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Abstract: Metastasis being the main cause of breast cancer (BC) mortality represents the complex
and multistage process. The entrance of tumor cells into the blood vessels and the appearance of
circulating tumor cells (CTCs) seeding and colonizing distant tissues and organs are one of the key
stages in the metastatic cascade. Like the primary tumor, CTCs are extremely heterogeneous and
presented by clusters and individual cells which consist of phenotypically and genetically distinct
subpopulations. However, among this diversity, only a small number of CTCs is able to survive
in the bloodstream and to form metastases. The identification of the metastasis-initiating CTCs is
believed to be a critical issue in developing therapeutic strategies against metastatic disease. In this
review, we summarize the available literature addressing morphological, phenotypic and genetic
heterogeneity of CTCs and the molecular makeup of specific subpopulations associated with BC
metastasis. Special attention is paid to the need for in vitro and in vivo studies to confirm the
tumorigenic and metastatic potential of metastasis-associating CTCs. Finally, we consider treatment
approaches that could be effective to eradicate metastatic CTCs and to prevent metastasis.
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1. Introduction

Breast cancer (BC) is one of the most common types of cancer: it is diagnosed in about 2 million
people each year, causing 627,000 deaths annually [1]. The main causes of BC mortality are distant
metastases and tumor relapse, as well as the lack of effective treatment and drug resistance [2–4].

Metastasis represents a multi-stage process that includes invasion of tumor cells, intravasation
into blood vessels with the appearance of circulating tumor cells (CTCs), extravasation into tissues, and
formation of micro- and macrometastasis [5]. Cancers can metastasize at an early stage [6]; however,
metastasis is more typically observed in advanced cancer [7].

CTCs are heterogeneous and, apparently, not every subpopulation of cells is able to metastasize.
Due to the morphological, phenotypic, and genetic plasticity, CTCs adapt to changing environmental
conditions [8], modulate therapy efficacy, and demonstrate various ability to metastasize [9]. The study
of CTC heterogeneity and identification of metastatic cell types are necessary for the selection of
therapeutic strategies to prevent metastatic disease [10–12].

Epithelial–mesenchymal plasticity is one of the most important but not the only cause associated
with a metastatic phenotype of CTCs [13,14]. As a result of epithelial–mesenchymal transition
(EMT), primary tumor cells acquire motility, resistance to apoptosis, senescence, and immune
response, as well as drug insensitivity that, in general, increase cell viability in the bloodstream.
Nevertheless, the majority of CTCs die, and only some of them extravasate into other tissues,
undergo a mesenchymal–epithelial transition (MET), and form metastases [15–17]. For example,
recent studies described CTCs populations with a hybrid epithelial–mesenchymal phenotype (i.e.,
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with partial EMT) and high metastatic potential [18,19]. In addition to the EMT features, CTCs can also
exhibit stem-like characteristics, particularly self-renewal and multilineage differentiation ability [20].

There is still no highly effective therapy for metastatic BC. Therapy targeted directly against CTCs
seems to be promising. To date, various molecular markers of CTCs and their therapeutic targets
that can be used to prevent cancer progression are known [21]. In addition, different therapeutic
approaches for the elimination of CTCs have been proposed; however, none of them has been clinically
approved. The reason is that the molecular and biological characteristics of the primary tumor and
CTCs are not well understood. In our opinion, the main focus should be on the search for specific
populations of CTCs responsible for the development of metastasis and the study of their molecular
makeup. These cells could be the primary therapeutic target for preventing metastatic progression [22].
Recent advances in single-cell sequencing allow one to determine the population structure of CTCs
and identify metastasis-initiating cells [23–26], while in vitro and in vivo studies provide data on their
proliferative, apoptotic, invasive, and other phenotypes [27].

Nowadays, despite a large number of studies on CTC heterogeneity and their metastatic potential,
there are still no generally accepted and universal markers of CTCs prone to metastasis. In this review,
we systematized the data on metastatic CTCs in terms of their morphological, phenotypic, and genetic
heterogeneity in BC, as well as emphasized the importance of studying these cells in vitro and in vivo
and developing therapeutic approaches for their elimination to prevent metastasis.

