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Abstract: This work reports the synthesis of new layered double hydroxide (LDH) composites
using sewage-based ZnCl2-activated carbon (AC) intercalated with MgFe (AC-MgFe-LDH) and an
evaluation of their adsorptive performance for phenol removal from water. The effect of the AC
loading on the final properties of synthesized composites was investigated via various characterization
techniques. The results showed efficient decoration at 0.1–0.25 g AC loading within the layers of
AC–MgFe composites LDH, which was reflected in the higher surface area (233.75 m2/g) and surface
functionalities (OH, NO3, C-O-C, and MMO) yielding a significant improvement of the phenol removal
efficiency. However, at higher contents, AC loading led to the breakage of the LDH structure and
agglomeration, as indicated by the deterioration in the textural and structural properties. The isotherm
and kinetic data were well fitted by the Langmuir and pseudo-second-order model, respectively, with
a maximum obtained monolayer adsorption capacity of 138.69 mg/g. The thermodynamics results
demonstrated that phenol adsorption is an endothermic process. The sorption mechanism of phenol
molecules on the AC–MgFe composite was governed by chemical bonding with OH, C=O, and MMO
groups and pore diffusion via π–π interactions. Superior phenol removal with excellent recyclability
up to five cycles of the new AC–MgFe composite suggested its use as a potential adsorbent for
effective phenol removal from water and wastewater streams.

Keywords: sludge-activated carbon; MgFe layered double hydroxide; nanocomposite materials;
phenol aqueous uptake; mechanistic studies; reusability performance

1. Introduction

During the last two decades, rapid industrial development has induced significant production
of organic waste, causing severe water pollution and a negative impact on the environment [1].
Among organic contaminants, phenol is considered a highly hazardous pollutant due to its serious
harm on living organisms even at moderate exposure (low concentration) [2]. According to the US
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environmental protection agency, the maximum permissible limit of phenol in wastewater and water
supplies is 0.1 mg/L and 1 µg/L. Phenol-contaminated wastewater is a product of various industry
processes, including polymer, drugs, dyes, petrochemical, and pesticide industries [3]. Phenol is a
potential carcinogen, with its degradation resulting in carcinogenic and toxic byproducts [4]. Phenol
causes damage to the kidney and liver, tissue erosion, and disorder of the nervous system [5]. Therefore,
the direct release of phenol-contaminated industrial effluent has been strictly prohibited due to its
serious and long-term consequences on human health and the environment. As such, it is essential, to
develop effective and sustainable remediation and discharge of organic wastewater systems for a safe
and sustainable environment.

Various physiochemical techniques have been utilized for the treatment of phenol-containing
wastewater, including precipitation, oxidation, membrane filtration, and adsorption. Among all of
them, adsorption is considered a highly effective and suitable process for the removal of phenols from
industrial effluents [6] due to its simple design, user-friendliness, low operation and maintenance
cost, and high remediation performance [7]. In the last decades, various adsorbents, such as carbon
materials [8,9], clays [10], polymers [11], and silica [12], have been investigated for their adsorption
of phenolic contaminants. However, due to its high production cost, low adsorption capability for
different pollutants, limitation in industrial effluents’ pH range, and low reusability, increasing interest
has focused on developing new sustainable and eco-economical hybrid adsorbents that exhib a high
removal and excellent reusability performance for various pollutants.

Activated carbon (AC) is a widely used adsorbent for the remediation of contaminated organic
wastewater due to its excellent surface characteristics (surface area and porous structure) and abundant
oxygen functionalities [6,13]. For example, AC derived from rattan sawdust exhibited high phenol
removal, with a maximum adsorption capacity of 149.25 mg/g [14]. Low-cost ZnCl2–AC produced from
tea waste revealed an outstanding adsorption of phenol (142.9 mg/g) [15]. Recently, Ju Sun et al. [16]
reported the increasing oxidation degree of AC resulted in a decrease in sorption of phenol and
the mechanism was dominated by π–π interactions. In our previous work [17], we produced
ZnCl2-activated carbon from sewage sludge with different chemical activation conditions and obtained
adsorption of phenol of 9.91 mg/g (under a competitive environment with catechol and resorcinol) at a
ZnCl2 -sludge ratio between 1–1.5, temperature of 400 to 700 ◦C, and activation time of 30–36.74 min,
with a percent yield of 81.5%. However, the adsorption capacity increased up to 20.4 mg/g for single
phenol adsorption.

