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Abstract: Multiple mechanisms have been suggested to confer to the pathophysiology of metabolic
syndrome (MetS), however despite great interest from the scientific community, the exact contribution
of each of MetS risk factors still remains unclear. The present study aimed to investigate molecular
signatures in peripheral blood of individuals affected by MetS and different degrees of obesity.
Metabolic health of 1204 individuals from 1000PLUS cohort was assessed, and 32 subjects were
recruited to four study groups: MetS lean, MetS obese, “healthy obese”, and healthy lean. Whole-blood
transcriptome next generation sequencing with functional data analysis were carried out. MetS obese
and MetS lean study participants showed the upregulation of genes involved in inflammation and
coagulation processes: granulocyte adhesion and diapedesis (p < 0.0001, p = 0.0063), prothrombin
activation pathway (p = 0.0032, p = 0.0091), coagulation system (p = 0.0010, p = 0.0155). The results
for “healthy obese” indicate enrichment in molecules associated with protein synthesis (p < 0.0001),
mitochondrial dysfunction (p < 0.0001), and oxidative phosphorylation (p < 0.0001). Our results
suggest that MetS is related to the state of inflammation and vascular system changes independent
of excess body weight. Furthermore, “healthy obese”, despite not fulfilling the criteria for MetS
diagnosis, seems to display an intermediate state with a lower degree of metabolic abnormalities,
before they proceed to a full blown MetS.

Keywords: transcriptomics; obesity; obesity phenotypes; metabolic syndrome; cardiovascular disease

1. Introduction

Metabolic syndrome (MetS), with its growing worldwide prevalence and significant impact
on the risk of cardiovascular disease and type 2 diabetes development, has emerged as a serious
public health concern. The components of MetS include abdominal obesity, hypertension, disturbed
glucose metabolism, elevated triglycerides, and decreased HDL cholesterol. Individuals affected
by the syndrome concurrently present with pro-inflammatory and prothrombotic states. Despite
most organizations recognizing MetS as a cluster of factors increasing the risk of type 2 diabetes and
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cardiovascular disorders, the subject of a single precise definition has been under debate for years.
Several sets of criteria have been proposed to date, mostly differing in how each of the components is
detected clinically, and which one of them is obligate to diagnose dysmetabolic phenotype. In 2009,
a joint interim statement was released with a single set of components and their cut points, except
for waist circumference, for which ethnic-specific cut-offs are recommended [1]. The harmonized
definition became the most commonly accepted with any three of five factors required: elevated waist
circumference, elevated triglycerides, reduced HDL cholesterol, elevated blood pressure, and elevated
fasting glucose.

The complexity of MetS is further confirmed by the lack of consensus in the research community
regarding the role of factors responsible for its development. Multiple mechanisms have been suggested
to confer to MetS pathophysiology, with insulin resistance and disturbances in lipid metabolism believed
to be major contributors [2,3]. It has also been associated with oxidative stress [4] and mitochondrial
impairment [5]. Some investigators regard excessive adipose tissue, accumulating as a consequence of
a positive calorie intake balance and sedentary lifestyle, to be a key player in the causation of MetS [6].
This view is in agreement with observed obesity epidemic, coupled with rising MetS prevalence.
In spite of substantial evidence supporting the concept of obesity being an important factor in the
development of other components of MetS, some researchers suggest the disproportion between
calorie intake and energy expenditure to trigger mechanisms behind MetS in the first place, before the
excessive adipose tissue starts to contribute [7]. Few studies reported that calorie restriction reverses
the majority of metabolic risk factors even though the continuing obesity was present [8,9].

In spite of a great interest from the scientific community and numerous studies being conducted,
there is still no agreement on the exact contribution of each of MetS risk factors to its pathophysiology.
The purpose of the study was, thus, to evaluate molecular signatures in peripheral blood of individuals
affected by MetS and/or obesity through a whole-blood transcriptome analysis with the use of NGS
technology. We intended to closely investigate “healthy obese” phenotype in order to define the role of
obesity in the development of metabolic abnormalities as well as to assess the extent of the “healthy
obese” exposure to metabolic and cardiovascular complications. Although such an approach required
multiple comparisons and recruitment of several different study groups, it allowed for a comprehensive
assessment of contribution of each of the factors, obesity and MetS, to metabolic health deterioration.

2. Results

2.1. Study Group Characteristics

The characteristics of subjects that participated in the study are shown in Table 1. Participants
were recruited to four different groups depending on their BMI and metabolic health status, which
was assessed with the harmonized MetS definition. Then, 1204 individuals underwent physical
examination, however the majority of them met the exclusion criteria. Eventually, each of the groups
was comprised of eight individuals, all matched for gender and age. There were no differences in
the major leukocyte types between the study groups. Obese individuals affected by MetS showed
higher waist circumference, BMI, triglycerides, fasting plasma glucose, and lower HDL-C than the
subjects in all other groups. MetS obese presented significantly higher fasting plasma glucose levels
and diastolic blood pressure when compared to healthy obese study participants. Body composition
analysis revealed higher body fat percentage and a higher amount of both visceral and subcutaneous
adipose tissue in MetS obese than in healthy obese individuals. The percentage of subcutaneous
adipose tissue, though, showed to be lower in MetS obese than in healthy obese subjects. When
comparing MetS lean to healthy lean individuals, those affected by MetS had significantly higher body
fat percentage, despite no differences in BMI between both groups. Healthy obese study participants
presented as insulin resistant with significant differences in HOMA-IR values, when compared to
healthy lean individuals.
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Table 1. Clinical characteristics of study participants.

