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Abstract: Quantification of gene expression is crucial to connect genome sequences with
phenotypic and physiological data. RNA-Sequencing (RNA-Seq) has taken a prominent role
in the study of transcriptomic reactions of plants to various environmental and genetic perturbations.
However, comparative tests of different tools for RNA-Seq read mapping and quantification have
been mainly performed on data from animals or humans, which necessarily neglect, for example,
the large genetic variability among natural accessions within plant species. Here, we compared
seven computational tools for their ability to map and quantify Illumina single-end reads from the
Arabidopsis thaliana accessions Columbia-0 (Col-0) and N14. Between 92.4% and 99.5% of all reads
were mapped to the reference genome or transcriptome and the raw count distributions obtained from
the different mappers were highly correlated. Using the software DESeq2 to determine differential
gene expression (DGE) between plants exposed to 20 ◦C or 4 ◦C from these read counts showed
a large pairwise overlap between the mappers. Interestingly, when the commercial CLC software
was used with its own DGE module instead of DESeq2, strongly diverging results were obtained.
All tested mappers provided highly similar results for mapping Illumina reads of two polymorphic
Arabidopsis accessions to the reference genome or transcriptome and for the determination of DGE
when the same software was used for processing.

Keywords: Arabidopsis thaliana; differential gene expression; natural genetic variation; read mapping
tools; RNA-Seq

1. Introduction

Since the completion of the human genome project in 2003 [1], sequencing technologies have
developed extraordinarily fast. The resulting data have revealed the astonishing complexity of
genome architecture and transcriptome composition. In this context, transcript identification and the
quantification of gene expression play crucial roles in connecting genomic information with phenotypic
and biochemical measurements. These two key aspects of transcriptomics can be combined in a single
high-throughput sequencing assay called RNA-Sequencing (RNA-Seq). This approach allows detailed
transcript profiling including the identification of splicing-induced isoforms, nucleotide variation and
post-transcriptional base modification [2].

While comparative studies of diverse read aligners have been performed using data with
a corresponding reference genome or transcriptome [3–7] or de novo assembly [8–10], only little
evaluation is available of the performance of read mappers for data generated from genotypes within
a species showing sequence polymorphisms. In this study, the algorithmically different mappers
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bwa, CLC Genomics Workbench, HISAT2, kallisto, RSEM, salmon and STAR were used to map
experimentally generated RNA-Seq data from the two natural accessions Columbia-0 (Col-0) and
N14 of the higher plant Arabidopsis thaliana and to quantify the transcripts.

Bwa (Burrows–Wheeler-Alignment) was developed for mapping short DNA sequences against a
reference genome and was extended for RNA-Seq data analysis. For indexing, the algorithm constructs
a suffix array and Burrows–Wheeler-Transformation (BWT), and subsequently matches the sequences
using a backward search [11]. STAR (Spliced Transcripts Alignment to a Reference) is a specialized
tool for RNA-Seq reads that uses a seed-extension search based on compressed suffix arrays [12] and
can detect splice-junctions. HISAT2 (Hierarchical Indexing for Spliced Alignment of Transcripts 2)
is also a splice-aware aligner using a graph-based alignment approach (graph Ferragina Manzini
index) that can align DNA and RNA sequences [13]. RSEM (RNA-Seq by Expectation Maximization)
is a software package that quantifies transcript abundances. It can employ different pre-defined
mappers such as bowtie2 and based on the generated alignments utilizes a maximum likelihood
abundance estimation, the expectation-maximization algorithm, as the statistical model to quantify
transcripts [14]. By contrast, salmon and kallisto are tools which do not perform a classical alignment
of individual bases, but instead implement new strategies for RNA-Seq quantification. Salmon is
based on the concept of quasi-mapping. It uses a suffix array that is BWT-indexed and searched by an
FMD algorithm, allowing the discovery of shared substrings of any length between a read and the
complete set of transcripts. Mismatches are handled with chains of maximally exact matches [15].
The concept of kallisto is based on pseudo-alignments. Pseudo-alignments define a relationship between
a read and a set of compatible transcripts. This relationship is computed based on “mapping” the
k-mers to paths in a transcript De Bruijn graph. As the pseudo-alignments are generated, equivalence
classes are computed and used for the relative isoform quantification [16]. CLC read mapping utilizes
an approach described by Mortazavi et al. [3] and is the only commercial tool with a graphical user
interface included in our study.

Here, we compare the performance of these seven RNA-Seq mappers in the analysis of
experimentally generated transcriptome data covering more than 30,000 Arabidopsis thaliana genes.
The analysis compares alignment accuracy and quantification to enable comprehensive biological
interpretation. For the RNA-Seq experiment, RNA was isolated from the higher plant Arabidopsis
thaliana and the performance of each software was tested on 150 bp single-end reads from the two
natural accessions Col-0 and N14 [17]. Mappability, raw count expression, overall similarity of the
count distribution and differential gene expression (DGE) were analyzed to compare the mappers.
The two splice-aware aligners HISAT2 and STAR were compared for accuracy by mapping the
reads against the reference genome without an annotation. Additionally, an in silico approach to
characterize the correctness of the mappers was performed (see Figure 1 for a schematic description of
the analysis workflow).
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Figure 1. Analysis workflow. Light gray represents all steps performed for experimental data, light
orange for analysis of in silico generated data analyzed with HISAT2, RSEM and STAR.