Layered double hydroxides (LDHs), and its composites, are a promising adsorbent for various
organic and inorganic pollutants [18]. Their excellent ion exchangeability, high surface area, and
lower toxicity with versatile composition are potentially attractive for effective water and wastewater
treatment. LDH hybridization, i.e., the coupling or decoration of LDH layers into various materials,
including carbon materials (graphene, carbon nano tube (CNT), biochar), polymers (starch and
chitosan, etc.), and others, resulted in extremely promising materials, exhibiting enhanced surface
and structure characteristics [18,19]. Recently, several LDHs and its hybrids have been explored for
the removal of phenols from water bodies. For instance, porous NiAl–LDH nanoparticle-modified
sodium citrate showed adsorption of p-nitrophenol, with an adsorption capacity 77.7 mg/g [20].
F. T Zompantzi et al. [21] reported 95% phenol degradation using ZnAl metal oxides. Highly stable
Al/Fe pillared clay catalyst was synthesized and showed efficient remediation of phenol and total
organic carbon (TOC ) from aqueous solutions [22]. MgAl precursor prepared by simple dry milling of
Mg and Al salts exhibited a high sorption capacity of 82.5 and 356.4 mg/g for phenol and p-nitrophenol,
indicating excellent adsorbent for the treatment of phenolic compounds from the aqueous phase.
Calcined MgAl-decorated single-walled carbon nanotubes (SWNTs) revealed an extremely outstanding
affinity for phenol and 4-chloro phenol, with remarkable reusability performance for up to 10 cycles.
The author reported the improvement in the adsorption capacity of LDH is due to the coupling
of SWNT and calcination [23]. Previous studies demonstrated that the modification of LDH could
lead to enhancement of active binding sites, such as surface oxygen functional groups, and resulted
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in a substantial increase in the uptake of phenolic compounds. The most recent detailed literature
review undertaken revealed that the synthesis of high-performing adsorbents via intercalation of
sewage-based AC into the layers of LDH has not yet been reported. Since both sewage-based AC and
LDH are good adsorbents with a high affinity for phenols, their hybridization at appropriate ratios
was speculated to result in new composite materials possessing improved adsorptive performances
compared to the parent materials as well as many other adsorbents.

Accordingly, the objective of this study was to fabricate ZnCl2-activated carbon (AC) decorated
MgFe–LDH composites at different compositions of AC (0.1–0.5 g) via the co-precipitation technique.
The synthesized composite materials were utilized as adsorbents for the removal of phenol
from the water phase. The composites were fully characterized by FTIR, XRD, SEM, and N2

adsorption-desorption measurement before and after phenol adsorption to deeply assess the changes
in characteristics after the addition of AC and phenol sorption mechanisms. Additionally, the influence
of pH, contact time, initial phenol concentration, temperature, adsorption equilibrium, and kinetics
were studied using batch mode experiments.

2. Results

2.1. Characterization of AC–MgFe Composites

The FTIR spectra of AC–MgFe composites are displayed in Figure 1a. Noticeably, the spectra of
all three composites exhibited characteristic bands of both AC and MgFe, as indicated in Figure S1a,b,
respectively, [18,24] with observable variations in band intensities. The broad and strong peak at 3422
cm−1 corresponds to the stretching vibration of hydroxyl groups (O-H), associated with the water
molecules and hydrogen bonding within the interlayers of the AC–MgFe composites. Similarly, the
sharp peak at 13,857 cm−1 was attributed to the NO3

2− ions’ vibration in the layers of MgFe LDH
(Figure S1b), which was shifted to a lower wavenumber of 1337 cm−1 in the AC–MgFe composites
(Figure 1a) [25]. Two strong and sharp peaks at 1609 and 953 cm−1 were also observed, which
are attributed to the stretching vibrations of (C=N or C=O) and (C-O or C-C) groups, respectively,
which correspond to surface functionalities of AC (Figure S1a). Besides, the presence of a peak at
around 571 cm−1 might be attributed to the formation of mixed metal oxides (MMOs) (M= Mg, Fe).
The AC–MgFe-2 composite showed a strong and broad peak of MMO compared to other AC–MgFe
composites. Markedly, the spectra of composites (AC–MgFe-2 and AC–MgFe-1) consisted of a lower
content of AC (0.25 and 0.1 g), respectively, which indicated stronger characteristic band intensities
compared to the higher AC content composite (AC–MgFe-3). The FTIR results demonstrated the
effective formation of AC–MgFe composite, exhibiting abundant oxygen-containing functionalities
(OH, NO3, C=N, C=O, C-O, and MMO), and thereby exhibiting good adsorbent characteristics for the
uptake of pollutants from the aqueous phase [6].