Feature Group 1 MetS
Obese (n = 8)

Group 2 “Healthy
Obese” (n = 8)

Group 3 MetS
Lean (n = 8)

Group 4 Healthy
Lean (n = 8) 1 vs. 2 p Value 3 vs. 4 p Value 2 vs. 4 p Value

Age (years) 47 ± 3 49 ± 7 49 ± 13 46 ± 4 0.8336 0.4005 0.4005

Waist circumference (cm) 121.50 ± 15.47 105.38 ± 15.47 85.13 ± 4.55 79.50 ± 8.11 0.0134 0.2434 0.0008

Triglycerides (mg/dl) 115.63 ± 25.59 100.13 ± 51.66 89.38 ± 39.54 68.88 ± 37.35 0.1722 0.2076 0.1275

HDL-C (mg/dl) 51.00 ± 13.98 53.00 ± 6.72 62.00 ± 23.11 64.13 ± 12.08 0.8335 0.4942 0.0736

Fasting plasma glucose (mg/dl) 106.75 ± 6.61 94.75 ± 4.65 105.38 ± 8.99 96.63 ± 6.19 0.0008 0.0582 0.5965

Systolic blood pressure (mmHg) 126 ± 16 124 ± 13 136 ± 13 113 ± 17 0.9581 0.0157 0.1715

Diastolic blood pressure (mmHg) 91 ± 7 81 ± 11 89 ± 9 79 ± 10 0.0262 0.1144 0.5990

HOMA-IR 4.87 ± 1.76 3.42 ± 0.88 2.66 ± 0.85 1.87 ± 0.79 0.0742 0.0587 0.0157

HOMA-β 155.12 ± 56.85 174.14 ± 74.51 89.10 ± 30.41 84.45 ± 32.48 0.7527 0.5995 0.0087

BMI (kg/m2) 39.79 ± 5.49 33.65 ± 2.40 24.09 ± 0.89 23.06 ± 1.47 0.0117 0.1409 0.0008

Body fat (%) 48.24 ± 6.65 40.31 ± 7.24 32.81 ± 3.15 28.98 ± 3.50 0.0587 0.0460 0.0063

VAT (cm3) 261.75 ± 90.55 180.88 ± 57.04 92.88 ± 26.87 67.75 ± 29.97 0.0742 0.1149 0.0008

SAT (cm3) 417.25 ± 117.19 378.63 ± 70.87 298.13 ± 56.38 244.00 ± 51.97 0.4945 0.0740 0.0023

VAT (%) 38.34 ± 8.24 32.03 ± 5.80 23.43 ± 3.73 21.00 ± 5.42 0.0929 0.4008 0.0033

SAT (%) 61.66 ± 8.24 67.97 ± 5.80 76.58 ± 3.73 79.00 ± 5.42 0.0929 0.4008 0.0033

VAT/SAT 0.63 ± 0.22 0.48 ± 0.13 0.31 ± 0.06 0.27 ± 0.09 0.1152 0.4008 0.0033

Values are means ± SD, statistical significance was calculated using the Mann–Whitney U-test. MetS, metabolic syndrome; HDL-C, high-density lipoprotein cholesterol; HOMA-IR,
homeostasis model-assessment of insulin resistance; HOMA-β, homeostasis model assessment of β-cell function; BMI, body mass index; VAT, visceral adipose tissue; SAT, subcutaneous
adipose tissue.
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2.2. Data Analysis

Differential expression analysis identified groups of genes with condition-dependent behavior.
Table 2 presents the number of up- and down-regulated genes after stringent statistical testing and
subsequent filtering of the results by fold change and P value. In the next step, the dataset for
each comparison was submitted to Ingenuity Pathway Analysis (IPA) software, which revealed the
enrichment in canonical pathways, and disease and function annotations. The results are presented
below, separately for each comparison.

Table 2. Filtering summary for all comparisons.