2. Results

2.1. Mapping Statistics

After pre-processing, the resulting dataset contained 36 samples [17] with a sequencing data size
ranging from about 21 to almost 33 × 106 reads (Table A1). In general, a high fraction of the total reads
was mapped for both accessions. The mapping for Col-0 was slightly better than for N14 (Figure 2)
with mapped reads between 95.9% (bwa) and 99.5% (STAR). For N14 between 92.4% (bwa) and 98.1%
(STAR) of the reads were mapped against the respective reference sequence of Col-0 (Table A2).

Figure 2. Mapper comparison based on mappability. Number of mapped reads against the
Col-0 reference sequence for all seven mappers and each accession separately. The analysis included
RNA-Seq data from 36 biological samples. Outliers for N14 were in each case sample V for minimum,
sample AF for maximum (see Table A3 for sample information).
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2.2. Raw Count Distribution for Individual Samples

Raw count distributions between the mappers were investigated for both accessions. The unfiltered
expression values for each mapper were plotted against each other and correlations computed.
The results for one control sample of Col-0 (sample A) and N14 (sample B) are shown as an example
(Figure 3). For Col-0 (Figure 3a), high correlation coefficients between 0.977 (STAR vs. CLC) and 0.997
(kallisto vs. salmon) were determined. For N14 (Figure 3b) the correlation coefficients ranged from
0.978 (CLC vs. HISAT2) to 0.996 (kallisto vs. salmon). Regarding the STAR and HISAT2 comparisons
with all other mappers, a higher variance was observed in the direction of STAR and HISAT2 for lowly
expressed genes.

Figure 3. Raw counts of mapped reads determined by each mapper plotted against each other.
Results are shown for sample A of Col-0 (a) and sample B of N14 (b) which both were obtained from
plants grown under control conditions at 20 ◦C (see Table A3 for sample information). Lower triangle
represents scatterplots of log2(counts + 1) transformed, unfiltered raw counts for each mapper plotted
against each other. The diagonal histograms show the density of the raw count distribution for each
mapper. The upper triangle displays the correlation coefficients.

2.3. Overall Comparison of the Mappers

For a more quantitative comparison, the raw counts generated by each mapper from all samples
were compared against each other employing the Rv coefficient to quantify similarity. The raw count
tables generated by the seven mappers have a high similarity indicated by Rv values close to 1 (Figure 4).
Salmon and kallisto showed the highest similarity (Rv = 0.9999). CLC mapped slightly differently
compared to bwa, HISAT2, kallisto, RSEM and salmon. However, it should be stressed that the raw
count tables of all mappers were very similar; with 0.9804 as the lowest Rv value (CLC vs. HISAT2).
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Figure 4. Mapper comparison based on raw count distributions. Graphical representation of the
computed Rv values based on the correlation matrices of the unfiltered raw count tables generated by
all mappers for all samples from both accessions. Values close to 1 indicate high similarity. The color
and shape scales were adjusted to visualize the small differences between the Rv coefficients.

To investigate the effect of mapper choice on further statistical analysis, differentially expressed
genes between control and cold acclimated conditions were determined [17]. In the read mapping steps,
the aligners bwa, salmon and kallisto, using the transcriptomic reference, identified 32,243 expressed
genes and thus 1,359 genes less than the other mappers with 33,602 genes each. This difference is due
to the presence of non-coding RNAs such as transfer RNAs (tRNA) and micro RNAs (miRNA) in the
genomic reference, which are absent from the transcriptomic reference that is based on poly-adenylated
mRNAs. Prior to DGE analysis, transcript raw count tables were filtered to remove lowly expressed
genes with less than five counts over all 36 samples, resulting in 23,903 (CLC) to 25,144 (RSEM) genes
(Table 1). While this cut-off is admittedly arbitrary, most genes are removed with a cut-off of 1 read
count (around 20%), while additional increases from 2 to 10 counts only reduce the number of genes
by 2–0.3% per additional count, making the exact cut-off rather uncritical.

Table 1. Number of expressed genes identified in all samples before and after filtering out lowly
expressed genes.

Bwa CLC HISAT2 Kallisto RSEM Salmon STAR

Before filtering 32,243 33,602 33,602 32,243 33,602 32,243 33,602
After filtering 24,197 23,903 24,840 24,810 25,144 24,574 24,515

The percentage of overlapping DGE (control vs. cold acclimated) identified by each pair of
mappers was analyzed in both directions using DESeq2 [18] in all cases and was plotted in an
asymmetric matrix. For Col-0 (Figure 5a) kallisto and salmon yielded a large overlap of DGE of 98%
(kallisto vs. salmon) and 97.7% (salmon vs. kallisto). For N14 (Figure 5b) slightly smaller overlaps
were detected, but also here salmon and kallisto (97.6% and 96.4%) yielded the largest overlap. On the
other hand, for both Col-0 and N14 the lowest overlaps were detected for bwa and STAR (93.4% and
92.1%, respectively). In general, a smaller overlap of DGE between 92% and 94% was identified for the
comparisons of STAR and HISAT2 with the remaining five mappers.
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Figure 5. Overlap of significantly differentially expressed genes among the different mappers for cold
acclimated vs control plants. Overlap in % for Col-0 (a) and N14 (b). DGE was determined at FDR
p < 0.1 and an absolute log2FC > 1 using the R-package DESeq2. Overlap of differentially expressed
genes among each pair of mappers is represented in an asymmetric matrix.

