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Abstract: Inflammasomes are intracellular multiple protein complexes that mount innate immune 
responses to tissue damage and invading pathogens. Their excessive activation is crucial in the 
development and pathogenesis of inflammatory disorders. Microtubules have been reported to 
provide the platform for mediating the assembly and activation of NLRP3 inflammasome. Recently, 
we have identified the microtubule-associated immune molecule guanine nucleotide exchange 
factor-H1 (GEF-H1) that is crucial in coupling microtubule dynamics to the initiation of 
microtubule-mediated immune responses. However, whether GEF-H1 also controls the activation 
of other immune receptors that require microtubules is still undefined. Here we employed GEF-H1-
deficient mouse bone marrow-derived macrophages (BMDMs) to interrogate the impact of GEF-H1 
on the activation of NLRP3 inflammasome. NLRP3 but not NLRC4 or AIM2 inflammasome-
mediated IL-1β production was dependent on dynamic microtubule network in wild-type (WT) 
BMDMs. However, GEF-H1 deficiency did not affect NLRP3-driven IL-1β maturation and secretion 
in macrophages. Moreover, α-tubulin acetylation and mitochondria aggregations were comparable 
between WT and GEF-H1-deficient BMDMs in response to NLRP3 inducers. Further, GEF-H1 was 
not required for NLRP3-mediated immune defense against Salmonella typhimurium infection. 
Collectively, these findings suggest that the microtubule-associated immune modulator GEF-H1 is 
dispensable for microtubule-mediated NLRP3 activation and host defense in mouse macrophages. 
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1. Introduction 

The mammalian immune system uses a variety of pattern recognition receptors (PRRs) located 
at the extracellular space as well as many subcellular compartments to detect pathogens, host damage 
signals, or cellular stressors and initiate innate inflammatory responses for host defense [1]. Among 
these receptors, inflammasomes are cytosolic multi-protein complexes that consist of an 
inflammasome recognition molecule, the adaptor component ASC (encoded by Pycard in mouse), and 
the effector cysteine protease caspase-1 (encoded by Casp1 in mouse) [2]. Upon the protein complexes 
have assembled, the inflammasomes activate caspase-1, which is essential for the proteolytical 
maturation of pro-IL-1β and secretion of bioactive IL-1β [3]. In addition, inflammasome activation 
also leads to gasdermin D-mediated pyroptosis, which rapidly limits cell damage and pathogen 
replication by forming membrane pores [4]. 
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To date, NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome 
is the most intensively described inflammasome since the discovery of inflammasomes in 2002 [2,5]. 
NLRP3 senses alterations in cellular homeostasis that occur as a result of intracellular microbial 
infection or accumulation of crystalline materials [6]. Increasing evidence in human data and 
experimental mouse studies have indicated that the abnormal activation and signaling of NLPR3 
inflammasome are responsible for the initiation and progression of deleterious autoinflammatory 
diseases and common human diseases, such as type 2 diabetes or gout, driven by metabolic 
dysregulation or formation of crystal aggregations [5,7,8]. Thus, it is critical to identify important 
interacting or regulatory molecules of NLRP3 activation for the development of potential 
therapeutics.  

Microtubules belong to the cytoskeleton components that are crucial in innate immunity and 
cell-autonomous restriction of microbial pathogens in addition to their well-known roles in cell 
division, migration, and morphology [9]. It has been reported that the disruption of microtubules 
attenuates NLRP3 inflammasome activation [10,11]. The assembly of NLRP3 inflammasome and 
adaptor ASC requires the accumulation of acetylated α-tubulin on the microtubules to create optimal 
sites near the endoplasmic reticulum [10,11]. Further, a centrosomal kinase NIMA-related kinase 7 
(NEK7), which controls microtubule nucleation, is an essential component of NLRP3 activation [12–
14]. Another study also indicates microtubule-affinity regulating kinase 4 (MARK4) governs the 
positioning of NLRP3 for its activation [15]. Together, these results highlight the importance of 
microtubule dynamics in the control of NLRP3-driven innate immunity. 

The guanine nucleotide exchange factor-H1 (GEF-H1), encoded by Arhgef2 in mouse, is a 
microtubule-associated protein that promotes the activation of RhoA guanosine triphosphatases 
(GTPases) [16]. The activation of GEF-H1 has been linked to several cellular processes, such as cell 
shape, polarization, differentiation, movement, cell cycle regulation, and epithelial barrier 
permeability by coupling microtubule dynamics to RhoA GTPase activation [17]. Moreover, 
alteration of GEF-H1 activity is implicated in the pathogenesis of cancer [18,19]. In addition, GEF-H1 
is activated and released from microtubules upon the intracellular binding of bacterial effectors 
[20,21] and subsequently contributes to the recognition of intracellular bacteria through cytosolic 
pattern recognition receptors NOD1 and NOD2 [20,22,23]. We have further shown that GEF-H1 
mediates the microtubule-dependent sensing of RNA viral infection by RIG-I-like receptors to initiate 
innate antiviral responses [24]. GEF-H1-deficient mice are more susceptible to influenza virus 
infection due to severe inflammation in the lungs [24]. These results established the vital role of GEF-
H1 in innate immune responses and host defense. However, it is still unclear whether GEF-H1 
universally regulates all cytoplasmic PRRs that require microtubules for their activation and 
subsequent immune responses.  