Comparison Genes with Altered Expression Up-Regulated Genes Down-Regulated Genes

MetS obese vs. “healthy obese” 902 440 462

MetS lean vs. healthy lean 973 482 491

“healthy obese” vs. healthy lean 808 542 266

2.2.1. Metabolic Syndrome (MetS) Obese vs. “Healthy Obese”

According to the IPA analysis, sequencing results for MetS obese showed significant enrichment
in canonical pathways related to inflammation and coagulation: “Granulocyte/Agranulocyte Adhesion
and Diapedesis”, “Coagulation System”, “Intrinsic Prothrombin Activation Pathway”, “Integrin
Signaling”. Few disease-specific pathways were also listed, including “Hepatic Fibrosis” and
“Atherosclerosis Signaling” (Table 3). The analysis of diseases and functions showed enrichment in
processes associated with inflammatory disease (severe inflammatory disorder, chronic inflammatory
disorder), cell-to-cell signaling and interaction (aggregation and binding of cells), hematological system
development and function (aggregation of blood cells, activation of blood platelets, coagulation of
blood), and organismal injury (arteriosclerosis).

2.2.2. MetS Lean vs. Healthy Lean

MetS lean individuals showed the upregulation of molecules associated with pro-inflammatory
and pro-thrombotic states: “Granulocyte/Agranulocyte Adhesion and Diapedesis”, “Coagulation
System”, “Extrinsic/Intrinsic Prothrombin Activation Pathway” (Table 4). Similarly, IPA disease or
function annotations included activation, aggregation and binding of blood platelets, adhesion of
vascular endothelial cells, and formation of blood clots.

2.2.3. “Healthy Obese” vs. Healthy Lean

The results of IPA analysis indicate the upregulation of genes within pathways involved in
protein synthesis, cellular growth and development, including “EIF2 Signaling”, “Regulation of
eIF4 and p70S6K Signaling” and “mTOR Signaling” (Table 5). Majority of genes belonging to
“Mitochondrial Dysfunction” and “Oxidative Phosphorylation” canonical pathways were also observed
to be up-regulated in “healthy obese” subjects, when compared to the healthy lean. Ingenuity
diseases and functions enriched in the dataset show the up-regulation of genes involved in processes
related to renal disease (chronic kidney disease), CVDs (peripheral arterial/vascular disease), and
mitochondrial deficiencies.
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Table 3. Enrichment in Ingenuity Canonical Pathways and Diseases or Functions Annotations among genes differentially expressed between MetS obese and “healthy
obese” individuals, where the majority of genes within each pathway are up-regulated. Down-regulated genes are underlined.

MetS Obese vs. “Healthy Obese”

Ingenuity Canonical Pathways Molecules p Value

Granulocyte Adhesion and Diapedesis
SELP, IL1B, MMP1, CXCL16, CLDN23, CLDN5, ITGB3, HRH2, PF4, CXCL5,

FPR3, CXCL9, HRH1, CDH5, TNFRSF11B <0.0001

γ-glutamyl Cycle OPLAH, CHAC1, GGT5, ANPEP 0.0004

Agranulocyte Adhesion and Diapedesis MYL9, CXCL16, SELP, PF4, IL1B, CXCL5, MMP1, CLDN5, CLDN23, HRH1, CDH5, CXCL9 0.0006

Glioma Invasiveness Signaling DIRAS3, FGFR2, PLAU, ITGB5, TIMP2, ITGB3, RND2 0.0009

Coagulation System F8, PROS1, F13A1, SERPINA1, PLAU 0.0010

Hepatic Fibrosis / Hepatic Stellate Cell Activation MYL9, PDGFA, IL1B, COL10A1, EGF, FGFR2, COL20A1, MMP1, TIMP2, CXCL9, TNFRSF11B 0.0025

Intrinsic Prothrombin Activation Pathway F8, PROS1, F13A1, COL10A1 0.0032

Atherosclerosis Signaling SELP, PDGFA, IL1B, COL10A1, SERPINA1, ALOX12, MMP1, CLU 0.0066

Integrin Signaling MYL9, ITGA2B, DIRAS3, ZYX, FGFR2, MYLK, CTTN, ITGB5, ITGB3, RND2, TTN 0.0083

Ingenuity Disease or Function Annotation Molecules p Value

Inflammatory Disease

severe inflammatory disorder ACSL1, ANPEP, CLU, FGFR2, HIST1H2BD, HIST1H2BK, HP, ITGA2B, PDE5A, PGLYRP1, PTGS1, PYGL,
SERPINA1, SLPI, SPARC, TIMP2, WNT11, ZYX, WNT9A <0.0001

chronic inflammatory disorder

ACSL1, ADM, ALOX12, ALPL, C3orf52, C4A/C4B, CLEC1B, CLU, COL10A1, CR1, CXCL5, CYP19A1,
EGF, FGFR2, GP1BA, GSDMC, HP, HRH2, IL1B, ITGB3, KCND3, MGAM, MGLL, MMP1, PDE5A, PI3,

PTGS1, RGS6, SELP, SLPI, SOCS3, TLR5, TRIM40, TRPM8, TUBA1A, TUBB1, WNT11,
AHI1, BSN, CXCL9, EIF3E, FLT3LG, HRH1, IL23A, NKD1, POMC, RGS1, RPL11, RPL31, RPS24, TNFRSF11B, VSIG4, WDR78, WNT9A