DGE analysis [19,20] was additionally performed directly in the CLC software instead of using
DESeq2. Using the standard significance levels for these two software packages (FDR < 0.1 and
FDR < 0.05 for DESeq2 and CLC, respectively) this resulted in a much higher number of significantly
differentially expressed genes for the two exemplary comparisons, detailed under Methods, compared
to the DESeq2 analysis (Table 2). Also, there was only a limited overlap between the results of the
two methods.

Table 2. DGE analysis using the CLC software.

DESeq2 CLC

Comparison Accession Baggerly Overlap
DESeq2 EDGE Overlap

DESeq2

C28P3/C28 Col-0 2014 3034 1013 2921 1006
N14 2101 3414 1061 3311 1052

C28P3L7T3/C35P3 Col-0 1 98 0 86 0
N14 1 168 0 259 0

Differential gene expression was calculated with DESeq2 (FDR < 0.1, abs (log2FC > 1), based on STAR alignments
and two CLC approaches after Baggerly and EDGE (FDR < 0.05, abs (log2FC > 1)).

All mappers have different options to perform RNA-Seq quantification (Table 3). While most
mappers can only use either a genome or a transcriptome reference, CLC, HISAT2 and STAR are
able to use both types of reference sequences to align transcripts. Depending on the downstream
analysis, it is essential which output each mapper provides. The classical alignment-based mappers
bwa, CLC, HISAT2, RSEM and STAR provide an alignment output of the reads against the references,
whereas salmon and kallisto only provide read quantifications. Nevertheless, kallisto offers a
“pseudo-alignment” which can generate alignment files and salmon provides an option to re-quantify
RNA-Seq reads using previously generated alignments against the transcriptome as obtained,
for example, from STAR. Five out of the seven mappers generate transcript count tables. Only for
HISAT2 and bwa additional tools have to be employed for this purpose.
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Table 3. Comparison of selected key features of the used mappers. Features indicated by X are included
in the specified mapper.

Bwa CLC HISAT2 Kallisto RSEM Salmon STAR

Reference
Genome X X X

Transcriptome X X X X X X X
Needs annotation X X X X X

Specifications
Alignment-based X X X X X
Pseudo-alignment X X
Expression values X X X X X

Splice aware X X X
Commercial software X

For a more detailed investigation of the comparability of the outputs of different mappers, three
of the seven mappers were analyzed in detail regarding read position on the reference sequence.
The overlap of reads from one sample, which were mapped by HISAT2, bowtie2/RSEM and STAR,
was determined and the positions of the mapped reads on the reference genome were compared.
For Col-0 around 11.2 × 106 (Figure 6a) of around 24.9 × 106 mapped reads and for N14 around
10.5 × 106 reads (Figure 7a) of around 22.0 × 106 mapped reads were located on the same genomic
position by all three mappers. For both accessions, bowtie2/RSEM showed a high number of reads
mapping to a different position compared to HISAT2 and STAR. The number of reads with a unique
position was between 20.4-fold and 10.9-fold higher for bowtie2/RSEM than for the other two mappers.
Hence, the differences in read positions were determined, showing that most of these reads had a
position that differed by one base pair. This is the result of soft clipping of the first or last base pair
that is performed by HISAT2 and STAR. After adding the base pair back to the reads in HISAT2 and
STAR, the overlap with RSEM increased to 20.8 × 106 reads for Col-0 (Figure 6b) and to 17.9 × 106 reads
for N14 (Figure 7b). However, RSEM still produced between 18.4-fold and 3.8-fold more uniquely
positioned reads than HISAT2 and STAR that cannot be explained by soft clipping.

Figure 6. Number of reads mapping on the same genomic position comparing HISAT2, RSEM and
STAR for Col-0. Venn diagrams are based on 24,989,667 reads mapped by all three mappers and
represent the overlap of mapped reads on the same genomic position for sample A (see Table A3 for
sample information). A high number of the uniquely mapped reads in RSEM was based on soft-clipping
by one bp performed by HISAT2 and STAR (a). The reads in HISAT2 and STAR were corrected by
adding the soft-clipped bp back and the overlap with RSEM increased strongly (b).
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Figure 7. Number of reads mapping on the same genomic position comparing HISAT2, RSEM and
STAR for N14. Venn diagrams are based on 22,040,847 reads mapped by all three mappers and represent
the overlap of mapped reads on the same genomic position for sample B (see Table A3 for sample
information). A high number of the uniquely mapped reads in RSEM was based on soft-clipping by
one bp performed by HISAT2 and STAR (a). The reads in HISAT2 and STAR were corrected by adding
the soft-clipped bp back and the overlap with RSEM increased strongly (b).