2. CTC Heterogeneity and the Molecular Makeup of Metastatic Cells

CTCs are a small population of cells that enter the bloodstream from the primary tumor and
metastases. CTCs are found in most solid tumors, including breast, prostate, lung, bladder, gastric,
and other cancers. Several studies reported that CTCs can be observed in non-cancer volunteers [28,29];
however, its number is extremely rare and can be a false-positive rate of the used CTC detection methods.

Successful metastasis depends on the ability of CTCs to adapt, survive and induce neoangiogenesis
in the target tissues [8]. Only 2.5% of CTCs form micrometastases and 1% of micrometastases progress
to macrometastases [30,31]. The study of CTCs remains a technically challenging task due to the
extreme phenotypic heterogeneity and rarity of these cells in the bloodstream and therefore requires
the use of highly sensitive and specific methods [32]. Moreover, CTCs are not detected in most
of the patients, and when detected, the number of CTCs is usually low—< 5 cells per 7.5 mL [33].
Conclusions on CTC heterogeneity are mostly obtained from patients with the largest numbers of
CTCs, which probably have the most aggressive tumors [34].

Identification and isolation of CTCs in BC patients are usually based on the determination of
surface epithelial markers, particularly EpCAM and cytokeratins (CK8, CK18, and CK19), and the
exclusion of leukocytes by using CD45 [34–36]. N-cadherin, vimentin, Twist, Snail, Zeb, and other
markers are used for counting CTCs in the EMT state [5]. Such antibody-dependent CTC isolation can
be performed using MACS or FACS sorting, as well as CellSearch system and other similar devices.
CTCs can be also enriched using polycarbonate track-etched filters [37] and different microfluidic
technologies [38,39].

The existence of a large number of methods for CTC analysis indicates how heterogeneous
the population of these cells is and how important it is to understand their structure [40,41].
The main problem is the lack of a comprehensive analysis of CTC heterogeneity at the genetic,
phenotypic, and morphological levels in terms of identifying the characteristics associated with
metastatic progression [42].

2.1. Morphological Heterogeneity. Circulating Clusters

Along with individual CTCs, circulating tumor cell clusters (CTC clusters) that represent groups
or microemboli (spheroids) consisting of 2–50 cells can be also found in the blood of patients with
various malignant neoplasms [43,44].
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Similar to CTCs, clusters originating from the primary tumor can return to the original site or
enter other organs—potential metastatic sites. Clusters arising from metastases can also return to the
primary tumor, the original metastatic site or “self-seed” other tissues and organs [45].

The formation of CTC clusters is assumed to be related to the collective invasion of cohesive groups
of tumor cells, passive shedding of tumor clumps at the sites of disrupted endothelium or aggregation
of individual tumor cells in migration and circulation [44,46,47]. Clusters circulate in the bloodstream
due to their structural deformability [44]. The increased viability of CTC clusters in circulation is
probably related to the high production of autocrine pro-migration factors, matrix metalloproteinases,
and escape from the immunological surveillance. The metastatic potential of CTC clusters is 23 to 50
times higher as compared to individual CTCs [44]. Nevertheless, in chemotherapy-treated patients
with metastatic BC, mortality depends not on the presence of clusters but rather on the number of
individual CTCs [48].