0.0003

Cell-To-Cell Signaling and Interaction binding of blood cells
C4A/C4B, CR1, GP1BA, GP6, IL1B, ITGA2B, ITGB3, PF4, PLAU, PTX3, SELP, SERPINA1, SIGLEC5, TLR5,

ULBP2, CD209, CXCL9, RGS1, RLN2 <0.0001

Hematological System Development and
Function

aggregation of blood cells
ALOX12, CLEC1B, F2RL3, GP1BA, GP6, ITGA2B, ITGB3, MYL9, PEAR1, PTX3, SELP, TIMP2,

CD209, CXCL9 <0.0001

activation of blood platelets CLEC1B, GP1BA, GP6, ITGB3, PDGFA, PF4, SELP <0.0001

coagulation of blood CLEC1B, F2RL3, GP1BA, GP6, ITGB3, PDGFA, PF4, PROS1, SELP, C4BPB <0.0001

Organismal Injury and Abnormalities arteriosclerosis
CA4, CACNA1E, CDR2L, CLU, EGF, HCAR2, HCAR3, HRH2, IL1B, ITGA2B, ITGB3, MGAM, PDE5A,

PF4, PLAU, PTGS1, SCN1B, SELP, SOCS3, SPARC, TIMP2, TMEM163, TUBA1A, TUBB1, VEPH1,
RGS1, TNFRSF11B, VSIG4

<0.0001
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Table 4. Enrichment in Ingenuity Canonical Pathways and Diseases or Functions Annotations among genes differentially expressed between MetS lean and healthy
lean individuals, where the majority of genes within each pathway are up-regulated. Down-regulated genes are underlined.

MetS Lean vs. Healthy Lean

Ingenuity Canonical Pathways Molecules p Value

Granulocyte Adhesion and Diapedesis CLDN5, SELP, PPBP, PF4, CCL22, MMP17, ITGB3, IL1A, CCL2, HRH4, ITGA4 0.0063

Extrinsic Prothrombin Activation Pathway F12, PROS1, F2 0.0091

Agranulocyte Adhesion and Diapedesis MYL9, CLDN5, SELP, MYL6, PPBP, PF4, CCL22, MMP17, IL1A, CCL2, ITGA4 0.0095

Coagulation System F12, PROS1, F2, F2R 0.0155

Intrinsic Prothrombin Activation Pathway F12, PROS1, F2 0.0417

Caveolar-mediated Endocytosis Signaling ITGA2B, ITGB5, ITGB3, DYRK3, ITGA4 0.0468

Ingenuity Disease or Function Annotation Molecules p Value

Organismal Injury and Abnormalities
blood clot ALOX12, BAAT, EPO, F12, F2, ITGA2B, ITGB3, PDE5A, PF4, PROS1, SELP, THBS1, F2R, PDE3B 0.0001

thrombus ALOX12, BAAT, EPO, F2, ITGA2B, ITGB3, PDE5A, PROS1, SELP, THBS1, F2R, PDE3B 0.0005

Inflammatory Response

activation of blood platelets F2, GP6, ITGB3, PF4, SELP, THBS1, F2R <0.0001

aggregation of blood platelets ALOX12, F12, F2, F2RL3, GP6, HBB, ITGA2B, ITGB3, MYL9, PRKG1, THBS1, F2R, RASGRP1 <0.0001

binding of blood platelets CCL22, F12, F2, GP6, ITGA2B, ITGB3, SELP 0.0002

Cardiovascular System Development and Function adhesion of vascular endothelial cells EGFL7, F2, ITGB3, PF4, PPBP, SELP, SPARC, THBS1, CCL2, F2R, IL1A, ITGA4, RICTOR, STAT1 <0.0001
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Table 5. Enrichment in Ingenuity Canonical Pathways and Diseases or Functions Annotations among genes differentially expressed between “healthy obese” and
healthy lean individuals, where the majority of genes within each pathway are up-regulated. Down-regulated genes are underlined.

“Healthy Obese” vs. Healthy Lean

Ingenuity Canonical Pathways Molecules p Value

EIF2 Signaling
RPL24, RPL11, RPS3A, RPS27, RPL22L1, RPL39, RPL26, RPL35A, RPL7, RPS7, RPL35, RPS20, RPL21, RPL31, EIF1AY, RPS24,

RPL34, RPS8, RPL30, RPL23, EIF3E, RPS29, RPL9, RPL27, RPS6, RPL26L1, RPS27L, RPL5, RPL6, RPS15A, RPS25, RPL41,
MT-TM, EIF2AK2

<0.0001

Regulation of eIF4 and p70S6K Signaling RPS3A, RPS27, ITGA2, RPS8, EIF3E, RPS29, RPS6, RPS7, RPS20, RPS27L, RPS25, RPS15A, EIF1AY, RPS24 <0.0001

Oxidative Phosphorylation NDUFS5, ATP5J, NDUFA4, COX7B, COX6C, NDUFA6, COX7C, ATP5L, NDUFB3, NDUFS4, UQCRB <0.0001