Additionally, the two splice-aware aligners HISAT2 and STAR were tested for accuracy. Reads of
all 36 biological samples were mapped against the reference genome sequence without annotation
and reads on exons were determined with featureCounts (Table 4). For Col-0, 93% (STAR) and
94% (HISAT2), and for N14 around 91% (both mappers) of the primary alignments were mapped to
known exons. A small fraction of reads were not assigned to the annotated exons due to no mapping,
multimapping (i.e., mapping to more than one location) or mapping to intergenic regions.

Table 4. Fraction of reads mapped to known exons for HISAT2 and STAR.

HISAT2 STAR

Col-0 N14 Col-0 N14
Assigned to exon 94.34 90.70 93.05 90.72

Unmapped 1.10 5.16 0.50 1.99
Multimapped 4.01 3.61 5.93 6.77

No Feature (intergenic) 0.55 0.53 0.51 0.53

To test accuracy of HISAT2 and STAR, reads of the 36 biological samples were mapped against the reference genome
without including an annotation. More than 90% of reads were mapped for both accessions and mappers to known
exons while a small fraction was either unmapped, multimapped or mapped to intergenic positions.

2.4. Mapping of in Silico Generated Reads

To investigate whether mappers placed the mapped reads in the correct positions on the reference
genome, the alignment results for in silico generated Col-0 RNA-Seq reads were analyzed using
HISAT2, bowtie2/RSEM and STAR. All three mappers correctly positioned a high percentage (almost
99%) of the reads on the respective reference sequence (Table 5) for the primary alignments. Almost all
remaining reads were mapped to the correct gene, but to a different transcript. Furthermore, only
0.001 to 0.03% of the reads were not mapped against the reference sequence for all mappers. A small
number of reads mapped to intergenic regions for STAR and HISAT2 while for bowtie2/RSEM all
reads were mapped on known genes. This derives from the fact that the used mapper bowtie2 is a
splice unaware aligner that only maps against the transcriptome which was extracted from the genome
reference. For the secondary alignments of HISAT2 and STAR, which only constituted 3.2% (STAR) and
3.8% (HISAT2) of the total alignments, 41.5% (HISAT2) and 36.9% (STAR) of the reads were correctly
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aligned. The majority of the secondary alignments, 55% for HISAT2 and 59% for STAR, mapped
the reads to wrong positions, mostly to wrong (unrelated) or paralogous genes. For bowtie2/RSEM,
almost 43% of these reads were mapped multiple times. Nearly 96% of these reads were mapped to
the wrong gene.

Table 5. Mapping of the in silico-generated Col-0 transcriptome using HISAT2, RSEM and STAR.

HISAT2 in % RSEM in % STAR in %

Primary
Mapped on right transcript 57,981,570 98.7 58,072,536 98.9 58,000,379 98.8

Mapped on wrong transcript 689,541 1.2 658,699 1.1 668,909 1.1
Unmapped 18,022 0.031 773 0.001 19,526 0.033

Mapped not on known exon 42,875 0.073 0 0.0 43,194 0.1
total reads 58,732,008 100 58,732,008 100 58,732,008 100
Secondary

Mapped on right transcript 962,756 41.5 1,788,234 4.1 727,039 36.9
Mapped on wrong transcript 1,280,622 55.1 42,112,759 95.9 1,164,065 59.1

mapped on different gene 825,766 64.5 38,112,265 90.5 842,864 72.4
mapped on paralog gene 454,178 35.5 3,957,169 9.4 320,812 27.6

mapped on different isoform 678 0.1 43,325 0.1 389 0.0
Mapped not on exon 79,118 3.4 0 0.0 77,647 3.9

total reads 2,322,496 100 43,900,993 100 1,968,751 100

For a better overview, the alignments were split into primary and secondary alignments. If a read
maps multiple times against the reference, one mapping is defined as primary (underlying criteria
depend on the mapper), while the other mappings are classified as secondary alignments.

3. Discussion

RNA-Seq data from the Arabidopsis thaliana accessions Col-0 and N14 were mapped with five
alignment-based and two pseudo-alignment tools. For Col-0, high mappability of the 150 bp single-end
Illumina reads to the Col-0 reference genome or transcriptome was found for all seven alignment tools,
ranging from 95.9% (bwa) to 99.5% (STAR). A slightly smaller fraction of the reads obtained from
N14 was mapped to the same references, ranging from 92.4% to 98.1%. The high quality of the reference
sequences may contribute to the high fraction of mapped reads. For both accessions, bwa had the lowest
performance and STAR the highest, although it should be stressed that differences in mappability for
any sample between the mapping tools ranged only from 1% to 4%. Comparable performance of
different mapping tools has been found in previous studies using either simulated reads or RNA-Seq
reads obtained from various non-plant organisms [21–25]. On the other hand, another report showed
that seed-extended approaches used by STAR performed better than e.g., exon-first approaches, when
mapping reads from genetically polymorphic species [26].