The XRD patterns of AC–MgFe composites are shown in Figure 1b. The sharp diffraction peaks at
2◦ = 18.54◦ 30.27◦, 35.73◦, 38.04◦, 43.33◦, 57.22◦, and 62.68 ◦ in the XRD patterns of the AC–MgFe-3
composite are characteristics of MgFe LDH nanoparticles [26]. Similarly, the broad diffraction peak at
22.84◦ in the XRD patterns of AC–MgFe-2 and AC–MgFe-3 was attributed to the (002) plane of graphitic
carbon and corresponds to the diffraction peak of AC. Noteworthy, both AC–MgFe-3 and AC–MgFe-2,
which are associated with a lower content of AC (0.1–0.25 g), revealed characteristic diffraction peaks of
MgFe, indicating excellent crystallographic-structured MgFe layers, and facilitating better intercalation
without damaging them. Whereas in AC–MgFe-1 and AC–MgFe-2, the lower peaks’ symmetries and
absence of some of the peaks suggest a poor crystalline structure attributed to higher loading of AC
compared to AC–MgFe-3, which led to agglomeration or stacking onto the layers of LDH [23,27].
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Figure 1. FTIR spectra of AC–MgFe composites (a), XRD pattern of AC–MgFe composites (b).

SEM and TEM analyses were used to evaluate the surface morphology and dispersion of AC
into the LDHs structure. Figure S2 shows an SEM image of the AC, showing fluffy, amorphous, and
cracking surface morphology exhibiting smooth granular particles with a 500–1000 nm size. In Figure 2,
the morphology of all AC–MgFe composites shows a rough and porous surface. For AC–MgFe-1, the
surface is comprised of discrete patterns with a highly porous and amorphous structure associated
with the presence of high loading (0.5 g) of amorphous AC. However, the SEM image of AC–MgFe-2
indicates a coarse surface, exhibiting particles of varied sizes. This may be associated with better
dispersion of AC nanoparticles within the layers of the MgFe LDH. The dispersion of AC onto the
AC–MgFe composites was further supported by TEM analysis (Figure 2). The TEM of AC–MgFe-3
showed partial dispersion of AC nanoparticles associated with the lower content of AC (0.1 g) into the
composite. For AC–MgFe-2, higher decoration of AC into the layers of the MgFe led to an improvement
in the surface, textural, and crystalline characteristics of the composite and promoted enhanced uptake
of phenol molecules from the aqueous phase. However, the higher agglomeration and stacking into
the LDH layers, leading to poor crystallinity and oxygen functionalities, was attributed to the presence
of high contents of AC, especially in the AC–MgFe-1 (0.5 g), as confirmed by XRD and FTIR analysis,
respectively. As the XRD crystallization for AC–MgFe-1 and AC–MgFe-2 was not very good (compared
with that of AC–MgFe-3) as highlighted earlier, reliable crystallite calculation was not possible for
these two adsorbents. As such, the Debby Scherrer formula [28] was used to calculate the DXRD only
for the AC–MgFe-3, which was found to be around 30 nm (33 ± 3 nm).

The textural characteristics (specific surface area, pore volume, and pore width) of the AC–MgFe
composites were obtained by N2 adsorption-desorption isotherms (Table 1), and their corresponding
adsorption-desorption plots are displayed in Figure 3a–c. The shape of adsorption-desorption isotherm
of all three AC–MgFe composites are hysteresis loops of Type IV, confirming predominantly mesoporous
solids. As seen in Table 1, a significant increase in the surface area was observed from 168.92 to
233.76 mg/g as the AC content in the layers of MgFe was raised from 0.1 to 0.25 g, respectively,
a significant improvement compared to virgin MgFe as reported previously [29]. However, further
loading of AC to 0.5 g (AC–MgFe-1) yielded an insignificant increase in the surface area (Table 1), which
was ascribed to the agglomeration of AC nanoparticles in the AC–MgFe-1 composite as confirmed by
the TEM analysis. The as-produced AC–MgFe composites exhibited a higher surface area compared
to pristine MgFeLDH [30] and other previously studied magnetic adsorbents [31]. This indicated
that coupling of the sewage sludge AC with MgFe is a highly promising and sustainable approach
to significantly improve the surface area, which may result in enhanced removal of pollutants from
wastewater. Likewise, the pore volume increased from 0.21 to 0.27 cm3/g when the AC content in
the layers of MgFe–LDH increased from 0.1 to 0.5 g, which was attributed to the diffusion of AC
nanoparticles within the pores of MgFe–LDH. Moreover, the pore size distribution of AC–MgFe
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composites showed a maximum volume at a pore diameter of 3.9 to 5.4 nm, indicating mesoporous
characteristics, and is highly favorable for the penetration of phenol molecules in pores greater than
1 nm [32].Int. J. Mol. Sci. 2020, 21, 1563 5 of 17 
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Table 1. Surface area, pore volume, and pore size of AC–MgFe composites.