Mitochondrial Dysfunction NDUFS5, NDUFA4, ATP5J, COX7B, COX6C, NDUFA6, COX7C, ATP5L, NDUFAF2, NDUFB3, UQCRB, NDUFS4, MT-ND6 <0.0001

mTOR Signaling RPS3A, RPS27, RPS8, EIF3E, RPS29, RPS6, RPS7, RPS6KA6, RPS20, RPS27L, RPS25, RPS15A, RPS24, DIRAS3 <0.0001

Ingenuity Disease or Function Annotation Molecules p Value

Renal and Urological Disease chronic kidney disease
AIF1, ATP5J, CA3, CLEC2B, COX6C, COX7C, DBI, EEF1B2, GABRB3, GSTM1, LSM3, NDUFA6, NDUFS5, PFDN5, RPL23,

RPL34, RPL7, SNRPG, UQCRB, AVPR2, C3, CXCL12, SLC12A3 <0.0001

Cardiovascular Disease

intermediate disease stage peripheral
arterial disease CLEC2B, COX7C, EEF1B2, PFDN4, POLR2K, RPL9, SNRPG, SUB1, TOMM7, CXCL12 0.0020

peripheral arterial disease CLEC2B, COX7C, EEF1B2, PFDN4, POLR2K, RPL9, SNRPG, SUB1, THY1, TOMM7, CXCL12 0.0107

peripheral vascular disease
CA3, CLEC2B, COX7C, EEF1B2, GABRB3, LY96, PDCD10, PFDN4, POLR2K, RPL9, S100A12, SNRPG, SUB1, THY1, TOMM7,

CXCL12, KCNA5, SLC12A3 0.0123

Developmental Disorder
mitochondrial respiratory

chain deficiency
NDUFAF2, NDUFB3, NDUFS4, UQCRB, MT-ND6, MT-TS1 0.0031

Mitochondrial complex I deficiency NDUFAF2, NDUFB3, NDUFS4, MT-ND6 0.0053
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3. Discussion

The proposed study is the first to perform a detailed gene expression profiling with the use of next
generation sequencing technology to assess the differences in molecular mechanisms in peripheral
blood of patients with MetS depending on their degree of obesity.

Peripheral blood is an easily accessible material with a very low risk associated with its collection,
in contrast to invasive tissue biopsies. Blood interacts with every organ in the body and plays a key
role in inflammation, immunity, and physiological homeostasis. Molecular profiles of circulating
blood were suggested to reflect pathological events throughout the organism. Growing evidence
demonstrates the existence of gene expression signatures characteristic for certain disease phenotypes or
environmental influences [10–13]. Moreover, researchers compared the peripheral blood transcriptome
to gene expression patterns in nine different human tissues, demonstrating that more than 80% of
expressed genes are shared between blood and any of the tissues [14]. All these findings suggest that
circulating blood may serve as a reliable source of diagnostic biomarkers and potentially provide the
insight into molecular processes behind the condition under investigation, which is further confirmed
by the presented research. On the other hand, though, one of the key challenges of the analysis of
whole blood transcriptome is the overabundance of globin mRNA, which may decrease the ability
to detect transcripts with low expression levels. Several experimental protocols of globin depletion
have been proposed, which however significantly reduce the amount of extracted RNA following
depletion [15] and compromise the quality of the nucleic acid [16]. Any loss of RNA caused by
depletion might affect the sequencing data, particularly for samples with a limited amount of starting
material. Increasing the sequencing depth of coverage was suggested as a solution that replicates the
effect of experimental globin depletion [15] and thus was applied in this study. Another considerable
issue associated with the use of peripheral blood of patients in gene expression studies is RNA stability.
Studies report that RNA undergoes degradation already during collection and storage, thus affecting
the results of transcriptome analysis. Any additional procedure following sample acquisition, such as
peripheral blood cells preparation, involves a time delay before RNA stabilization and therefore may
expose blood cells to factors that trigger ex vivo changes in gene expression patterns, not related to the
condition under study [17,18]. The Food and Drug Administration addressed the problem of blood
transcriptome profiling standardization and approved the PAXgene system for whole blood collection
and RNA stabilization. In order to preserve high RNA quality and unchanged gene expression profile,
the presented study involved samples collected and stored using the PAXgene system.