CTC clusters appear to originate from oligoclonal groups of tumor cells [44], and their appearance
is associated with an increase in the number of mesenchymal CTCs [49]. It has been documented
that clusters are more frequent in patients with mesenchymal CTCs than in patients with epithelial
CTCs [49]. In breast CTC clusters, tumor cells are interconnected via the adhesion proteins: plakoglobin
and CD44 [44,47]. In squamous cell carcinomas, CTC clusters are enriched by another adhesive protein,
claudin 11 [50]. It is assumed that increased cell-cell junctions allow the clusters to intravasate and
maintain stem-like properties necessary for successful metastatic colonization of distant organs [47,51].
Indeed, knockdown of plakoglobin or CD44 abrogated CTC cluster formation and suppressed
metastasis [44,47]. Increased intercellular adhesion and metastatic potential of CTC clusters are also
related to the high expression of keratin 14 (K14). Suppression of K14 resulted in the abrogation of
distant metastasis, probably through the disruption of the activity of numerous genes, including TNC
(tenascin C), JAG1 (Jagged 1), and EREG (epiregulin) [46]. In the same study, the authors traced
CTC clusters at all of the stages of metastasis: collective invasion, local dissemination, intravasation,
circulation, and formation of micrometastases, as well as proved that polyclonal dissemination
of CTC clusters is a specific mechanism of BC metastasis (more than 90% of all metastases) [46].
In addition to above-mentioned molecules, CTC clusters were shown to overexpress the transcription
factor XBP1, protein disulfide isomerase AGR2, epidermal growth factor receptor HER3, inhibitor of
matrix metalloproteinases TIMP-1, plasminogen activator SERPINE1/PAI-1, and antiapoptotic factor
BCL2 [44,49,52,53].

In contrast, transcripts encoding classical CTC markers such as keratins, mucin 1 (MUC1),
EpCAM, and E-cadherin are underexpressed in CTC clusters. Probably, it indicates a hybrid
epithelial–mesenchymal phenotype of the clusters [53]. This EMT state was showed to be associated
with poor prognosis in BC patients [18,54].

The DNA methylation landscape of CTC clusters also differs from that in individual CTCs.
In particular, clustered cells show hypomethylation of the OCT4, NANOG, SOX2, and SIN3A genes
involved in the regulation of stemness and proliferation, as well as hypermethylation of polycomb target
genes implicated in chromatin remodeling and inhibition of the expression of transcripts responsible
for cell differentiation [51].

CTC clusters may contain platelets and immune cells. Such cooperation enhances the viability of
tumor cells in the bloodstream [45]. Neutrophils enhance the metastatic potential of tumor cells through
overexpression of cell cycle and DNA replication genes. Patients with at least one neutrophil-containing
CTC cluster found per 7.5 mL of blood showed significantly worse progression-free survival compared
to patients with five or more individual CTCs per the same blood volume [55].

2.2. Phenotypic Heterogeneity

CTCs may differ in the ability to proliferate and undergo apoptosis and be heterogeneous in the
signature profile of PAM50. CTCs are often triple-negative [56] and negative for Ki-67, which makes
them resistant to chemotherapy [57,58]. The apoptotic index (Ki-67−/M30+) of CTCs increases during
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clinical dormancy, while the proliferation index (Ki-67+/M30−) increases on relapse [59]. Expression of
the genes involved in cell proliferation (MYC, ATF3, TERT, RAC1, FOXA1, RRM1, CCNB1, BIRC5,
and Ki-67) is decreased in CTCs as compared to the primary breast tumor. Probably, this indicates
a non-proliferative (dormant) state of CTCs in the bloodstream [60,61]. Cells in this state are believed
to have a similar tumorigenic potential, although they demonstrate differences in cellular plasticity,
invasion, and metastatic potential [62].

The number of CTCs changes during surgical and therapeutic interventions [20,63–65].
Significant changes in the number of stem- and EMT-like CTC populations were observed in BC patients
during neoadjuvant chemotherapy [64]. Minor surgical injury (e.g., biopsy) was found to lead to an
increase in CTCs without the signs of EMT and stemness (EpCAM+CD45−CD44−CD24−N-cadherin−)
and stem-like CTCs (EpCAM+CD45−CD44+CD24−N-cadherin−) [20]. Moreover, a significant
transcriptional heterogeneity, mainly of the genes encoding EpCAM, HER2/neu, vimentin, and NANOG
proteins, is observed in CTCs after surgery. For instance, it has been established that EpCAM is
expressed in most of the CTCs, while HER2/neu, vimentin, and NANOG are detected only in some
cells [65]. Single-cell sequencing confirmed transcriptional heterogeneity of CTCs in metastatic BC and
revealed MUC16 and TMPRSS4 genes, the expression of which may be associated with the formation
of metastases [66].

