Supplementary Materials

Figure S1. Analysis of bioinformation, profile expression and subcellular locization of EbExo70A1. (A) Amino acid sequence alignment of Exo70A1 proteins from *Lactuca sativ* (LsExo70A1, XP_023760668.1), *Cynara cardunculus var. scolymus* (Ccv.sExo70A1, XP_024970733.1), *Artemisia annua* (AaExo70A1, PWA97666.1), and *Helianthus annuus* (HaExo70A1, XP_021997716.1). The

conserved Exo70 domains are indicated. (B) Phylogenetic tree of EbExo70A1 and Exo70A1s from other plant species, including Lactuca sativ (LsExo70A1, XP 023760668.1), Cynara cardunculus var. scolymus (Ccv.sExo70A1, XP_024970733.1), Artemisia annua (AaExo70A1, PWA97666.1), Helianthus annuus (HaExo70A1, XP 021997716.1), Capsicum baccatum (CbExo70A1, PHT54197.1), Nicotiana tomentosiformis (NtExo70A1, XP_009624114.1), Citrus clementina (CcExo70A1, XP_006445773.1), Olea europaea var. Sylvestris XP_022852552.1), (Oev.sExo70A1, Camellia sinensis (CsExo70A1, XP_028111780.1), Solanum lycopersicum (SIExo70A1, XP_004249947.1), Sesamum indicum (SiExo70A1, XP 011076855.1), Chenopodium quinoa (CqExo70A1, XP_021731485.1), Coffea arabica (CaExo70A1, XP_027111283.1), Ziziphus jujuba (ZjExo70A1, XP_015876530.1), Prunus avium (PaExo70A1, XP_021800470.1), Cinnamomum micranthum f. kanehirae (Cmf.kExo70A1, RWR82284.1), Corchorus olitorius (CoExo70A1, OMO94473.1), Durio zibethinus (DzExo70A1, XP_022742851.1), and *Malus domestica* (MdExo70A1, XP_008354827.2). (C) Expression profile of Exo70A1 in roots, basal leaves, stems, cauline leaves, buds and flowers of E. breviscapus. (D) The EbExo70A1 protein was localized to the nucleus.

			-	
Use	Constructs	Plasmid	Primers (5'->3')	Clonin
		Name		g Metho

Supplemental table S1. Primers used in this study

				d
	EbARC1-GFP	POCA30-	AAAGAGCTCATGGCATCAGC	Sacl
		GFP	TGCTATCTTT	
Subcellula				Xbal
localizatio			CAGACAIAG	
n	EbExo70A1-GFP	POCA30-	AAAGGATCCATGGGGGTTCC	BamHI
assay	GFP		TATTCAAG	
			AAATCTAGAAGTCTTCCCCTC	Xbal
			GAAAA	NT1 T
	BD-EbARCI	PGBK17	AAACATATGAIGGCAICAGCI	Ndel
			AAAGGATCCCTATGAAACCG	BamH1
			AAACAGACAT	Duinin
	BD-EbARC(1-	PGBKT7	AAAGAATTCATGGCATCAGC	EcoRl
	304)		TGCTATCTTT	C - 11
No. 1 T			CTTACAAAAGTATC	Sall
	BD-EbARC(1-	PGBKT7	AAACATATGATGGCATCAGCT	Ndel
	368)		GCTATCTTT	
			AAAGGATCCCCATTGCATAA	BamHI
Hvbrid			TCAGATTICI	
Assay	BD-EbARC(1-	PGBKT7	AAACATATGATGGCATCAGCT	Ndel
	588)		GCTATCTTT	
			AAAGGATCCTTCAGCCACATT	BamHI
			TTCACATTCC	
	AD-EbEXO70A1	PGADT7	AAAGAATTCATGGGGGTTCCT	EcoR1
		_	ATTCAAGCA	
			AAACTCGAGTTAAGTCTTCCC	Xhol
			CTCGAAAAATTC	
				EcoP1
	(1-284)	I GAD17	ATTCAAGCA	LCON
			AAACTCGAGACGCATAAAAT	Xhol
			GAATCCATGTCC	
	AD-EbEXO70A1 (284-639)	PGAD17	AAACATATGATTGCGGTAAA	Ndel
	(201-007)		AAAGAATTCAGTCTTCCCCTC	EcoRl
			GAAAAATTCC	