AC–MgFe-1 AC–MgFe-2 AC–MgFe-3

BET surface area (m2/g) 257.22 233.76 168.92
Pore volume (cm3/g) 0.23 0.27 0.21
Micropore volume (DR method) (cm3/g) 0.18 0.18 0.17
Pore diameter (based on BJH) (nm) 3.36 3.36 3.42

2.2. Phenol adsorption Performance (qe) of AC–MgFe Composites at Varied Initial pH

Solution pH is one of the key influential adsorption parameters that has a direct impact on the
surface chemistry of both adsorbent and adsorbate and thereby may cause a drastic change of the
adsorbent adsorption efficiency. The influence of the initial phenol solution pH onto the sorption
capacity of AC–MgFe composites was investigated at a varied pH range 2–12, and other parameters
were kept constant at an initial concentration of 20 mg/L, dosage of 5 mg, contact time of 24 h, rpm
of 275, and temperature of 25 ◦C. The results are depicted in Figure 4a. It can be seen that the
phenol solution pH significantly alters the sorption performance of all the three synthesized AC–MgFe
composites. For instance, at the acidic pH range (2–4), the composites showed a very low sorption
capacity of phenol. With an increase in the pH value from 2 to 6, there was a substantial improvement
(almost double) in the sorption capacity of phenol from 4.12 and 5.23 mg/g to 12.48 and 9.16 mg/g
for AC–MgFe-2 and AC–MgFe-3, respectively. A further increase in the solution pH to 12 led to a
reduction in the nanocomposites’ capacities for phenol uptake. However, in the case of the AC–MgFe-1
composite, an increase of the solution pH from 2 to 8 showed a gradual rise of the sorption capacity
from 3.13 to 4.08 mg/g and decreased with a further increase of the pH to 12. The change in the sorption
capacity of the composites with increasing pH values (2–6) can be explained by considering the surface
chemistry of the AC–MgFe composites as illustrated by the estimated point of the zero charge (pHPZC)
of each composite using the pH drift method [33]. The pHPZC of AC–MgFe-1, AC–MgFe-2, and
AC–MgFe-3 was found to be 6.54, 6.91, and 7.61, respectively (Figure 4b). Therefore, for all the studied
composites at pH range 2–4 < pHPZC, the surfaces of the composites were entirely in the protonation
state. This indicates that there may be strong electrostatic repulsion between the composite surfaces
and phenol molecules, resulting in lower uptake of phenol onto the composite surface. As the pH
was increased to 6 (Figure 4a), there was a significant reduction of positively charged adsorption sites,
which was demonstrated in the linear increase in the composites’ adsorption capacity for AC–MgFe-2
and AC–MgFe-3. A similar behavior was reported by Zhang et al. [23] for the removal of phenols by
calcined MgAl/SWCNT composites. At pH > 6, there was a gradual transformation of the composites’
active sites to negative, which may induce electrostatic repulsion between the AC–MgFe composites
and phenol molecules, thereby resulting in a reduction in phenol removal as the pH increases above
6. The maximum sorption capacity of phenol onto the AC–MgFe composites was obtained at pH
6, which was selected for later adsorption experiments. In addition, AC–MgFe-2 showed a higher
removal performance of phenol compared to AC–MgFe-1 and AC–MgFe-3. The higher uptake capacity
of AC–MgFe-2 is associated with the effective intercalation of AC onto interlayers of MgFe LDH,
leading to enhanced surface, textural, and structural characteristics as confirmed by FTIR, XRD,
BET, SEM, and TEM analysis, respectively. Therefore, AC–MgFe-2 was chosen for further phenol
adsorption investigations.
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on the adsorption efficiency (qe) of phenol was investigated by varying the dosage from 2–25 mg at pH
6, contact time of 24 h, and temperature of 25 ◦C. The results are depicted in Figure 5a. Overall, the
sorption capacity of phenol increased with an increasing initial concentration at a fixed amount of
AC–MgFe-2. In detail (Figure 5a), as the initial concentration was increased from 20–100 mg/L, the qe

substantially increased, which was more pronounced at a lower adsorbent dosage (2–5) mg. At a low
phenol concentration (20 mg/L), the qe (mg/g) of AC–MgFe showed a gradual decline as the amount
increased from 2–15 mg. However, at higher phenol levels (60 and 100 mg/L), a measurable reduction
of about 32.22% and 39.42% of qe from 36.66 mg and 65.42 mg/g to 24.21 and 39.87 mg/g was observed,
when the AC–MgFe dosage was raised from 5 mg to 10 mg, respectively. At a fixed AC–MgFe dosage,
the availability of active binding sites and contributed surface functionalities were also fixed. Therefore,
increasing the phenol concentration involves the addition of more phenol molecules that constantly
occupied by the free active sites and facilitates competitive adsorption. However, a reduction in qe

with an increase in the AC–MgFe-2 dose involves the provision of more active binding sites, which
were not utilized due to limited phenol molecules, thus resulting in a decline in the uptake capacity.