EMT is triggered in response to pleiotropic signaling molecules that induce the expression
of specific transcription factors (Snail1, Slug, Zeb1/2, Twist 1/2, etc.) and microRNAs (miR200
family) together with epigenetic and post-translational changes. All this ultimately leads to the loss
of epithelial markers (E-cadherin, EpCAM, etc.), expression of mesenchymal genes (CDH2, VIM,
etc.), and appearance phenotypic and structural changes associated with increased cell motility and
invasiveness [8,67,68]. Increased invasiveness promotes intravasation of tumor cells and ensures
their survival in circulation [5,69]. Furthermore, EMT-induced phenotypic changes are associated
with acquired stemness, resistance to therapy, and immunosuppression [70]. The reverse process
of the EMT, mesenchymal–epithelial transition (MET), leads to a loss of the ability to migrate and
restore proliferative and epithelial characteristics necessary for metastatic colonization of distant
organs [71]. In recent years, the majority of studies indicate that the phenotype of tumor cells can be
“fixed” at the intermediate stages, where the EMT transition is partially accomplished. For this reason,
EMT is considered as a continuum in which cells exhibit epithelial, intermediate, and mesenchymal
phenotypes [72–75].

EMT markers are usually found in CTCs of the patients with metastatic BC [76].
Moreover, in ER+/PR+ BC, CTCs predominantly show the epithelial phenotype, whereas patients with
HER2+ and triple-negative cancers have mesenchymal CTCs. The number of mesenchymal CTCs
increases with the BC progression in response to the treatment [49].

It is clear now that EMT is associated with the increased metastatic potential of CTCs.
Upregulation of the genes associated with metastasis (NPTN, S100A4, and S100A9) and EMT (VIM,
TGFβ1, ZEB2, FOXC1, and CXCR4) has been found in CTCs of BC patients and is associated with an
unfavorable prognosis [61]. Another study assumed that FOXC1 can contribute to the EMT in CTCs
and, as a consequence, to an increase in their metastatic potential [49]. In EpCAM-negative CTCs,
HER2+EGFR+HPSE+Notch1+ population was identified with the highest potential to metastasize to
the brain and lungs [77].

Cancer stem cells present a rare population of tumor cells, which, due to the self-renewal and
multilineage differentiation ability, are responsible for tumor initiation and maintenance, and considered
a source of metastases [68]. The identification of the stem-like CTCs is based on the assessment of the
CD44, ALDH1, and CD133 markers or determination of the associated transcripts [78,79]. As mentioned
above, ЕМТand stemness are closely related to each other. In addition to the acquisition of the migratory
and invasive phenotypes, EMT cells express CD44, an antigen characteristic of BC stem cells [80].
High CTC plasticity in terms of EMT and stemness is associated with the poor prognosis and high
aggressiveness of BC [81]. The presence of CTCs with a stem-like phenotype correlates with the tumor



Int. J. Mol. Sci. 2020, 21, 1696 5 of 16

stage [82] and therapy resistance [76]. CD44+CD24−ALDH1+ CTCs show an increased tumorigenic
potential [78], while co-expression of EpCAM, CD44, CD47, and MET is a characteristic of the CTC
population with the high metastatic ability [83].

2.3. Genetic Heterogeneity

Advances in microarray technology and massively parallel sequencing, including single-cell
sequencing, have shown that CTCs, like primary tumor cells, exhibit significant genetic
heterogeneity [84–86]. However, there is scarce information regarding specific genetic alterations that
could be associated with the metastatic potential of CTCs, particularly with an increased ability to
migrate, intravasate, change energy metabolism, interact with platelets and immune blood cells, and be
resistant to therapy [60,87,88].

Currently available data indicate genetic heterogeneity of the CTCs in the same patient, as well
as differences in the mutational landscape between the CTCs and the primary tumor/metastases.
These findings indicate that only part of the primary tumor cells has the ability of invasion/intravasation
and/or a large percentage of CTCs die in the circulation.

Targeted sequencing of CTCs and primary tumors showed concordance of PIK3CA gene mutations
in only 13.73% of the cases [89]. However, the overlapping between CTCs and the primary tumor may
depend, among other factors, on tumor heterogeneity. For example, in some cases, the concordance
reaches 85% [90].