Considering the two accessions separately, the high number of mapped reads for Col-0 is in
agreement with the fact that the Col-0 reference sequences were used for mapping. However, a small
number of reads was not mapped, potentially due to sequencing errors or to polymorphisms between
the publicly available genome sequence and the genome of the Col-0 population used in our experiments.
In this context it has to be kept in mind that the Col-0 populations used in various laboratories around
the world have been separated for many generations and have very likely accumulated different
mutations over time [27]. The generally lower percentage of mapped reads for N14 can be explained
by natural variation between the accessions [28,29].

In addition to the percentage of mapped reads, the correctness of the mapping of reads to the
reference genome or transcriptome is also of crucial importance to obtain reliable biological information
from an RNA-Seq experiment. We found that HISAT2 and STAR had a high overlap of reads mapping
to the same position in the reference sequence. The differences in read positions between bowtie2/RSEM
and HISAT2/STAR originated to a large part from the soft-clipping, mostly of the first base of the
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reads, by both aligners. Soft-clipping can be turned off in both tools and that largely eliminates the
observed differences. However, STAR has a higher tolerance for more soft-clipped and mismatched
bases compared to HISAT2, which leads to a higher mapping rate for STAR and more unmapped reads
for HISAT2 [24]. Also, in our analysis, STAR showed the highest fraction of mapped reads for both
accessions among all compared mapping tools.

Our analysis of an in silico generated RNA-Seq data set also indicated that differences in the
mapping quality between the three mappers are most likely due to their different ability to deal with
mismatches. About 99% of the primary aligned reads were correctly positioned and the mappers
showed the same performance when synthetic reads without any mismatches between read and
reference sequences were used. This indicates that mapper performance may also depend on other
factors, such as the complexity of the genome, read length and read quality [22]. The high fraction
of correctly mapped reads may in part be due to the comparatively small genome of Arabidopsis
with roughly 130 megabases and a low content of repetitive DNA sequences [30,31]. Regarding the
secondary alignments, RSEM showed a high number of multimapped reads. The mapping for RSEM
was performed with the mapper bowtie2 which searches for distinct, valid alignments for each read.
As long as no upper limit is defined, bowtie2 will continue to look for all alignments that are as good or
better for one read [32]. If the same read maps multiple times with the same quality string, the primary
alignment is chosen randomly. The quantification algorithm of RSEM also depends on a high number
of multi-mapped reads.

From a biological point of view, the quantification of gene expression is the most important part
of an RNA-Seq experiment as researchers are mostly interested in the identification of differentially
expressed genes, either between conditions or between genotypes. Correct mapping, as discussed
above, is important to identify the correct genes as being differentially expressed. However, determining
the correct read count numbers is of at least equal importance [33]. We have addressed this issue on
two levels by comparing raw counts for the different genes or transcripts among the mapping tools and
by comparing differentially expressed genes between plants grown under ambient and cold conditions
identified by the different tools.

To investigate the results obtained by the different tools on the basis of raw counts, raw count
numbers for each gene/transcript of a single sample from Col-0 and N14 each, generated by the
different mappers, were plotted against each other. In general, high similarities among the mappers
were observed, indicated by correlation coefficients close to 1. Similarly, when the raw counts were
compared between mappers for all 36 biological samples generated in this study, Rv values close to
1 indicated a good correspondence in the expression levels computed by all seven software tools.

To analyse the effects of the mapping tools on the DGE analysis, we compared expression levels of
control plants grown at ambient temperature with expression levels of plants that were exposed to 4 ◦C
for three days (cold acclimation; compare [17] for a detailed description). Significantly differentially
expressed genes were in all cases identified using the DESeq2 tool. The results showed that the raw
counts generated by the different mappers resulted in clear differences in the number of significantly
differentially expressed genes, with an overlap between mappers from 98.0% between kallisto and
salmon in Col-0, and 92.1% between bwa and STAR in N14. The small sample size (three samples
per condition and accession) may of course contribute to the uncertainty in identifying differentially
expressed genes unambiguously [34]. However, this sample size is currently the standard in biological
experiments and therefore our results give a realistic impression of what the user can expect from the
performance of these tools.

Finally, the results from DESeq2 and from the DGE-pipeline of CLC were compared.
Interestingly, CLC identified about 50% more differentially expressed genes than DESeq2. Since the
same alignments for downstream analysis were used in both cases, this difference cannot originate
from differences in the mapping and raw count generation. Therefore, the normalization (to one
million counts) as well as the statistical tests used by CLC must have led to these differences. In a
transcriptome analysis of mouse tissues, different DGE tools such as DESeq2 and CLC were compared,
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resulting in a better performance for DESeq2 compared to both CLC approaches [35]. The results were
experimentally validated by qRT-PCR for 18 differentially expressed genes. For the CLC Baggerly
approach large differences to qRT-PCR results were shown. The CLC EDGE approach yielded results
that were more similar to the expression changes found by qRT-PCR and those detected by DESeq2.
However, in our analysis, the CLC approaches yielded results that were largely different from those
obtained by DESeq2.

