,
NGFR, IL6R, ADAM10, LEP, PRKACA, CP, TLR4, APOE,

TLR3, MAPK8, NGF

7 4.944 37 89

TNFRSF1B, KAL1, CALM3, CYP2E1, CALM2, OPTN, NOS2,
GRIN1, C9orf72, FUS, FGF20, PPP3CC, GRIN2A, SOD1,
CYP2B6, CD36, MT-CO3, SNAP25, MT-CO2, MT-CO1,

PPARGC1A, CAT, MT-ND1, HTT, VAPB, MT-ND4, MAPT,
DLG4, GRIN2B, PTGS1, CYP2C9, MT-ND6, CHMP2B,

CAMK2A, NRG1, FGFR2, CYP2C19

Figure 4. Cont.
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Figure 4. Clusters of DD target PPI network. (A–G) are clusters we found in the DD target PPI network
which stands for cluster 1 to 7, respectively. The seed node of each clusters is presented as a square.

Cluster 1 contains 63 nodes and 1042 edges with a score of 33.613. The seed node of this cluster is
PDYN (Proenkephalin-B) which compete with and mimic the effects of opiate drugs. It plays a role in
a number of physiologic functions, including pain perception and responses to stress. PDYN is also
involved in the regulation of chemical synaptic transmission and neuropeptide signaling pathway.

Cluster 2 contains 25 nodes and 200 edges with a score of 16.667. The seed node of this cluster is
HTR4 (5-hydroxytryptamine receptor 4) which is one of the several different receptors for serotonin,
a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. The activity of
this receptor is mediated by G proteins that stimulate adenylate cyclase. It is involved in the regulation
of chemical synaptic transmission, G protein-coupled receptor signaling pathway, and the regulation
of appetite [16].

Cluster 3 contains 35 nodes and 187 edges with a score of 11. The seed node of this cluster is
IL6 (Interleukin 6) which is a potent inducer of the acute phase response. It plays an essential role in
the final differentiation of B-cells into Ig-secreting cells and induces nerve cell differentiation. IL6 is also
involved in the regulation of neuroinflammatory response and negative regulation of neurogenesis.
With meta-analysis results and many individual studies approved, depression is associated with
the activation of the immune system, including increased expression of proinflammatory cytokines
such as TNF-α and IL-6 [17].

Cluster 4 contains 38 nodes and 147 edges with a score of 7.946. The seed node of this cluster is
NR1D1 (Nuclear receptor subfamily 1 group D member 1) which is related to metabolic, inflammatory
and cardiovascular processes. It can also increase the hepatic expression of CYP7A1 via repression of
NR0B2 and NFIL3 which are negative regulators of CYP7A1.

Cluster 5 contains 11 nodes and 37 edges with a score of 7.4. The seed node of this cluster is PMS1
(PMS1 protein homolog 1). This protein is thought to be involved in the repair of DNA mismatches
and the gene ontology (GO) annotations related to this gene include ATPase activity and mismatched
DNA binding [18].

Cluster 6 contains 26 nodes and 84 edges with a score of 6.72. The seed node of this cluster is
MAPK8 (Mitogen-activated protein kinase 8). Diseases associated with MAPK8 include fatty liver
disease and renal fibrosis and the GO annotations related to this gene include transferase activity,
transferring phosphorus-containing groups, and protein tyrosine kinase activity. Cluster 7 contains
37 nodes and 89 edges with a score of 4.944. There is no seed node presented in this cluster.



Int. J. Mol. Sci. 2020, 21, 1868 9 of 24

2.5. Analysis of HR Target-DD Target Network

2.5.1. PPI Network of HR Targets and DD Targets

After the intersection process, we found there is an overlap between HR and DD targets. As
shown in Figure 5, the direct PPI was composed of 40 nodes and 49 edges. Specifically, 40 target
genes were found and employed to create the HR-DD PPI network using Cytoscape and String with
the confidence score cutoff set at 0.7. The top10 protein genes with the highest degree are EGFR,
GRIN2B, HDAC2, MAOB, MAOA, CYP2E1, GRIN2A, CYP2D6, ESR1, and GRIN1, respectively.

Figure 5. HR-DD PPI network. The closer, redder, and the larger the nodes are, the higher the degree
of freedom they have.