Similar to the primary tumor, mutational landscape of the CTCs is heterogeneous: Variability has
been reported for mutations in the genes PIK3CA, ESR1, and KRAS. Interestingly, some ESR1 and KRAS
mutations were present in certain CTCs but were absent in the primary tumor [86]. Numerous DNA
copy number aberrations, which are typical for the triple-negative BC, were found in CTCs. These
aberrations included amplified chromosome regions characteristic of metastatic BC: 3q, 6p21.2 (PIM1),
8q22.1 (CCNE2), 8q24.21 (MYC), 11q13.3 (CCND1), 19p13.2 (NOTCH3), 20q13.2 (AURKA), as well
as 5q12-13 and 16q deletions [91–93]. Moreover, amplification of 8q24.21, as well as chromosome
9q in CTCs, was found to be a clonally selected event for the initiation of brain metastasis in BC.
It turned out that overexpression of semaphorin-4D (9q) promoted CTCs transmigration through the
blood-brain barrier whereas MYC (8q24.21) facilitated the adaptation of tumor cells to the activated
brain microenvironment via upregulation of GPX1 enzyme [94].

3. In Vitro and in Vivo Study of the CTC Phenotype

To date, CTCs have been identified in many malignant neoplasms. However, their biological
characteristics were described mainly using flow cytometry, sequencing, FISH and PCR analysis,
spectroscopic technique (SERS), etc. [95,96]. Nevertheless, in vitro and in vivo models can be also used
to study the CTC phenotype.

An in vitro study can be useful for the understanding of the proliferative and apoptotic potential
of CTCs, their migration and invasion ability, etc. In vivo models can be used to reveal the tumorigenic
and metastatic phenotype of various CTC populations. The main difficulty lies in the fact that CTCs in
the peripheral blood are represented by a low number of cells, and the technology of CTC transfer to
in vitro and in vivo models is laborious [97]. Nonetheless, the development of cell lines from CTCs is
still possible. Zhang et al. have established primary cultures from the CTCs isolated from the blood of
patients with advanced BC [77]. Subsequent studies generated CTC-derived cell lines from patients
with other cancers [98–102]. However, in cell cultures, the availability of oxygen, nutrients, metabolites,
and signaling molecules is not limited and thus does not reflect the true picture of tumor growth in
a living organism, where interactions not only between the tumor cells but also between the tumor and
the surrounding extracellular matrix, as well as stromal and immune cells, play an important role [103].

Tumor spheroids (or tumoroids) are three-dimensional models consisting of tumor cells only or
their combination with other types of cells. They simulate intercellular interactions and cell contacts
with the environment [104]. Spheroids present a convenient model since they imitate the in vivo
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characteristics of tumor cells such as growth kinetics, cell heterogeneity, and signaling pathway
activity. Spheroids are usually obtained either using scaffolds (matrix-on top, matrix embedded,
matrix-encapsulation, spinner flasks, micropatterned plates, ultra-low attachment plates) or without
them (hanging drop, magnetic levitation, and magnetic 3D printing) [105]. The first three-dimensional
model was obtained by Zhang et al. from CTCs of a patient with lung cancer, and contained fibroblasts
and extracellular matrix proteins imitating tumor microenvironment [106].

Organoids are another alternative for obtaining the three-dimensional model of cell cultures.
They present structures formed from tissue cells or embryonic/pluripotent stem cells [107]. In general,
organoids are obtained in a relatively short time and easily reproduced and stored. They are biologically
stable, suitable for screening analyzes, and can be subjected to genetic manipulation [108]. The first
organoid lines were obtained from the biopsy and CTCs of prostate cancer patients [109].

Despite advantages, 3D models have certain limitations: low uniformity of the spheroids’
size, low efficiency and repeatability, short life span, and work complexity compared to 2D
systems. Another problem of using 3D models is the need to introduce components of the tumor
microenvironment, mainly stromal and immune cells.

Based on the concept of spheroids and organoids, CTC-derived explant (CDX) models were
developed. These models were successfully used for the assessment of tumorigenicity of CTCs isolated
from patients with small-cell lung cancer and melanoma [110,111]. However, the role of the immune
system is not considered in such models due to the use of immunodeficient mice.