Figure 5b displays the change in the qe (mg/g) of phenol at varying contact times (10–240 min),
pH 6, concentration of 20–100 mg/L, and temperature of 25 ◦C. It was found that the adsorption
efficiency of phenol onto AC–MgFe increased with increasing contact time. In detail, at all phenol
concentrations (20–100 mg/L) nearly 70–80% phenol removal was achieved at 60–120 min, respectively.
After that, the removal rate decreased and eventually reached equilibrium at nearly 180 min. The fast
adsorption within the first 60–90 min is attributed to the availability of active binding sites (surface
functionalities), which were then progressively saturated, resulting in a reduction in the adsorption
rate. Moreover, at any fixed contact time, compared to the low phenol concentration (20 mg/L), the qe

value of phenol onto AC–MgFe-2 was not only found to be greater in higher phenol (100 mg/L) solution
but a significant increase was also observed from 10.88 to 71.24 mg/g with an increasing contact time
from 10 to 180 min. The higher concentration implies more phenol molecules in the solution, which
requires additional time to completely adsorb in the adsorbent surface and thereby induce better
interactions (mass transfer) compared to low phenol levels.
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Figure 5. (a) Effect of dosage and (b) adsorption contact time on the sorption uptake of phenol by
AC–MgFe-2 composite.

3.2. Phenol Adsorption Kinetics

To further classify the interactions involved in the phenol–AC-MgFe adsorption system (physical
or chemical) and the rate-limiting step, the experimental kinetic data were fitted to four kinetic
models: The pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models.
The obtained plots using linear kinetic model equations are displayed in Figure 6a–d and their estimated
parameters with corresponding R2 are summarized in Table 2. Under all tested concentrations, the
pseudo-second-order model showed higher R2 values (0.987–0.997) compared to pseudo-first-order
(0.731–0.836), elovich (0.95–0.97), and intraparticle diffusion (0.79–0.96) models. This indicates that
sorption of phenol onto AC–MgFe-2 was more appropriately represented by the pseudo-second-order
kinetic model.
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Table 2. Parameters of pseudo-first, pseudo-second-order, elovich, and intra particle diffusion kinetic
models for phenol removal onto AC–MgFe-2 composite.

Adsorbent Co
Pseudo First Order
ln(qe−qt)=lnqe−k1t

Pseudo Second Order
t
qt

= t
qe

+ 1
k2q2

e

qe (exp) qe k1 R2 qe
k2 ×

10−2 h R2

AC-MgFe-2 20 14.85 35.46 0.09 0.826 19.44 0.27 0.60 0.997
60 40.68 280.81 0.10 0.731 54.05 0.24 0.71 0.992

100 54.3 247.2 0.09 0.836 74.62 0.17 0.94 0.987

Elovich
qt=

1
β ln(αβ)+ 1

β ln(t) Intra particle diffusion
qt = kd t1/2 + C

qe (exp) α β R2 Kp C R2

AC-MgFe-2 20 14.85 2.25 0.06 0.967 0.71 3.79 0.799
60 40.68 1.71 0.08 0.977 2.82 0.04 0.966

100 54.3 1.39 0.33 0.952 3.95 0.71 0.933

Moreover, the increase in the initial concentration led to an enhancement in the adsorption rate
(h) from 0.60 to 0.94 mg/g-min, improvement in the gradient pressure between phenol solution and
AC–MgFe-2, facilitating an increased mass transfer rate at the solid–liquid interface [34]. To further
evaluate the actual rate-limiting step, the kinetic data was fitted onto an intraparticle diffusion model
(Figure 6d). As shown in Figure 6d, all the plots at the different studied phenol concentrations do
not intercept through the origin and involve three distinct adsorption stages. The first stage (fast
adsorption rate) is associated with the external surface adsorption involving an interaction of phenol
molecules with surface functionalities (OH, C=O, C-O and MMO) via chemical, ion exchange, and
π–π interactions. The second stage indicates the pore diffusion of phenols within the interior surface
of AC–MgFe-2. The third region describes the equilibrium stage reached due to the saturation of
active sites in the AC–MgFe-2. This further demonstrates that the adsorption of phenol molecules on
AC–MgFe mainly controlled by multiple mechanisms (physiochemical interactions) and not solely
controlled by intraparticle diffusion.