2.5.2. Clustering Analysis of HR-DD PPI Network

Three clusters were obtained after conducting clustering analysis for HR-DD PPI network (K-core
= 2). The details are described in Figure 6 and Table 3. Cluster 1 contains 5 nodes and 9 edges with
a score of 4.5. The seed node of this cluster is GRIN2D (Glutamate ionotropic receptor NMDA type
subunit 2D) which has been shown to be involved in long-term potentiation, an activity-dependent
increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and
learning. It is also involved in the regulation of synaptic plasticity [19] and modulation of chemical
synaptic transmission. Cluster 2 contains 4 nodes and 6 edges with a score of 4. The seed node of
this cluster is HDAC5 (Histone deacetylase 5) which is responsible for the deacetylation of lysine
residues on the N-terminal part of the core histones (H2A, H2B, H3, and H4) and it is also involved
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in the regulation of inflammatory response. Cluster 3 contains 3 nodes and 3 edges with a score of
3. The seed node of this cluster is CYP2B6 (Cytochrome P450 2B6) which catalyze many reactions
involved in drug metabolism and synthesis of cholesterol, steroids, and other lipids. It indicates that
these aforementioned genes may be key to the treatment of depressive disorder with HR.

Figure 6. HR-DD PPI network. (A–C) are clusters we found in the HR-DD PPI network which stands
for cluster 1 to 3, respectively. The seed node of each cluster is presented as a square.

Table 3. Clusters of HR-DD PPI network.

Cluster Score Nodes Edges Gene IDs

1 4.5 5 9 GRIN2D, GRIN1, GRIN2B, CALM1, GRIN2A
2 4 4 6 HDAC5, HDAC6, HDAC9, HDAC2
3 3 3 3 CYP2B6, CYP2E1, CYP2C9

2.6. Potential Synergistic Mechanisms Analysis of HR Target-DD Target Network

2.6.1. GO Enrichment Analysis

The major targets could be categorized into various functional modules by Gene Ontology
enrichment analysis. GO enrichment analysis based on the topGO package [20]—available from
the Bioconductor repository—was performed to identify the biological significance of the primary
target with p-value cutoff set at 0.05 and the p-value were adjusted using the method introduced by
Benjamini and Hochberg [21]. It controls the false discovery rate, the expected proportion of false
discoveries among the rejected hypotheses. The false discovery rate is a less rigorous condition than
the family wise error rate like Bonferroni correction [22–24], so this method is more powerful than
the others.

The GO enrichment analysis of the aforementioned network showed that total of 390 GO entries
were obtained and top20 of each category were selected. Biology process (BP) is shown in Figure 7,
including behavior (GO ID: 0007610), ionotropic glutamate receptor signaling pathway (GO ID:
0035235), regulation of synaptic plasticity (GO ID: 0048167), and response to amine (GO ID: 0014075).
Cellular component (CC) is shown in Figure 8, including neurotransmitter receptor complex (GO ID:
0098878), ionotropic glutamate receptor complex (GO ID: 0008328), apical part of cell (GO ID: 0045177),
intrinsic component of postsynaptic density membrane (GO ID: 0099146), and integral component
of postsynaptic density membrane (GO ID: 0099061). Molecular function (MF) as shown in Figure 9,
include monooxygenase activity (GO ID: 0004497), transmembrane receptor protein tyrosine kinase
activity (GO ID: 0004714), and ionotropic glutamate receptor activity (GO ID: 0004970). These were
all GO entries that play important parts in the central nervous system and affect mental diseases.
The details of the above GO entries are described in Supplementary Table S1.
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2.6.2. Pathway Analysis to Explore the Therapeutic Mechanisms of HR on DD

To further verify that the biological process related to the target protein is associated with
the occurrence of DD, a total of 40 signal pathways (p-value cutoff = 0.05) were screened and the top10



Int. J. Mol. Sci. 2020, 21, 1868 12 of 24

pathways were selected using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
(Figure 10). Various pathways such as alcoholism pathway, amphetamine addiction pathway, cocaine
addiction pathway, drug metabolism—cytochrome P450 pathway, metabolism of xenobiotics by
cytochrome P450 pathway, long-term potentiation pathway, and histidine metabolism pathway were
associated with those aforementioned targets.

Figure 10. Pathway analysis. Dot plot of the top10 KEGG pathway.