4. Materials and Methods

4.1. Experimental Dataset

RNA samples of the Arabidopsis thaliana accessions Col-0 and N14 were used for RNA-Seq as
described in detail recently [17]. Plant material was collected from three independent biological
experiments resulting in a total of 36 samples. Samples were taken after 28 days of growth at 20 ◦C,
after an additional three days of cold acclimation at 4 ◦C, after a subsequent seven day period at
20 ◦C and after a final three days at 4 ◦C. Additionally, samples from developmental control plants
were taken after 35 days at 20 ◦C and a subsequent three days of cold acclimation at 4 ◦C (Details
of all samples are given in Table A3). Library preparation and sequencing were performed by the
Max-Planck Genome Centre Cologne, Germany (https://mpgc.mpipz.mpg.de/home/). Libraries were
constructed with NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs)
including polyA enrichment. Illumina HiSeq 3000 technology was used for sequencing and yielded
150 base pair (bp) long single end reads. RNA-Seq raw counts are available at GEO [36] under the
accession number GSE112225. A detailed biological analysis of the RNA-Seq data has been presented
recently [17].

4.2. Mapping

Quality control of the raw reads and adapter trimming have been described previously [17].
The genomic FASTA sequence, cDNA and GTF annotation files of Arabidopsis thaliana Col-0 were
downloaded from EnsemblPlants [37], version TAIR10, release 31 [38]. For read mapping bwa, CLC
Genomics Workbench, HISAT2, kallisto, RSEM, salmon and STAR were used, employing pre-defined
default parameters as far as possible (Table 6). Bwa aln was used for higher sensitivity and resulting
sai files were converted into alignment files with bwa sampe. For kallisto and salmon it was necessary
to set parameters for single-end data, define the estimated average read length as well as its estimated
standard deviation. As index mode for salmon, –type quasi and a stranded library type were chosen.
For expression quantification kallisto and salmon were run in quant mode. For STAR, 1-pass mode was
used and additional parameters were defined to sort the alignments, to limit multi-mapping and to
keep unmapped reads in the alignments as well as generating the gene count output. HISAT2 was run
with default parameters, for index generation annotation was included (Table 6). All tools are freely
available except the CLC Genomics Workbench which is a commercial tool that requires purchase of a
license. For the mappings without annotation, HISAT2 was run with default parameters and without
inserting the annotation into index generation. STAR was run in the 2-pass mode. To determine the
reads mapping on exons, featureCounts v2.0.0 [39] (–primary -T 10 -f -O -F GTF -t exon -g gene_id) was
used. Expression values were natively generated by five of the seven mappers. For bwa, samtools
idxstat and for HISAT2, featureCounts v. 2.0.0 [39] were used to determine raw counts. For mapping
statistics and further analysis of the alignment files, samtools v1.3 [40] was employed.

https://mpgc.mpipz.mpg.de/home/
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Table 6. Overview of the seven mappers used in this study.

Mapper Version Parameters Reference

bwa aln 0.7.13 Default Li and Durbin (2009) [11]
CLC 9 Default Qiagen, Hilden, Germany [41]

kallisto quant 0.42.5 –single, -l 150 and -s 25 Bray et al. (2016) [16]
HISAT2 2.1.0 Default Kim et al. (2019) [19]

RSEM 1.2.30 –bowtie2, –fragment-length-mean 150 &
–fragment-length-sd 25 Li and Dewey (2011) [14]

salmon quant 0.6.0 –type quasi, -k 31
–fldMean 150, –fldSD 25 and -l SF Patro et al. (2017) [15]

STAR 2.5.2a

–outSAMtype BAM
SortedByCoordinate

–outFilterMultimapNmax 20
–alignSJDBoverhangMin 8

–outSAMunmapped Within
–quantMode TranscriptomeSAM

GeneCounts

Dobin et al. (2012) [12]

4.3. Comparison Based on Expression Values

For the comparison of the expression values (raw counts), samples A for Col-0 and B for N14
(grown under 20 ◦C control conditions; see Table A3) were chosen as an example. Raw counts
were log2(counts + 1) transformed and results visualized with the R-package ggplot2 [42]. For an
overall comparison the Rv coefficient [43] based on correlation matrices of the unfiltered raw count
tables of samples A and B over all mappers was calculated using the R-package FactoMineR [44].
Spearman correlation was used for correlation analysis and the significance of the results was tested as
described [45]. The results were visualized employing the R-package corrplot [46].

4.4. Differential Gene Expression

Prior to the differential gene expression (DGE) analysis, estimated read counts provided by RSEM,
kallisto and salmon were rounded to obtain integer values. The resulting count tables for all mappers
were filtered to discard lowly expressed genes by keeping only those with a sum greater than five
counts per gene for all 36 samples. The DGE analysis was performed using the R-Package DESeq2 [18]
including the normalization step. For CLC, alignment files were extracted and processed in the same
way as for the other six mappers. Data was loaded with the function DESeqDataSetFromMatrix.
Additional parameters for DGE were used as follows: test = “Wald”, fitType=”local” and including a
batch effect correction in the design formula. For determining differentially expressed genes, a threshold
p-value < 0.1 after false-discovery rate correction [47] and an absolute log2 fold change > 1 were used.
Results of the comparison control vs. cold acclimation (Table A3) for Col-0 (samples A, M, Y vs. C, O,
AA) and N14 (samples B, N, Z vs. D, P, AB) were investigated in detail.