3.3. Phenol Adsorption Isotherms

Figure 7a,b displays the linear plots of two isotherm models (Langmuir and Freundlich),
respectively, applied to the experimental data of phenol adsorption by AC–MgFe-2 at pH 6, contact
time of 180 min, and temperatures of 25–45 ◦C. The calculated parameters, along with the linear
regression coefficient (R2) and root mean square error (RMSE), are listed in Table 3. As indicated in
Figure 7 and Table 3, the equilibrium data for all the studied temperatures fitted both the employed
isotherm models well based on the values of R2 near to unity (0.992–0.996). However, the error function
(RMSE) was found to be smaller for the Langmuir model (0.001–0.002) than that of the Freundlich
model (0.046–0.047). Thus, the Langmuir model described the phenol–AC–MgFe adsorption system
better, suggesting a monolayer coverage of phenol molecules onto the homogenous AC–MgFe-2
composite surface. Besides, the maximum theoretical adsorption capacity of 138.69 mg/g of the
AC–MgFe-2 composite reveals a relatively higher phenol uptake capacity than previously reported
biochar composites (Table 4). Additionally, the values of RL are <1 at all studied concentrations
(Figure 7c), demonstrating favorable adsorption of phenol onto the AC–MgFe composite. An increase
in the adsorption temperature (25–45 ◦C) resulted in an improvement in the adsorption capacity of
phenol (138.69–141.64 mg/g), indicating a favorable adsorption at elevated temperatures. Based on the
Langmuir model assumption, the sorption of phenol molecules onto AC–MgFe was predominately
via strong chemical interaction forces comprising the interaction of phenol molecules with AC–MgFe
functional groups (OH, C=O, C-O, and MMO).
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Table 3. Parameters of linear Langmuir and Freundlich isotherm models for phenol adsorption onto
AC–MgFe-2 composites.

Adsorbent T (K)
Langmuir
Ce
qe

=
qm
Kl

+ Ce
qm

Freundlich
lnqe=lnKF+ 1

n lnCe

qmax
(mg/g)

KL R2 RMSE KF 1/n R2 RMSE

AC-MgFe-2 298 138.69 0.003 0.997 0.001 4.01 1.26 0.996 0.046
308 139.77 0.004 0.994 0.001 3.70 1.25 0.996 0.047
318 141.64 0.004 0.990 0.002 3.48 1.25 0.996 0.049

Table 4. Adsorption capacity and parameters of phenol onto recently studied adsorbents.

Adsorbent pH
Time
(Minutes)

Adsorption
Capacity
(mg/g)

References

Iron impregnated activated carbon 7 90 20 [35]
Diethylenetriamine-modified activated carbon 3 120 18.12 [36]
milled MgAl - 180 82.6 [37]
Aliquat 336 functionalized Zn-Al 6.5 60 64.7 [38]
Calcined MgAl/SWCNT 6 3600 219.0 [23]
AC-MgFe composite 6 180 138.69 This work

3.4. Phenol Adsorption Thermodynamic

The energetic variations of phenol adsorption onto AC–MgFe composite were further evaluated
via measurement of changes in the Gibbs free energy (∆G, kJ/mol), enthalpy (∆H, kJ/mol), and entropy
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(∆S, kJ/mol) at three tested temperatures (25–45 ◦C). The respective thermodynamic parameters were
estimated using the following Equations (1) and (2) and are summarized in Table 5:

∆G = −RTlnKd, (1)

lnkd =
∆S
R
−

∆H
RH

, (2)

where constant Kd is the thermodynamic equilibrium constant that was calculated using the method
of Xin et al. [39] by plotting ln(qe/Ce) vs. qe and extrapolating qe to zero; and R is the universal gas
constant (8.314 J/mol/K).

Table 5. Thermodynamic parameters of phenol adsorption onto AC–MgFe composites.

T (K) ∆G (kJ/mol) ∆H (kJ/mol) ∆S (kJ/mol K)

AC–MgFe-2 298 −0.39
308 −0.32 3.85 0.011
318 −0.16

Table 5 and Figure 7d demonstrate that an increase in temperature from 25 to 45 ◦C led to an
increase in the values of ∆G from (−0.39 to −0.16) kJ/mol for AC–MgFe composite. The negative values
of ∆G indicate that the phenol adsorption by AC–MgFe composite was favorable. The positive values of
∆H (3.85) kJ/mol and ∆S (0.011) kJ/mol-K for AC–MgFe composite demonstrated the phenol adsorption
system is endothermic in nature and improved the magnitude of randomness at the solid–liquid
interface, respectively [40].

3.5. Reusability of AC–MgFe Composite

The recyclability of adsorbent is an important factor to demonstrate its potential for effective
applications commercially. As such, the recyclability of the new AC–LDH was evaluated via
adsorption-desorption experiments for up to four cycles. The spent AC–MgFe composite (100 mg) was
regenerated via agitation of its slurry in a 100-mL 95% ethanol solution for 4 h. The results displayed
in Figure 8a indicate that for up to two regeneration cycles, the adsorption capacity of AC–MgFe-2
declined by only 13.03% from 80.22 to 69.72 mg/g. After the fourth regeneration, the adsorption
capacity further reduced down to 56.12 mg/g, which was still comparatively greater than that of
some of the previously reported adsorbents (Table 4). This further confirmed that the synthesized
AC–MgFe composite in this study exhibit excellent capability for the effective removal of phenol from
wastewater streams.