Based on the results of pathway analysis, it was found that these high-degree pathways are closely
related to the central nervous system, major depressive disorder, Alzheimer’s disease, Parkinson’s
disease, schizophrenia, and bipolar disorder. Especially, alcoholism (hsa05034) pathway exhibits
the highest number of target connections (degree = 12), which includes consequential target genes
such as MAOA, GRIN2A, GRIN2B, and CALM1. The results show that HR can down-regulate MAOA,
MAOB, and simultaneously up-regulate CALM1 (Figure 11). MAOA and MAOB are crucial target
genes of various mental diseases, and MAOA is particularly important in depression and anxiety [25,26].
MAOA is a major degrading enzyme—is encoded by the MAOA gene in humans—in the metabolic
pathways of monoamine neurotransmitters such as norepinephrine, dopamine, and serotonin. Most of
the antidepressants currently used involve the control of monoamine neurotransmitter turnover or
monoamine receptor function. The initial action of mechanisms of most drugs used in the treatment of
depression is to enhance central nervous system monoamine levels, particularly serotonin. Therefore,
HR can ameliorate depression symptoms by down-regulating MAOA subsequently elevating serotonin
and norepinephrine in the brain.
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Figure 11. Pathway mapping of the alcoholism pathway. Green indicates down-regulation and red
indicates up-regulation.

Additionally, calcium (Ca2+) is one of the most significant intracellular messengers; the appropriate
concentration of Ca2+ is necessary for neuronal excitability. When the Ca2+ concentration increases,
Ca2+, calmodulin (CaM), and CaM kinase IIα (CaM KIIα) combine together to form the Ca2+-CaM-CaM
KIIα signaling pathway, which is important in the plasticity of the central nervous system, learning
and memory, mind, behavior, and other types of cognitive activities. In the previous

Meta-analysis of genes associated with major depressive disorder, it showed that Calmodulin 1
(CALM1) plays an important role in the regulation in neurotransmission and calmodulin-related gene
expression is altered in lateral habenula and frontal cortex of Major depressive disorder patients [27].
Therefore, HR can possibly ameliorate depression symptoms by increasing the expression of CALM1
and stimulating neurotransmission in the brain.

The details of other related pathways are described in Table 4 and the target-pathway (T-P)
network is shown in Figure 12, which contains 33 nodes including top10 KEGG pathways associated
with 23 targets and 71 edges. The results show that glutamate ionotropic receptor NMDA type subunit
family (GRIN1, GRIN2A, GRIN2B, and GRIN2D), monoamine oxidase family (MAOA and MAOB),
and CALM1 accounted for the largest proportion. It indicates that these aforementioned genes may be
key to the treatment of depressive disorder with HR.
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Table 4. Pathways associated with 40 candidate targets according to enrichment analysis based
on KEGG.

ID Pathway p-Value p.adjust Count Gene IDs

hsa05034 Alcoholism 1.95 × 10−11 2.84 × 10−9 12

MAOB/MAOA/HDAC5/CREB1/
GRIN2D/GRIN1/HDAC2/HDA
C9/GRIN2B/GRIN2A/CALM1/

HDAC6

hsa05031 Amphetamine
addiction 6.17 × 10−10 4.51 × 10−8 8

MAOB/MAOA/CREB1/GR
IN2D/GRIN1/GRIN2/GRIN2A/

CALM1

hsa04015 Rap1 signaling
pathway 4.29 × 10−6 8.94 × 10−5 8 EGFR/GRIN1/PDGFRB/KIT/GR

IN2B/GRIN2A/CSF1R/CALM1

hsa04014 Ras signaling
pathway 8.96 × 10−6 1.45 × 10−4 8 EGFR/GRIN1/PDGFRB/KIT/GR

IN2B/GRIN2A/CSF1R/CALM1

hsa05030 Cocaine
addiction 2.00 × 10−9 9.73 × 10−8 7 MAOB/MAOA/CREB1/GR

IN2D/GRIN1/GRIN2B/GRIN2A

hsa00982

Drug
metabolism -
cytochrome

P450

3.18 × 10−8 1.16 × 10−6 7 MAOB/CYP2D6/MAOA/ALDH
3A1/ CYP2B6/CYP2C9/CYP2E1

hsa00980

Metabolism of
xenobiotics by

cytochrome
P450

1.18 × 10−6 3.44 × 10−5 6 CYP2D6/ALDH3A1/CYP2B6/CYP
2C9/CYP2E1/HSD11B1

hsa04713 Circadian
entrainment 4.97 × 10−6 9.06 × 10−5 6 CREB1/GRIN2D/GRIN1/GRIN2B/G