RNA-seq was chosen as a method for transcriptome profiling in order to capture the whole-genome
gene expression levels. In contrast to targeted approaches such as real-time PCR, NGS provides the
information about all transcripts present in the sample and does not require any a priori knowledge
about gene expression patterns or transcript nucleotide sequences. Although the costs of sequencing
have decreased significantly since the first sequencers entered the market, the analyses are still highly
priced when compared to RNA-seq’s biggest competitor, i.e., microarray technology. The challenging
storage of huge amounts of data produced during sequencing runs and a very complex bioinformatic
analysis are two other major barriers next to the high cost of the sequencing that refrain most of the
researchers from choosing NGS as a method of transcriptome analysis. However, it was demonstrated
that RNA-seq detects more differentially expressed genes when compared to microarrays [19,20].
Moreover, the method is reported to be more sensitive in detecting low abundance transcripts and
genes with very high expression [21]. Unlike microarrays, it also avoids technical issues associated
with cross-hybridization, non-specific hybridization, or limited detection range for some probes [19].
Taking all mentioned benefits into consideration, RNA-seq appears to be a superior method for
transcriptome analysis, and therefore was applied in this project to study MetS patients. Regarding
computational analysis of transcriptomic data, we decided to focus on overrepresented biological
processes, functions, and pathways rather than on identifying individual genes, therefore traditional
P values were used to investigate molecules’ enrichment. An applied approach is consistent with
the work of other researchers, who investigated the skeletal muscle gene expression profile in MetS
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patients with the use of microarrays [22]. The analysis of pathway enrichment, in contrast to a single
gene approach, yields the information on the network of biological interactions, allowing to detect
changes at a higher biological level than individual genes or molecules, and thus contributing to a
better understanding of the complexity of the disease [23]. It also seems a reasonable choice, when
taking into account the limited statistical power of the study, resulting from low sample size, and the
nature of investigated condition. It should be noted that the recruitment of study participants posed a
significant challenge. Out of more than 1200 individuals, only 32 were eligible to take part in the study.
A strong association between age and metabolic health status was observed. Despite huge efforts from
our side to match individuals between groups with as many parameters as possible, the definition of
MetS remains extremely broad, and subjects, identified as affected by MetS, turned out to compose a
quite heterogeneous group. Future studies should not only aim at a significantly larger sample size but
also consider dividing MetS patients into subgroups, depending on which MetS definition criteria
they fulfill. In addition, our study focuses on gene expression only, which does not always reflect
protein levels. The analysis of proteome could yield additional information, allowing the studying of
mechanisms behind MetS in a more comprehensive way.

The enrichment analysis of data coming from samples of MetS study participants identified a
significant group of overrepresented pathways, related to the processes of inflammation, coagulation,
and thrombosis. Even though none of the pro-inflammatory markers are listed among MetS diagnosis
criteria, the link between these conditions has been confirmed by several studies [24,25]. Obesity,
as well as excessive nutrient intake, have been observed to contribute to the onset of inflammatory
state [26–28]. In addition to enhanced secretion of inflammatory cytokines, abnormalities related to
procoagulant factors were also noted in patients with MetS [29,30]. The activation of pro-inflammatory
and pro-thrombotic pathways, resulting in the onset of chronic inflammatory process in MetS obese
subjects, most probably affects the vascular system, causing the accumulation of fatty materials such
as cholesterol, subsequent artery walls thickening, and finally, the development of atherosclerosis.
Excess body weight is considered to be a major contributor to the activation of inflammatory and
coagulation processes in MetS patients, and the upregulation of these pathways was observed in
MetS obese when compared to “healthy obese” study participants. The results for the group of lean
individuals, however, suggest that MetS is related to the process of inflammation and thrombosis,
regardless of obesity. Obesity itself may act as a factor increasing the severity of the condition, so the
effects of obesity-induced and MetS-induced inflammation and thrombosis appears to add up in MetS
obese patients.

The analysis of differentially expressed genes between “healthy obese” and healthy lean study
participants revealed a significant up-regulation of pathways associated with protein synthesis,
including mTOR signaling pathway. Interestingly, growing evidence suggests that increased mTOR
signaling leads to alterations of cellular metabolic signaling, which in turn contributes to the
development of insulin resistance and obesity-related diseases, including diabetes, cardiovascular
disorders, and cancer [31]. mTOR signaling pathway has been reported to be frequently activated
in various tissues during conditions of excessive nutrient intake [32]. It has been noted that chronic
activation of mTORC1, one of the mTOR protein complexes, contributes to obesity by enhancing
excess fat accumulation in white adipose tissue, liver and muscle, which promotes insulin resistance.
This, in turn, leads to a reduced glucose uptake and glycogen synthesis in the liver and muscle,
and increased gluconeogenesis and glucose release by liver, further exacerbating hyperglycemia
and hyperinsulinemia generated by excess nutrients [33]. Additionally, persistent activation of
mTORC1-S6K1 signaling leads to pancreatic β-cell apoptosis through phosphorylation and subsequent
proteosomal degradation of insulin receptor substrate 2. It has been suggested as a contributing
mechanism as to how β-cell mass is decreased by chronic hyperglycemia in the pathogenesis of type
2 diabetes [34]. mTORC1 activity is enhanced by elevated levels of circulating pro-inflammatory
cytokines, insulin, and nutrients in obese animals. It not only contributes to the adipose tissue
expansion through the activation of lipogenic factors, but also promotes insulin resistance in adipose
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tissue through S6K1-mediated inhibition of insulin signaling [35]. Reduced activity of insulin in
adipose tissue likely exacerbates systemic insulin resistance by promoting free fatty acids release
by adipocytes, ectopic fat deposition, and lipotoxicity [36]. Enhanced protein synthesis triggered
by mTORC1 activation may also induce insulin resistance by promoting ER stress and the unfolded
protein response (UPR) [36,37]. Activated mTORC1 inhibits insulin signaling in muscles of obese
rodents fed a high-fat diet, which in turn reduces glucose uptake by the muscle, giving rise to systemic
insulin resistance [36]. Interestingly, conditions associated with increased mTORC1 activity, such as
high fat diet, obesity, and type 2 diabetes, all impair mitochondrial biogenesis and function in muscles.
Similarly to muscle and adipose tissue, mTORC1 activity was observed to be increased in the livers
of obese rodents, resulting in the degradation of insulin receptor substrate 1 and the onset of hepatic
insulin resistance [36]. A recent study by Uchinaka et al. reported that the activation of mTOR signaling
contributes to MetS pathophysiology and associated complications [38].