3.6. Adsorption Mechanism of Phenol Onto AC–MgFe Composite

To further understand the adsorption interactions of phenol with the AC–MgFe composite
surface, characterization (FTIR and SEM) of spent AC–MgFe-2 after phenol adsorption was performed.
As depicted in the FTIR spectra (Figure 8b), the peaks correspond to C=N or C=O and C-O-C or C-O at
1609 and 953 cm−1 shifted to a lower intensity after phenol adsorption. Likewise, the broadband assigned
to OH group vibrations at 3422 cm−1 showed changes in the wavenumber in the AC–MgFe–phenol
spectra. Likewise, after phenol adsorption, the peaks below 600 cm−1 corresponding to MMO showed a
noticeable alteration in the peak intensities and wavenumber. These FTIR results of the spent AC–MgFe
composite support that the presence of functional groups on the surface of the AC–MgFe-2 composite
have a strong interface with phenol molecules and act as active sorption sites to effectively remove
phenol from the aqueous phase.

The SEM image of AC–MgFe-2 before and after phenol adsorption is shown in Figure 8c. The SEM
image shows that the porous and coarse surface morphology with particles of various sizes of
AC-MgFe-2 has completely transformed into a smooth surface with no pores, confirming that the entire
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composite surface was covered and saturated with phenol molecules. Therefore, based on the kinetics,
isotherms, thermodynamics, and FTIR results (before and after phenol adsorption), it can be inferred
that the adsorption of phenol molecules onto AC–MgFe-2 is led by multiple mechanisms attributed
to the synergetic effect of activated carbon and MgFe LDH. Hence, chemical bonding with hydroxyl
groups and mixed metal oxides and internal pore diffusion via π–π interactions could be the main
dominating mechanism of the phenol–AC–MgFe adsorption system.Int. J. Mol. Sci. 2020, 21, 1563 13 of 17 
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3.7. Comparison with Other Adsorbents

Comparing the sorption capacity of synthesized activated-carbon decorated MgFe composite via
the co-precipitation method with the sorption capacity of other studied materials for phenol removal
(Table 4) clearly confirmed that the AC–MgFe is a highly promising adsorbent. The adsorption capacity
of AC–MgFe is higher compared to other LDHs and its derivatives, signifying that the coupling
of activated carbon onto layers of MgFe is a favorable approach to enhanced removal of phenol
from wastewater.

4. Materials and Methods

4.1. Materials

ZnCl2 sewage-based activated carbon was synthesized as per our previous study reported
elsewhere [17] from the sewage sludge of a wastewater treatment plant located in Dhahran, Saudi
Arabia. All the purchased materials were high purity (99.99%) and used without any modification.
They included iron (III) nitrate nonahydrate [Fe(NO3)3·9H2O] and magnesium (II) nitrate hexahydrate
[Mg(NO3)2·6H2O], and phenol purchased from Sigma Aldrich Co. (USA). The 500 mg/L stock solution
of phenol was prepared and diluted to the required concentrations (20–120 mg/L) by using double
distilled water.
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4.2. Syntheses of ZnCl2-Activated Carbon Decorated MgFe LDH (AC–MgFe) Composites

The ZnCl2-activated carbon–MgFe LDH (AC–MgFe) composites were produced using the
co-precipitation technique. Initially, a precise amount of ZnCl2-activated carbon corresponding
to the MgFe amount ratio (Table 6) was ultrasonicated for 30 min in 50 mL of distilled water to obtain
a homogenous dispersion. Simultaneously, 4.04 g of ferric (0.1 M) and 2.54 g (0.1 M) of magnesium
nitrate salts were dissolved in 100 mL of distilled water in a reaction flask equipped with a magnetic
stirrer. The solution was stirred vigorously for 15 min at 90 ◦C. Later, the pH of the solution was
adjusted to 10 ± 0.5 using 1 M NaOH. After achieving the required pH, the reactor was then subjected
to refluxing at 90 ◦C for 18 h. The resulting product was centrifuged and washed with DI water,
followed by ethanol washing for the removal of unreacted salts and impurities. The final product
was then dried at 85 ◦C in an oven for 48 h. The powder AC–MgFe composites were then stored in a
desiccator for the adsorption experiments.

Table 6. Composition of AC–MgFe composites.