Additionally, the built-in CLC workbench plugin for DGE was tested based on the mappings
generated by CLC. Data was normalized “By totals” to a value of 1,000,000. Normalized data
was used for determination of differentially expressed genes using the “Empirical analysis of
DGE” [19] and “Baggerly’s test on proportions” [20] with multiple testing correction of the generated
p-values [47]. Next to the control vs. cold acclimation comparisons described above, the cold acclimated
developmental controls (samples I, U, AG for Col-0 and J, V, AH for N14) were compared to the second
cold stress treatment (samples K, W, AI for Col-0 and L, X, AJ for N14; Table 1). The numbers of
significantly differentially expressed genes (FDR p < 0.05, abs(log2 fold change) > 1) were compared
with the results obtained by DESeq2 based on the STAR alignments.
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4.5. Mapping of in Silico Generated Reads

To investigate the mapping quality of the tools, reads were generated in silico using the A.
thaliana transcriptome (TAIR10) and applying a sliding window approach (window size: 150 bp,
shift: 1 bp) resulting in approximately 58 × 106 in silico reads. Reads were mapped with HISAT2
(using the same parameters as above), RSEM and STAR (without –outFilterMultimapNmax and
–alignSJDBoverhangMin). For identification, the in silico reads contained the transcript name and the
position of the read on the transcript as identifiers. Additionally, the GTF annotation file was reduced
to the exon entries and the overlap with the resulting alignment files of HISAT2, RSEM and STAR was
determined with bedtools [48]. Furthermore, transcript IDs were compared between alignment entry
and GTF entry to identify correctly mapped reads.

5. Conclusions

All tested mappers provided highly comparable results for mapping Illumina reads from
the genetically distinct Arabidopsis accessions Col-0 and N14 to the Col-0 reference genome or
transcriptome. The same was true for the determination of DGE when DESeq2 was used for processing.
We conclude that all seven mappers can be equally used for RNA-Seq data analysis in Arabidopsis,
even with different accessions. The only caveat is that using the CLC software for the identification
of DGE yielded strongly varying results. Further research will be needed to establish whether read
mapping to more complex genomes with larger non-coding regions or higher ploidy levels would
pose additional challenges that may reveal larger differences between the mappers.
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Appendix A

Table A1. Number of reads for raw and pre-processed data.

Sample Number of Reads Raw Data Number of Reads Pre-Processed Data

A 26,551,078 25,965,205
B 24,160,253 23,723,408
C 24,987,211 24,631,398
D 24,679,891 24,314,564
E 32,902,966 32,265,838
F 25,343,870 24,962,434
G 25,633,391 25,255,295
H 24,767,056 24,276,316

http://mpgc.mpipz.mpg.de/home/
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Table A1. Cont.

Sample Number of Reads Raw Data Number of Reads Pre-Processed Data

I 22,434,138 22,074,152
J 27,102,013 26,738,311
K 29,909,220 29,473,355
L 30,039,895 29,625,213
M 25,373,173 25,045,811
N 27,401,911 27,059,316
O 32,172,339 31,758,225
P 26,713,325 26,326,809
Q 28,367,001 27,941,198
R 21,784,606 21,476,277
S 23,466,191 23,142,088
T 25,002,989 24,642,826
U 25,470,737 25,137,081
V 32,322,582 31,890,842
W 31,880,034 31,451,153
X 28,614,863 28,223,380
Y 25,396,753 24,312,026
Z 25,402,962 24,351,761

AA 21,934,477 21,095,112
AB 29,068,271 27,924,700
AC 28,363,133 27,205,327
AD 27,538,807 26,446,048
AE 21,048,979 20,198,121
AF 22,915,893 21,786,356
AG 26,195,089 25,161,103
AH 23,710,160 22,348,705
AI 25,915,840 24,936,936
AJ 27,904,776 26,835,785

Pre-processed raw data was filtered for a minimum read length of 80 base pairs and Illumina adapters
were removed.

Table A2. Number of mapped reads for each mapper and sample.