The majority of identified genes belonging to pathways related to oxidative phosphorylation
and mitochondrial dysfunction showed higher expression in “healthy obese” compared to healthy
lean individuals. The finding is consistent with the study by Gosh et al., who investigated peripheral
blood gene expression levels in obese subjects and demonstrated the up-regulation of oxidative
phosphorylation pathways [39]. Oxidative phosphorylation is a process of ATP production using
energy derived from the transfer of electrons, which takes place within mitochondria, the major
energy source for most cells [40]. When the structure and function of mitochondria remains intact, the
production of ROS is modest. In the case of mitochondrial dysfunction, ROS-mediated oxidative stress
overpowers the antioxidant defense system. The up-regulation of both pathways within differentially
expressed genes in our dataset may indicate increased energy demands or a substantial increase in ROS
generation in “healthy obese” individuals. Several studies reported a crucial role of oxidative stress
in the pathogenesis of cardiovascular disorders and type 2 diabetes [41]. It has been also suggested
as a secondary mechanism triggering inflammatory response in obese individuals [42] and most
importantly an early initiator of MetS [43]. All things considered, the results of our study largely
question the existence of a “healthy obese” phenotype. Even though “healthy obese” individuals
do not fulfill the criteria for MetS diagnosis, they seem to be just one step behind the obese with a
full-blown MetS.

To conclude, the analysis of a whole blood transcriptome turned out to be a potentially useful tool
for the assessment of metabolic health status. It revealed groups of genes with condition-dependent
behavior, providing a specific signature for each of the phenotypes under study. Peripheral blood,
thus, seems to reflect changes in biological processes in other tissues of human body. Moreover, MetS
appears to be related to mechanisms leading to the state of inflammation and changes in the vascular
system, independently of excess body weight. Finally, our results indicate that although “healthy
obese” do not fulfill the criteria for MetS diagnosis, they already seem to be affected by the disorder on
a molecular level. “Healthy obesity” could be then an intermediate state, with individuals presenting a
lower degree of metabolic abnormalities before they proceed to a full blown MetS.

4. Materials and Methods

4.1. Ethical Statement

The study protocol applied in present research project received approval of the local Ethic
Committee (R-I-002/35/2009 on January 29,2009; R-I-002/233/2015 on 28 May 2015) and complies with
good clinical practice guidelines. Written consent was obtained from all study participants.

4.2. Study Population

A population-based sample from the 1000PLUS cohort was enrolled in the present study, recruited
between 2007–2017 as described previously [44–46]. The study is registered at ClinicalTrials.gov
as NCT03792685. Individuals were recruited to four groups: lean with metabolic syndrome (MetS
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lean), obese with metabolic syndrome (MetS obese), “healthy obese”, and healthy lean, matched for
gender and age. Eventually, each of the groups under investigation was comprised of eight subjects.
Metabolic syndrome (MetS) was diagnosed in accordance with the harmonized definition established
by IDF, AHA, and NHLBI. Individuals were considered as affected by MetS when presenting any 3
of the 5 factors: central obesity (waist circumference ≥ 94 cm in men and ≥ 80 cm in women), high
triglycerides (≥ 150 mg/dL), reduced HDL-C (< 40 mg/dL in men, < 50 mg/dL in women), elevated
blood pressure (≥ 130/85 mmHg), or documented use of antihypertensive therapy, and high fasting
glucose (≥ 100 mg/dL) [1]. None of the subjects enrolled in the study were smokers. Out of all study
participants, three of them (one in each of the groups: MetS obese, MetS lean, healthy lean) were
treated with ACE inhibitors only (perindopril). Apart from metabolic health status, BMI as a measure
of obesity was also taken into account. In order to classify individuals as normal weight or obese,
thresholds proposed by WHO were used. BMI was defined as weight in kilograms divided by the
square of height in meters. Study participants with BMI below 25 were classified as normal weight,
subjects with BMI of 30 or more were considered obese.