RIN2A/CALM1

hsa04720 Long-term
potentiation 1.32 × 10−5 1.93 × 10−4 5 GRIN2D/GRIN1/GRIN2B/

GRIN2A/CALM1

hsa00340 Histidine
metabolism 3.36 × 10−6 8.18 × 10−5 4 MAOB/MAOA/ALDH2/ALDH3A1

Figure 12. Target-pathway network of HR and DD. The purple arrow nodes are top10 KEGG
pathway associated with Hemerocallis Radix and depression disorder targets, and the orange ellipse are
the related targets.
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3. Discussion

TCM might simultaneously target multiple physiological processes to arouse the human body’s
potentiality to recover from unhealthiness. Unfortunately, the potential targets of Chinese herbs are
difficult to be identified. The research strategy of network pharmacology provides a unique and
innovative path for the study of TCM, including the mechanism of action of multi-component and
multi-target. In the present study, we employed network pharmacology approaches to find potential
bioactive ingredients from the herb HR associated with the important DD-related targets. By combining
the advantages of data mining, machine learning, and neural network together, we predicted that
multiple active components would target several proteins related to depressive disorder.

Through the aforementioned analysis—pharmacokinetic analysis, C-T network, PPI network,
GO enrichment and pathway analysis, T-P network, and cluster analysis—we found that the herb
HR contained important candidate bioactive components for depression disorder treatment. To more
intuitively determine the relation among component, target, and pathway, Figure 13 shows the results
of the analysis of disease-component-target-pathway interactions.

Figure 13. Component-target-pathway network of HR and DD. The green ellipse is the target herb—
Hemerocallis Radix, the blue ellipse are bioactive components, the orange ellipse indicates the related
targets, and the purple arrow nodes represent pathways.

Hemerocallis Radix has a beneficial effect in calming the spirit and even the temper, in order to
reduce the feeling of melancholy. Pharmacological analysis has indicated that the active components
in HR —aloe-emodin, α-boswellic acid, anthraquinone, β-Boswellic acid, chrysophanol, colchicine,
hemerocallone, kaempferol, puerarin, rhein, and vanillic acid—impart beneficial effects on DD and
related complications through the action of target proteins in various metabolic pathways.

In this study, we try to interpret the synergistic effect of HR on DD from four aspects. First, C-T
network showed that the average number of targets per component is 24.3, and the mean degree
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of components per target is 1.9. This clearly established that HR fits one of the most important
characteristics of TCM—multi-component and multi-target. Second, PPI network recognized EGFR,
GRIN2B, HDAC2, MAOB, MAOA, CYP2E1, GRIN2A, CYP2D6, ESR1, and GRIN1 as hub genes and
cluster analysis showed that GRIN2D, HDAC5, and CYP2B6 are the center genes from three major
clusters. PPI network unveiled the interaction between HR and DD-related targets, and found possibly
significant targets in a more circumstantial point of view through the clustering method. Third,
GO enrichment analysis indicated that all the targets interacting with the bioactive components of
HR have a total of 390 GO entries and top20 of each category (BP, MF, CC) were selected. Most of
these play important parts in the central nervous system that affect different steps of the synthesis or
transportation of neurotransmitters. Finally, the pathway analysis proved that bioactive components
of HR exert a synergistic effect on the treatment of depressive disorder through numerous pathways
such as alcoholism pathway, amphetamine addiction pathway, Rap1 signaling pathway, Ras signaling
pathway, drug metabolism—cytochrome P450 pathway, metabolism of xenobiotics by cytochrome
P450 pathway, and so on. These pathways mostly down-regulate MAOA, MAOB, EGFR, and CYP2E1,
while simultaneously up-regulating CALM1. This matches with the hub genes from PPI network, in
which EGFR has been proved to be a significant depression-related gene [28], MAOA and MAOB are
crucial target genes of various mental diseases, and MAOA is particularly important in depression and
anxiety [25,26]. Moreover, CYP2E1, a member of the cytochrome P450 enzymes family, is referred to
as toxicant metabolic enzyme in the liver cell [29]. Although it is mainly concentrated in liver cells,
study proved that it has region, cell, and organelle specificity. CYP2E1—highly expressed in the brain
microsomes—is an important member of catalyzing ethanol oxidation and is involved in the regulation
of dopamine [30].