Thus, in vitro and in vivo models of CTCs can be an effective tool in understanding the mechanisms
of metastasis in general and revealing the metastatic potential of specific CTC subpopulations, as well as
the development of new methods for the prevention of metastatic disease. However, the unpredictable
amount of CTCs in the blood of cancer patients is the main factor limiting the widespread use of
such models.

4. Therapeutic Targeting of Metastatic CTCs

Metastasis remains the leading cause of cancer mortality and is still difficult to treat [112].
The primary cause of unsuccessful anti-metastatic therapy is the significant genetic and phenotypic
differences between metastases and the primary tumor. On the one hand, this is due to the independent
clonal evolution of metastatic cells, and, on the other, the heterogeneity of CTCs forming secondary
tumor foci. In other words, only part of the primary tumor cells enters the bloodstream, with most
of the cells dying in the circulation. The remaining CTCs, which reflect the genetic landscape of the
primary tumor to a lesser extent, are potentially capable of metastasis formation [15] (Figure 1).

Assessment of metastatic CTCs can be used to predict the probability of metastasis and also for
taking necessary diagnostic and therapeutic measures. In addition, the development of novel treatment
strategies or drugs based on a molecular portrait of metastatic CTCs seems promising. This would
enable the elimination of such tumor cells not so much in the circulation as in the primary site thereby
preventing their entry into the bloodstream. To date, there are no antitumor treatment options based
on targeting of the metastatic seeds. Nevertheless, various therapeutic methods, which were initially
targeted at eliminating the common pool of CTCs but can also be effective against metastasis-initiating
cells, have been proposed.
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Figure 1. Metastatic circulating tumor cells (CTCs). Most tumor cells entering the circulation die
and only part of them survives and is able to extravasate and form micro- and macrometastases.
Such cells can be both individual and clustered. Their increased surviving and metastasis-initiating
ability is probably related to the expression of specific molecules involved mainly in EMT and
stemness maintenance.

4.1. Chemo- and Targeted Therapy Based on Molecular Characteristics of CTCs

It has been proven that anti-HER2 therapy of BC patients with HER2-positive CTCs significantly
improves survival [113]. Gefitinib (an anti-EGFR drug) was shown to be highly effective in advanced BC
patients with CTCs expressing EGFR [114]. A recent study proposed a multiplex immunofluorescence
panel of markers (Top1, Top2, Ki67, RAD51, ABCG2, and γH2AX) combined with TUNEL apoptosis
detection, which is focused on the CTCs and designed to predict the response to therapy. The same
work has demonstrated that treatment with etirinotecan improves the overall survival of BC patients
with low expression of Top1 in CTCs [115].

The entrance of tumor cells to the bloodstream and, hypothetically, CTCs themselves can be
targeted by “migrastatics” (from Latin ‘migrare’ and Greek ‘statikos’). This new class of drugs has
been proposed to suppress the invasion of cancer cells and, consequently, their ability to metastasize.
The most promising agents are multikinase inhibitors targeting either ROCK/MRCK or ROCK/PKA/PKB
kinases of the AGC family [116].

Nowadays, dozens of clinical trials evaluating CTCs for prediction of the effect of therapy in
patients with different cancers and the effectiveness of various drugs targeting these cells are currently
undergoing. For instance, in a multicenter randomized trial (NCT01619111), an analysis of the
effectiveness of lapatinib (an anti-HER2/EGFR drug) is performed in metastatic, initially HER2-negative
BC patients with HER2-positive CTCs.

4.2. Impairment of CTC Adhesion to Hematopoietic Cells and Platelets

Drugs targeting the adhesion molecules can be used to disrupt the interaction between CTCs
and hematopoietic cells. Inhibition of VCAM-1 and ICAM-1 was shown to decrease CTC viability,
extravasation, and, as a consequence, their metastatic potential [117]. Disruption of the adhesion
between CTCs and platelets using anticoagulants (TFPI, heparin, fucosylated chondroitin sulfate,



Int. J. Mol. Sci. 2020, 21, 1696 8 of 16

etc.) enhances the immune-mediated clearance of CTCs, mainly through natural killer cells [118],
and results in a more than 80% decrease in metastasis [119,120].