4.3. Clinical Parameters

Physical examination and collection of blood samples from study participants were both conducted
on the same day. Anthropometric measurements were made, including height, weight, waist
circumference, and blood pressure. Bioelectrical impedance analysis was performed using Maltron
BioScan 920-2 (Maltron International Ltd., Essex, UK) in order to estimate body fat percentage and the
amounts of visceral and subcutaneous adipose tissue. Biochemical blood variables were also evaluated
by the Medical Laboratory at the Clinical Research Centre. The value of HOMA-IR was calculated
according to the formula: fasting insulin (µU/mL) × fasting glucose (mg/dL)/405.

4.4. Sample Collection and RNA Extraction

Blood samples required for RNA extraction were collected into PAXGene Blood RNA tubes
(Qiagen, Hilden, Germany) using BD Vacutainer Safety-Lok blood collection set (Becton Dickinson,
Franklin Lakes, NJ, USA) and incubated 2 h at room temperature after being inverted 8 to 10 times.
The tubes were further stored in −20 ◦C for 24 h and then moved to −80 ◦C until needed. PAXGene
Blood RNA tube was always the last tube drawn during phlebotomy procedure.

Total RNA was purified from 2.5 mL of human whole blood drawn to PAXgene Blood RNA
Tube (Qiagen, Hilden, Germany) with the use of PaxGene Blood RNA Kit (Qiagen, Hilden, Germany)
according to manufacturer’s instructions. The quality of isolated nucleic acid was examined with
Agilent 2200 TapeStation instrument (Agilent Technologies, Santa Clara, CA, USA). Fluorescence-based
quantitation method was applied to determine the concentration of extracted RNA, which was
measured with the use of Qubit RNA BR Assay and Qubit 3.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA).

4.5. NGS Library Construction and Sequencing

Libraries were constructed using TruSeq Stranded mRNA Library Prep Kit (Illumina, San Diego,
CA, USA) following manufacturer’s instructions (part# 15031047 Rev. E). DNA libraries were further
quantified using Qubit 3.0 fluorometer and Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA). Quality control analysis assessing size distribution and purity of each library
was conducted with 2200 TapeStation Instrument and D1000 reagents (Agilent Technologies, Santa
Clara, CA, USA). Indexed libraries were further normalized using Tris-HCl pH 8.5 with 0.1% Tween to
achieve the concentration of 10 nM, and then pooled in equal volumes. Before sequencing, libraries
were denatured and diluted to the concentration of 1.8 pM. A sequencing control library, derived
from bacteriophage PhiX genome, was added as a 1% spike-in to each sequencing run to provide
an in-run control and balanced fluorescent signals at each cycle improving the overall run quality.
A 76-cycle paired-end sequencing runs were conducted on the NextSeq500 platform (Illumina, San
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Diego, CA, USA) loaded with NCS software (version 1.4). In each sequencing run, a pool of samples
was sequenced on four lanes of the flowcell. Raw data in the form of base call files were demultiplexed
and converted to fastq files upon completion of each run using BaseSpace Onsite v2.0 (Illumina, San
Diego, CA, USA). Sequencing Analysis Viewer v1.11 software (Illumina, San Diego, CA, USA) was
used to determine the quality of each sequencing run. RNA-seq data were deposited in the Gene
Expression Omnibus (GEO) database (accession number: GSE145412).

4.6. Data Preprocessing and Normalization

The reads obtained from the sequencer were aligned against the Homo sapiens reference genome
(Ensembl GRCh37 release) with STAR version 2.5.1b using the 2-pass alignment mode. HTSeq-count
analysis was performed to calculate the percentage of reads within different genomic regions [47]. After
alignment reads were annotated based on information derived from University of California, Santa
Cruz (UCSC) Genome Browser [48]. The number of reads within each gene was counted using HTSeq
tool version 0.5.4p3 [47]. The counts were further normalized with the TMM normalization method of
the edgeR R/Bioconductor package (R version 3.2.0, Bioconductor version 3.1, Buffalo, NY, USA). For
statistical testing, data were log transformed using the voom approach in the R Limma package.

4.7. Differential Expression Analysis

Following comparisons were performed to detect deferentially expressed genes between
study groups:

- MetS obese vs. “healthy obese”
- MetS lean vs. healthy lean
- “Healthy obese” vs. healthy lean

Before statistical testing, genes with less than 20 reads across all samples were filtered out.
Statistical testing was performed using Limma, which applies linear modelling with a modified t-test
to calculate P values and fold changes. In the next step, filtering was performed in order to list genes
that show the strongest evidence for being differentially expressed between compared groups. Fold
change of 1.5 and p value of 0.05 were used as filtering criteria for each comparison.

4.8. Pathway Enrichment Analysis

The lists of differentially expressed genes were submitted to Ingenuity Pathway Analysis (IPA)
software (spring release 2017, Qiagen, Hilden, Germany). Each gene symbol was mapped to its
corresponding gene object in the Ingenuity Knowledge Base. IPA pathway analysis identified canonical
pathways, diseases, and functions overrepresented in each dataset. The significance of the overlap
between experimental dataset and Ingenuity canonical pathway was determined based on a p value
calculated using a right-tailed Fisher’s exact test.
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