Sample bwa CLC HISAT2 kallisto RSEM salmon STAR

A 24,990,288 25,070,332 25,727,064 25,202,788 25,068,400 25,488,500 25,877,150
B 22,235,860 22,831,185 22,831,427 22,489,984 22,450,834 22,625,100 23,535,895
C 23,568,631 23,650,969 24,398,527 23,911,331 23,729,822 24,096,400 24,545,823
D 22,665,145 23,292,374 23,392,011 23,182,011 23,001,552 23,294,400 24,114,936
E 31,067,889 31,136,183 31,948,360 31,315,586 31,186,635 31,651,600 32,144,692
F 22,079,186 23,828,249 22,529,274 23,226,055 22,975,469 23,289,400 24,362,368
G 24,360,053 24,368,639 25,003,451 24,630,743 24,435,931 24,818,000 25,152,392
H 22,607,768 23,256,060 23,230,510 22,983,234 22,847,497 23,135,800 23,972,434
I 20,887,128 20,897,575 21,647,744 21,094,905 21,052,741 21,301,500 21,759,724
J 25,002,889 25,748,821 25,729,980 25,530,361 25,258,258 25,626,800 26,525,228
K 28,251,892 28,394,902 29,083,561 28,728,018 28,398,031 28,924,400 29,340,134
L 27,691,133 28,565,611 28,456,640 28,333,833 27,965,330 28,411,700 29,380,081
M 24,027,754 24,158,404 24,771,967 24,370,150 24,159,388 24,539,200 24,947,419
N 25,448,518 26,128,347 26,116,046 25,859,912 25,708,968 25,908,500 26,872,750
O 30,483,322 30,538,741 31,426,082 30,970,549 30,650,488 31,145,900 31,631,436
P 23,748,275 24,471,940 24,562,932 24,318,422 24,070,551 24,406,800 25,332,412
Q 26,863,089 26,968,681 27,679,891 27,157,401 26,977,076 27,405,000 27,843,106
R 19,700,000 20,245,101 20,218,359 19,970,836 19,918,383 20,052,800 20,826,196
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Table A2. Cont.

Sample bwa CLC HISAT2 kallisto RSEM salmon STAR

S 22,171,458 22,274,280 22,902,423 22,444,868 22,280,936 22,624,300 23,035,647
T 23,165,182 23,815,751 23,748,284 23,543,789 23,398,523 23,638,100 24,456,937
U 24,145,575 24,192,319 24,905,595 24,499,411 24,279,099 24,667,800 25,057,610
V 29,305,198 30,181,899 30,105,423 29,951,050 29,635,355 30,012,700 31,037,834
W 30,171,991 30,240,229 31,135,272 30,619,320 30,314,724 30,820,900 31,321,391
X 26,417,781 27,215,579 27,146,639 26,999,068 26,701,971 27,089,600 28,004,846
Y 23,467,493 23,523,457 24,062,637 23,713,957 23,548,791 23,915,800 24,211,437
Z 22,939,890 23,531,637 23,488,307 23,241,258 23,186,262 23,333,700 24,169,828

AA 20,347,062 20,333,841 20,891,798 20,594,460 20,425,031 20,742,500 21,011,777
AB 26,183,324 26,842,810 26,903,033 26,663,997 26,539,902 26,769,800 27,709,817
AC 26,065,885 26,102,795 26,890,847 26,358,644 26,235,209 26,562,400 27,054,414
AD 24,904,560 25,532,006 25,483,657 25,267,366 25,201,022 25,348,100 26,234,545
AE 19,055,414 19,320,692 19,842,597 19,566,392 19,295,597 19,670,300 19,967,391
AF 17,469,949 18,053,590 18,090,815 17,854,059 17,755,997 17,898,700 18,672,118
AG 24,163,365 24,161,812 24,876,952 24,468,971 24,283,108 24,682,500 25,047,179
AH 20,953,174 21,498,746 21,436,520 21,310,760 21,215,866 21,379,400 22,109,670
AI 23,823,058 23,916,429 24,617,944 24,223,766 23,973,245 24,383,700 24,792,766
AJ 25,023,005 25,804,958 25,767,495 25,481,098 25,325,866 25,563,800 26,594,060

Col-0 % 95.9 96.2 98.9 97.2 96.4 97.9 99.5
N14 % 92.4 95.2 94.9 94.2 93.6 94.6 98.1
Total % 94.1 95.7 96.9 95.7 95.0 96.3 98.8

Tools are sorted alphabetically by name. Total describes the fraction of mapped reads for both accessions
Col-0 and N14.

Table A3. Sample list with sample name, condition (Cond.) and accession (Acc.).

Experiment 1 Experiment 2 Experiment 3

Cond. Acc. Sample Cond. Acc. Sample Cond. Acc.

C28 Col-0 M C28 Col-0 Y C28 Col-0
C28 N14 N C28 N14 Z C28 N14

C28P3 Col-0 O C28P3 Col-0 AA C28P3 Col-0
C28P3 N14 P C28P3 N14 AB C28P3 N14

C35 Col-0 Q C35 Col-0 AC C35 Col-0
C35 N14 R C35 N14 AD C35 N14

C28P3L7 Col-0 S C28P3L7 Col-0 AE C28P3L7 Col-0
C28P3L7 N14 T C28P3L7 N14 AF C28P3L7 N14

C35P3 Col-0 U C35P3 Col-0 AG C35P3 Col-0
C35P3 N14 V C35P3 N14 AH C35P3 N14

C28P3L7T3 Col-0 W C28P3L7T3 Col-0 AI C28P3L7T3 Col-0
C28P3L7T3 N14 X C28P3L7T3 N14 AJ C28P3L7T3 N14

Samples were taken from three independent biological experiments. C28/C35: Control plants after 28 days
or 35 days of growth at 20 ◦C; C28P3/C35P3: plants after an additional 3 days of cold treatment at 4 ◦C; C28P3L7:
cold treated plants after a further 7 days at 20 ◦C; C28P3L7T3: plants after an additional 3 days at 4 ◦C.
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