	EbARC1-nYFP	pFGC-	AAAGAGCTCATGGCATCAGC	Sacl
		nYFP	TGCTATCTTT	
			AAATCTAGATGAAACCGAAA	Xbal
BiFC			CAGACATAG	
Assay				
	EbExo70A1-cYFP	pFGC-	AAATCTAGAATGGGGGTTCCT	Xbal
		cYFP	ATTCAAG	
			AAAGGATCCAGTCTTCCCCTC	BamHI
			GAAAA	
	Flag-EbARC1	pOCA30	AAAGAGCTCATGGCATCAGC	Sacl
			TGCTATCTTT	
			AAATCTAGACTATGAAACCG	Xbal
Expression			AAACAGACATA	
Assay				
			AAATCTAGAATGGGGGTTCCT	Xbal
	Myc-EbExo70A1	pOCA30	ATTCAAG	
			AAAGTCGACAGTCTTCCCCTC	Sall
			GAAAAATTC	
	qRT-PCR-		ATTACAAGACAATGATAGCAG	
	EbARC1-F:		ATGA	
	qRT-PCR-		GAATGTGAAAATGTGGCTGA	
	EbARC1-R: A		А	
	qRT-PCR-			
	EbExo70A1-F:		GATGCAAGTAATAAGAATCCT	
qRT-PCR	qRT-PCR-		ТСТА	
	EbExo70A1-R:		TATCTTTTGGACGTCATCTTTG	
	qRT-PCR-			
	EbACTIN-F:		GCAGGTACACACAGTCCCAT	
	qRT-PCR-			
	EbACTIN-R:		GCAGGTACACACAGTCCCAT	

Predict Result					
Order	Protein Name	Locations	Score (Confidence)	Ubiquitination Sites	Substrate Motifs
1	EBEXO70A1	143	0.568765 (High)	ANNLLS K AISKLE	
2	EBEXO70A1	147	0.568296 (High)	lskais <mark>k</mark> lenefk	К
3	EBEXO70A1	258	0.581503 (High)	HQLGV E K LSKDDV	
4	EBEXO70A1	261	0.689835 (High)	gvekls <mark>k</mark> ddvqki	
5	EBEXO70A1	266	0.664036 (High)	SKDDV <mark>Q K</mark> IQWEVL	
6	EBEX070A1	333	0.567942 (High)	FGDAIA K SKRSPE	s
7	EBEX070A1	335	0.504921 (High)	DAIAKS <mark>K</mark> RSPEKL	
8	EBEX070A1	340	0.729062 (High)	SKRSPE K LFVLLD	₿
9	EBEXO70A1	379	0.674611 (High)	aalglt <mark>k</mark> rlaqta	
10	EBEXO70A1	386	0.51156 (High)	RLAQTA K DTFGDF	₿ Б
11	EBEXO70A1	497	0.513579 (High)	VRRSEA K DLLGDD	K.
12	EBEX070A1	613	0.572304 (High)	LLVENG K NPHKYI	s K

Figure S2. Prediction of EbExo70A1 ubiquitin site by UbSite. The analysis of the amino acids sequence suggested that Lys340 is a ubiquitination site, with a high score of 0.729062, where a score ≥ 0.50 (specificity $\geq 60\%$) is considered to be a positive prediction. S < 0.50 corresponds to a low confidence prediction, while a prediction with a score ≥ 0.73 should be regarded as high confidence (specificity $\geq 84\%$).