Burkholderia cenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling.

Barbara Bellich¹, Ining A. Jou², Marco Caterino², Roberto Rizzo¹, Neil Ravenscroft³, Mustafa Fazli⁴, Tim Tolker-Nielsen⁴, John W. Brady^{2*}, Paola Cescutti^{1*}

¹ Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127 Trieste, Italy

² Department of Food Science, Cornell University, Ithaca, NY 14853, USA

³ Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

⁴ Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.

Figure S1. *Burkholderia cenocepacia* H111 biofilm developed on nutrient-yeast extract-glycerol agar plates.

Figure S2. GLC-MS analysis of the partially methylated alditol acetate mixture obtained after derivatisation of the Epol H111-INS: (a) Total Ion Chromatogram; (b) e.i. mass spectrum of peak 1 shown in (a) and attributed to 3-linked Glc; (c) e.i. mass spectrum of peak 2 shown in (a) and attributed to 3-linked Man; (d) e.i. mass spectrum of peak 3 shown in (a) and attributed to 3-linked Gal.

Figure S3. Expansion of the TOCSY anomeric region of Epol H111-INS recorded at 500 MHz and 50 °C. Crosspeaks have been labelled according to the corresponding residue (**A** to **D**, see Table 1).

Figure S4. Anomeric region of the NOESY plot of the Epol H111-INS showing NOE connectivities and vertical traces for α -Glc (C1) (left) and α -Man (D1) (right). Crosspeaks have been labelled according to the corresponding residue (A to D, see Table 1).

Figure S5. Probability density maps for α -D-Glc*p*-(1 \rightarrow 3) α -D-Gal*p* in vacuum (left 1 μ s) and in explicit solvent (right- 100 ns) at 300 K. Negative ϕ are neglected for readability as no point occurs in that region, in agreement with fully relaxed maps.

Figure S6. Probability density maps for α -D-Galp (1 \rightarrow 3)- α -D-Manp in vacuum (left 1 μ s) and in explicit solvent (right- 100 ns) at 300 K. Negative ϕ are neglected for readability as no point occurs in that region, in agreement with fully relaxed maps

Figure S7. Probability density maps for α -D-Manp-(1 \rightarrow 3)- α -D-Galp in vacuum (left 1 μ s) and in explicit solvent (right- 100 ns) at 300 K. Negative ϕ are neglected for readability as no point occurs in that region, in agreement with fully relaxed maps.

Figure S8. Interatomic distances for α -D-Gal*p*-(1 \rightarrow 3)- α -D-Glc*p*.

Figure S9. Interatomic distances for α -D-Glc*p*-(1 \rightarrow 3)- α -D-Gal*p*.

Figure S10. Interatomic distances for α -D-Gal*p*-(1 \rightarrow 3)- α -D-Man*p*.

Figure S11. Interatomic distances for α -D-Man*p*-(1 \rightarrow 3)- α -D-Gal*p*.