Furthermore, the top3 key components and their related genes are presented in Figure 14. The main
bioactive components are anthraquinone, kaempferol, and vanillic acid. Anthraquinone is an aromatic
organic compound with formula C14H8O2. Previous studies showed that anthraquinone has only
moderate inhibition effect or is even inactive against mouse Monoamine Oxidase (MAO) enzyme [31,32].
However, a recent study indicated that anthraquinone showed moderate to potent inhibition of human
MAO enzyme activity. Though human MAO and mouse MAO have 92% sequence identity, differential
sensitivity to phentermine inhibition suggests that structural and functional differences exist between
them. That is to say, the type of MAO enzyme must be the reason for these inconsistent findings [33].
Consistent with our study, anthraquinone can down-regulate MAOA and MAOB, and all the gene
data we used were set at Homo sapiens. Kaempferol is a natural flavonol—a type of flavonoid—found
in a variety of plants and plant-derived foods. It has been proved to be a potent MAOA and MAOB
inhibitor, antioxidant, and presents neuroprotective effect in the mouse model [34,35]. In spite of that,
a more recent study showed that kaempferol acts as a selective inhibitor of human MAOA which
is consistent with our study [36]. Vanillic acid is a phenolic acid with formula C8H8O4, found in
some forms of vanilla and many other plant extracts. It is reported to possess strong antioxidant,
anti-inflammatory, antinociceptive, and neuroprotective effects [37–40]. It has also been proved that
vanillic acid has hepatoprotective effect, and is often used in the treatment of depression in TCM, and
can suppress hepatic fibrosis in chronic liver injury [41]. Interestingly, although multiple phenolic acids
have anti-depression effect, there is no scientific data that prove that vanillic acid alleviates depression,
only several findings on the reduced concentrations of homo-vanillic acid (HVA) in cerebrospinal
fluid [42–44] and mild inhibition of human MAOA and MAOB from virgin olive oil-extracted vanillic
acid [45].
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Figure 14. Top three key components of HR on DD treatment. The blue ellipse are the key bioactive
components, the orange ellipse indicate the related targets, and the yellow ellipse represent the hub
genes of the top3 key components.

4. Materials and Methods

4.1. Chemical Database Collection and Construction

All components of HR were obtained from Traditional Chinese Medicine Systems Pharmacology
Database and Analysis Platform (TCMSP, http://lsp.nwu.edu.cn/tcmsp.php) [46] and TCM-Mesh
(http://mesh.tcm.microbioinformatics.org) [47]. TCMSP database contains 499 herbs, however, because
of time limitations, there were components that had not been updated in the database. That is
why TCM-Mesh, which contains 6235 herbs, was used as a verification and expansion tool for
the component database construction. Finally, 26 components were collected from TCMSP and
2 components, Colchicine and Ethyl benzoate, were collected from TCM-Mesh. Further, the properties
of components were retrieved from TCMSP, including molecular weight (MW), OB, Caco-2, DL, an
octanol-water partition coefficient log P (AlogP), hydrogen bond donors (Hdon), hydrogen bond
acceptors (Hacc), topological polar surface area (TPSA), rotatable bond number (RBN), and GI
absorption was retrieved from SwissADME (http://www.swissadme.ch/index.php) [48].

4.2. Active Components Screening

ADME—absorption, distribution, metabolism, and excretion—is used in drug discovery to
optimize the balance of properties necessary to convert leads into good medicines. The proper ADME
screening can assure those candidates have better pharmacokinetic properties and hopefully, minimize
drug–drug interactions in the future.

In this study, four ADME-related models were used to screen out the active components in HR,
including OB, Caco-2, DL, and GI absorption. Beyond that, all screen-out components should follow
Lipinski’s rule of five.

Lipinski’s rule of five is a rule of thumb to evaluate if a chemical compound with certain
pharmacological or biological activities could be a likely orally active drug in humans. In this rule,
compounds who met the requirements of MW, Hdon, Hacc, AlogP, and RBN seemed to be more
possible to become a drug [49,50].

http://lsp.nwu.edu.cn/tcmsp.php
http://mesh.tcm.microbioinformatics.org
http://www.swissadme.ch/index.php
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OB is defined as “the rate and extent to which the active ingredient or active moiety is absorbed
from a drug product and becomes available at the site of action” by the Food and Drug Administration
(FDA) [51]. It portrays the percentage of an orally administered drug that absorbs and reaches human
body circulation. High oral bioavailability was often a key indicator to determine the drug-like property
of bioactive molecules as therapeutic agents [52]. In the United States, FDA indicates the importance
of bioavailability and this information became part of the drug development and regulatory processes
in a New Drug Application [53]. In this study, those components with suitable OB ≥ 30% were selected
as candidate components for further research.