4.3. Elimination of CTCs

Advances in the field of nano- and microfluidic technologies triggered the development of
devices for CTC elimination and their targeting in vivo. They can be broadly divided into invasive
and non-invasive devices. The first ones include various vascular devices that allow continuous
screening of CTCs and/or their elimination [121,122]. For instance, a vascular microtube device coated
with halloysite and liposomes and containing doxorubicin, ethylene glycol, and E-selectin has been
proposed. The use of this device in vitro led to the internalization of liposomes by CTCs and their
killing [123]. In another study, a novel biomimetic technique with immobilized E-selectin and apoptosis
inducer (TRAIL) has been developed. The use of this device led to the activation of apoptosis in
30% of CTCs after 1 h of treatment [124]. The second class is represented by non-invasive devices
(modules) for blood filtering and CTC elimination. An example is immunomagnetic separation
devices with antibody-conjugated nanoparticles to CTC markers [125–127]. Non-invasive experimental
devices also include photoacoustic flow cytometry, which is based on CTC isolation using a complex of
nanoparticles and antibodies and their destruction by high temperature generated by photons [128–130].
Photodynamic therapy allows selective elimination of CTCs after blood irradiation with a blue laser.
The combination of green fluorescent protein (GFP) and photosensitizers induces selective elimination
of GFP-expressing CTCs without affecting normal cells [131]. The spaser nanolaser can be used as
an optical probe; after its release in the body, it adheres to the CTCs and breaks them into parts [132].
Despite the obvious advantages of these devices, they still have several physiological and anatomical
limitations, for instance, susceptibility to infections and thrombosis in the case of invasive devices.
In addition, all these devices should be applied continuously because CTCs are supposed to be
constantly released from the primary tumor and present in circulation for a short time.

Therapeutic approaches for targeting of CTCs can be much more. For example, Na+/K+ ATPase
inhibitors were recently showed to dissociate CTC clusters into single cells and suppress metastasis [51].
However, none of them have been approved for cancer therapy. Besides the serious limitations
mentioned above, the main obstacle that limits the translation of these therapeutic methods is the
significant morphological, phenotypic, and genetic heterogeneity of CTCs. One of the potential
strategies can be the identification of metastasis-initiating CTCs and their molecular features based on
which is possible to optimize the chemotherapy regimen and/or develop new targeted drugs.

5. Conclusions

Currently, a number of clinical studies are in progress to use CTCs in different fields of BC
management: early diagnosis (including identification of subclinical disease), selection of therapy
regimen, evaluation of therapy efficacy, treatment monitoring, and prognosis evaluation. The potential
direction in the clinical research of CTCs could be the identification of the metastasis-initiating CTCs
and their targeted elimination with the goal of the prevention of metastatic progression. According to
current findings, metastatic CTCs in BC have the HER2+EGFR+HPSE+Notch1+ phenotype, co-express
surface markers EpCAM, CD44, CD47, MET and are characterized by overexpression of the molecules
associated with metastasis in general: TMPRSS4, MUC16, S100A4, S100A9, and NPTN. CTC clusters
that have more pronounced metastatic potential than individual CTCs exhibit altered activity of the
molecules associated with increased cell-cell junctions (plakoglobin and K14), partial EMT (MUC1,
EpCAM, and CDH1), and stemness (CD44) and are characterized by high viability due to cooperation
with immune cells and platelets. Besides the elimination of CTCs, blocking metastatic progression
could be more effective in the case of killing primary cancer cells that are a source of metastasis-initiating
CTCs. As suggested by Klotz and colleagues [94], targeting of SEMA4D and GPX1 in primary tumors
can be a potential therapeutic approach for the abrogating ability of CTCs to colonize the brain and for
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preventing brain metastasis in BC patients. This therapy would be an innovative strategy to prevent
metastasis at an early stage and even before the tumor is clinically diagnosed.
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