Sample AC (g) Mg:Fe Salts (g) (0.1:0.1)M

AC–MgFe-1 0.5 2.54:4.04
AC–MgFe-2 0.25 2.54:4.04
AC–MgFe-3 0.1 2.54:4.04

4.3. AC–MgFe Composites Characterization

The surface properties of the produced AC–MgFe composites were investigated via different
techniques that included Fourier transform-IR (FTIR, Nicolet 6700, resolution 4 cm−1), X-ray diffraction
(XRD, D8 advance X-ray instrument, wavelength = 0.1542 nm, and 2θ = 10◦ to 80◦), scanning electron
microscopy (SEM, SM-6460LV(Jeol)), transmission electron microscopy (FEI, Morgagni 268, Berno
Czech republic), and Brunauer Emmett Teller (BET, Micromeritics, Tristar II series).

4.4. Phenol Uptake from Water Experiment

Initially, 20 mg/L of phenol solution at pH range 2–12, was agitated with 0.01 g of each AC–MgFe
composite for 24 h at 275 rpm and 25 ◦C, respectively in 50-mL flat-bottomed plastic vials. Based
on the pH results, the composite showing a higher removal efficiency of phenol at a certain pH
was selected, and detailed adsorption experiments were further conducted for evaluation of the
influence of adsorption parameters, such as the adsorbent amount, initial phenol concentration,
and temperature and contact time, via equilibrium and kinetics studies. Accurately, 30 mL of phenol
solution (20–120 mg/L) containing 0.01 g of the selected AC-MgFe composite in 50-mL plastic vials
was agitated for 360 min at 275 rpm, and temperature range of 25 to 45 ◦C. The requisite pH of the
phenol solution was adjusted using 0.1 mol/L HCl and 0.1 mol/L NaOH solutions. After agitation,
the mixture was centrifuged and then filtered using 0.45-µm filter paper (cellulose acetate), and
the residual phenol concentration was estimated using high-performance liquid chromatography
(Thermo-scientific) equipped with a UV detector. The adsorption experiments were conducted in
duplicates and the average values are indicated in the result section.

The amount of the phenol adsorbed on the AC–MgFe qe (mg/g), and percentage removal efficiency
were estimated according to Equations (3) and (4), respectively:

Adsorption capacity = qe =
(c0 − ce)v

w
, (3)

Percentage removal =
(c0 − ce)

ce
× 100, (4)
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where Co and Ce are the initial and equilibrium concentration (mg/L) of phenol in solution, respectively,
qe (mg/g) is the equilibrium adsorption capacity, W (g) is the weight of the AC–MgFe composite, and V
(L) is the volume of the solution.

4.5. Evaluation of Phenol Sorption Mechanism onto Activated Carbon–MgFe Composite

To clearly understand the sorption behavior of phenol molecules by the AC–MgFe composite,
kinetic, isotherm, and thermodynamic models were applied to analyze the obtained phenol
adsorption data. Four kinetic models, including pseudo-first and pseudo-second-order, and Elovich,
and intraparticle diffusion, were fitted to the kinetic data to determine the actual rate-limiting step
and dominant interactions (physical, chemical, pore diffusion, etc.) involved in the phenol AC–MgFe
adsorption system. The linear forms of the kinetic models and their estimated parameters are listed
in Table 3. The isotherm models, namely the Langmuir and Freundlich isotherms, were applied
to the equilibrium data to understand the sorption phenomena of the adsorbate (phenol) onto the
adsorbent (AC–MgFe composite) surface. Their respective linear equations and calculated parameters
are summarized in Table 4.

5. Conclusions

The present study demonstrated a new effective adsorbent, produced via decoration of sewage
sludge-based activated carbon onto layers of MgFe layered double hydroxides, for the improved
removal of phenol from the water phase. The new composites were obtained at different mass ratios
of AC and MgFe LDH via the simple co-precipitation method. The characterization of composites
confirmed that the embedding of activated carbon with MgFe resulted in a significant improvement in
the surface area and oxygen functionalities without damaging the crystalline structure. Accordingly,
the composite exhibited an abundance of sorption active sites, leading to higher removal of phenol.
The isotherm and kinetic data were appropriately fitted by the Langmuir and pseudo-second-order
model, respectively. The maximum adsorption capacity of phenol exhibited by the AC–MgFe composite
was 139.69 mg/g, which is comparatively higher than adsorbents reported in the literature, attributed to
the synergic effect of activated carbon and MgFe, facilitating efficient uptake of phenol molecules from
the aqueous phase. The phenol adsorption mechanism onto AC–MgFe is largely governed by multiple
interaction forces involving chemical reactions with hydroxyl, carboxyl, and mixed metal oxide groups
and pore penetration phenomena via π–π interactions. The AC–MgFe showed excellent removal after
four regeneration cycles, which is evidence of its potential for an effective phenol removal process.
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