Human intestinal cell line Caco-2 is a most common tool to study the passive diffusion of drugs
across the intestinal epithelium. The Caco-2 cell model is a human-cloned colonic adenocarcinoma
cell that is structurally and functionally similar to intestinal epithelial cells. The transport rates of
components (nm/s) in Caco-2 monolayers represents the intestinal epithelial permeability [46]. Those
components with Caco-2 > −0.4 were selected as candidate components, because components with
Caco-2 < −0.4 are not permeable.

DL is an established concept for drug design that is used to estimate which compounds
have the “drug-like” properties. The DL values of these components were calculated by
the database-dependent DL evaluation approach based on Tanimoto coefficient, which equation
is showing below. In this equation, A represents the molecular descriptor of herbal components, and
B is the average molecular property of all components in DrugBank (http://www.drugbank.ca/) [54].
The threshold of DL was set to 0.18, which is used as a selection criterion for “druglike” compounds in
the traditional Chinese herbs [55]. Any component that does not meet this criterion will be screen out
from this database.

T (A, B) =
(A × B)(

|A|2 + |B|2 − A × B
) (1)

Gastrointestinal (GI) absorption is a pharmacokinetic behavior crucial to estimate the various
stages of the drug discovery processes, which can be calculated by an accurate predictive model,
the Brain Or IntestinaL EstimateD permeation method (BOILED-Egg) [56]. This model uses membrane
permeation-related characteristics, lipid solubility—WlogP (n-octanol/water partition coefficient; Y-axis)
and polarity—TPSA (topological polar surface area; X-axis) to calculate its GI absorption value, and
can be found on the website SwissADME [48]. The screening criterion of GI absorption was defined as
high. Based on this analysis ten components were excluded from further analysis.

Lastly, there are some screen-out components we add back into the database. Vanillic acid,
puerarin, α-Boswellic acid, β-Boswellic acid and Chrysophanol were added back into the list because
numerous studies proved that they are beneficial for hepatoprotection [41,55,57,58]. Even though
the DL of anthraquinone is lower than 0.18, it has become a member of this database again nevertheless
for the reason that it is one of the main active ingredients in HR [59]. Taken together, 28 components
obtained from TCMSP and TCM-Mesh remained 11.

4.3. Targets fishing

4.3.1. Identified and Predicted Targets of Hemerocallis Radix

To obtain the target of active components in HR, the commonly used databases, i.e., HitPick [60],
similarity ensemble approach (SEA) [61], and PubChem [62] were engaged to collect the targets. All
chemical structures were prepared and converted into canonical SMILES using Open Babel Toolkit
(version 2.4.1). Known therapeutic targets of HR were collected from PubChem, while HitPick and
SEA were applied for the use of target prediction.

4.3.2. Targets of Depressive Disorder

The DD targets were gathered from the DisGeNET database (http://www.disgenet.org/) [63],
which offers information about disease targets. The keywords “depressive disorder” were used, and

http://www.drugbank.ca/
http://www.disgenet.org/
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the targets were human genes/proteins enrolled in this study (DisGeNET UMLS CUI: C0011581).
A total of 740 DD targets were gathered, and furthermore, using the String plugin [64] in Cytoscape
3.7.1 a PPI network was built in which the confidence score cutoff was set at 0.7. Hence, the numbers
of 709 DD targets were obtained.

4.4. Network Construction and Clustering Analysis

Artificial neural network was constructed through the network visualization software Cytoscape,
which is used to visualize and analyze the molecular interactions and biological pathway. Draw Venn
Diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/) was applied to calculate the intersection
between HR and DD targets.

To study further into the network, MCODE plugin was introduced to generate clusters [65]. This
tool can identify the major hubs of HR against DD by setting its K-core, which filters out clusters that
do not contain a maximally inter-connected sub-cluster of at least k degrees. Increasing the value of
K-core will generate fewer clusters and exclude smaller clusters. Nevertheless, we can find the highest
scoring node, called seed which is represented as a square. The seed might have a chance of becoming
the key target of this cluster.

4.5. Gene Ontology and Pathway Enrichment Analysis

The software R language with a graphical user interface, RGui (Version 3.6.1) was adopted to
analyze the representative biological processes and pathways associated with HR against DD. All
obtained targets from previous preparation were imported. Total of 390 GO entries were found and
top20 entries of each category, namely BP, CC, and MF, were obtained with the p-value set at 0.05.

The latest pathway data were obtained from the KEGG database [66] for KEGG pathway
enrichment analyses. p-values were set at 0.05 as the cut-off criterion. A total of 40 pathways were
screened and top10 pathways were selected. The results of the analysis were annotated by Pathview [67]
in the R Bioconductor package (https://www.bioconductor.org/).

4.6. Component-Target-Pathway Network Construction

In this research, the network model of "component-target-pathway" interaction was established
through Cytoscape3.7.1. In network interactions, nodes represent components, targets, and pathways,
whereas edges represent the interaction of each other. Based on this neural network model, the pathway
of active components and targets in depressive disorder is initially explored to provide a preliminary
theoretical basis for the design of subsequently targeted drugs.

5. Conclusions

The aforementioned results highlight that HR has intervention effects on DD through multiple
bioactive compounds and targets. In conclusion, anthraquinone, kaempferol, and vanillic acid as
the main bioactive components can alleviate depression symptoms by down-regulated MAOs. While
there is no literature that shows the effect of anthraquinone and vanillic acid on ESR1, studies showed
that it acts as an important factor of depression especially in women [68–70]. ESR1 can regulate
neurotransmitters including increasing the concentration of serotonin and norepinephrine, and it is
involved in the regulation of the number and function of serotonin receptors, thereby controlling
the activity of serotonin-activated neurons [71,72].

In the present study, a network-based computational strategy was established to uncover
the pharmacological mechanism of the compounds of Hemerocallis Radix on depressive disorder. It will
provide new ideas for further research on ethnopharmacology, Traditional Chinese Medicinal herbs,
and ethnic compounds. The targets, clusters, biological processes, and pathways associated with HR
were discovered through this study. HR target-DD target network exhibited the effective bioactive
components, potential pharmacology, and molecular mechanism of HR for treating DD. This study

http://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.bioconductor.org/
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provides a suitable combination strategy to uncover the therapeutic mechanism of multi-component
drugs on a systematic level, which lays the foundation for the clinical application.

The alcoholism pathway is regulated at different levels by various mechanism and can crosstalk
with other signaling pathways. The results of our study support the role of anthraquinone, kaempferol,
and vanillic acid on MAOA, MAOB, and ESR1 in the etiology of depressive disorder. Many
studies focusing medicinal herbs were carried out with animal models. However, several researches
suggested that it shows different results in humans, indicating the importance of assessing the effect of
the abovementioned active components on specific target toward the treatment of depressive disorder
in human. While there is no ample evidence of the effect of anthraquinone and vanillic acid on ESR1,
further research in this area may reveal details in assigning causative relationships.
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CC Cellular Component
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DD Depressive Disorder
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EGFR Epidermal Growth Factor Receptor
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GNB1 G Protein Subunit Beta 1
GNB3 G Protein Subunit Beta 3
GO Gene Ontology
GRIN1 Glutamate Ionotropic Receptor NMDA Type Subunit 1
GRIN2A Glutamate Ionotropic Receptor NMDA Type Subunit 2A
GRIN2B Glutamate Ionotropic Receptor NMDA Type Subunit 2B
GRIN2D Glutamate Ionotropic Receptor NMDA Type Subunit 2D
Hacc Hydrogen Bond Acceptors
HDAC2 Histone Deacetylase 2
HDAC5 Histone Deacetylase 5
Hdon Hydrogen Bond Donors
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HTR4 5-Hydroxytryptamine Receptor 4
HVA Homovanillic Acid
IL6 Interleukin 6
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KEGG Kyoto Encyclopedia of Genes and Genomes
MAOA Monoamine Oxidase A
MAOB Monoamine Oxidase B
MAPK8 Mitogen-Activated Protein Kinase 8
MF Molecular Function
MW Molecular Weight
NR1D1 Nuclear Receptor Subfamily 1 Group D Member 1
OB Oral Bioavailability
PDYN Proenkephalin-B
PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
PMS1 PMS1 Protein Homolog 1
PPI Protein-Protein Interaction
RBN Rotatable Bond Number
SEA Similarity Ensemble Approach
TCM Traditional Chinese Medicine
TCMSP Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform
T-P Target-Pathway
TP53 Tumor Protein P53
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