In this study, we utilized bone marrow-derived macrophages (BMDMs) isolated from wild-type 
(WT) and GEF-H1-deficient (Arhgef2-/-, -/-) mice and several inflammasome activators to investigate 
the molecular contribution of GEF-H1 on the activation of microtubule-dependent NLRP3 
inflammasome. We found that GEF-H1 is not crucially involved in NLRP3 inflammasome-mediated 
IL-1β secretion as well as caspase-1 processing. The acetylation of α-tubulin and mitochondria 
aggregations do not require GEF-H1 in BMDMs incubated with NLRP3 stimuli. Further, GEF-H1 is 
dispensable for innate immune defense against Salmonella typhimurin infection, which activates the 
NLRP3 inflammasome. Thus, the microtubule-associated immune modulator GEF-H1 does not 
contribute to microtubule-mediated NLRP3 inflammasome activation and immune defense in 
macrophages. 

2. Results 

2.1. Dynamic Microtubule Network Controls NLRP3 Inflammasome-Mediated IL-1β Production 

To confirm that the microtubule network mediates NLRP3 inflammasome activation, we 
stimulated BMDMs isolated from WT C57BL/6 mice with chemicals (nocodazole or colchicine) that 
inhibit microtubule polymerization followed by determining the expression of IL-1β in response to 
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combinations of lipopolysaccharide (LPS) and various NLRP3 stimuli. Consistent with previous 
studies [10,11], activation of NLRP3 inflammasome by soluble stimulus nigericin or particulate 
matter alum resulted in robust secretion of Il-1β from WT BMDMs, which was attenuated in cells 
incubated with microtubule-disrupting nocodazole or colchicine (Figure 1A). In contrast, incubation 
of nocodazole or colchicine in WT macrophages did not suppress the production of Il-1β in response 
to flagellin, an NLR family CARD domain-containing protein 4 (NLRC4) inflammasome activator or 
an absent in melanoma-2 (AIM2) inflammasome activator double-stranded DNA poly(dA:dT) 
(Figure 1B). Moreover, disruption of the actin network, another major cellular cytoskeleton, by 
cytochalasin D treatment only suppressed the alum activation of NLRP3 inflammasome that requires 
functional phagocytosis pathways [25]. In contrast, disruption of actin network prevented neither 
phagocytosis-independent stimulus-mediated IL-1β secretion of NLRP3 inflammasome nor NLRC4 
inflammasome or AIM2 inflammasome in WT macrophages (Figure 1). In summary, these results 
highlight the specific role of the microtubule network in the activation of NLRP3 inflammasome in 
response to both soluble and insoluble inducers. 

 
Figure 1. Disruption of the microtubule network suppresses the activation of NLRP3 inflammasome. 
ELISA of IL-1β in culture supernatants of LPS-primed bone marrow-derived macrophages (BMDMs) 
pretreated with or without microtubule or actin disruptors followed by (A) NLRP3, (B) AIM2 or 
NLRP4 inflammasome inducers. n = 3 independent experiments per group. Data represent the mean 
± SD. Statistical analyses were performed using one-way ANOVA with Turkey’s multiple 
comparisons. **, p < 0.01. 

2.2. Deficiency of GEF-H1 Does Not Affect the Secretion of IL-1β in Response to NLRP3 Inflammasome 
Inducers 

Colchicine is an effective and frequently used drug that inhibits microtubule polymerization for 
the treatment of gout flare [26]. Notably, colchicine has been shown to attenuate the production of 
IL-1β in response to MSU-induced NLRP3 activation [10]. Given microtubule-associated immune 
molecule GEF-H1 is released upon the treatment of microtubule destabilization agent colchicine 
[17,19], this prompted us to perform a detailed investigation of NLRP3 inflammasome activation in 
WT and GEF-H1-deficient macrophages. We first examined the expression of core NLRP3 
inflammasome components in both WT and GEF-H1-deficient BMDMs. The expression level of 
NLPR3, ASC, and proCaspase-1 mRNA (Figure 2A) and protein (Figure 2B) was similar in 
macrophages derived from Arhgef2-/- mice and wild-type littermates before stimulation, 
demonstrating GEF-H1 was not involved in the expression of NLRP3 inflammasome components at 
the transcriptional and translational level. We then examined NLRP3 inflammasome activation in 
WT and Arhgef2-/- bone marrow macrophages primed with LPS followed by nigericin stimulation. As 
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a specificity control, we also determined the activation of NLRC4 inflammasome and AIM2 
inflammasome in WT and GEF-H1 knockout macrophages that are known to be independently of 
microtubule network [11]. As expected, the level of IL-1β production was comparable between WT 
and GEF-H1 knockout BMDMs after incubation with stimuli, such as flagellin and poly(dA:dT) 
known to induce microtubule-independent inflammasome pathways (Figure 2C). Treatment of LPS-
primed macrophages with NLRP3 inflammasome activator led to IL-1β secretion (Figure 2C). 
Surprisingly, upon NLRP3 activation, we did not observe any significant differences in IL-1β 
secretion among WT and GEF-H1-deficient macrophages (Figure 2C). Inflammasome-mediated IL-
1β is synthesized as an inactive precursor (pro-IL-1β) and requires post-translational processing by 
caspase-1 for the generation of mature and active IL-1β [3]. Upon inflammasome activation, inactive 
pro-caspase-1 is converted to active caspase-1 via dimerization, followed by autocatalysis that 
generates an active molecule composed of two large and two small subunits [3]. We observed that 
the activation of caspase-1 was also nearly identical between WT and Arhgef2-/- BMDMs as 
determined by caspase-1 cleavage and secretion (Figure 2D). Further, NLRP3-mediated caspase-1 
activation leads to pyroptosis in macrophages that can be measured by the released lactate 
dehydrogenase (LDH) activity in the cell culture supernatants. Consistent with the pattern of 
caspase-1 processing, the level of LDH release of primed WT and GEF-H1-deficient macrophages in 
response to nigericin was comparable (Figure 2E). Together, these results suggest that NLRP3-
mediated IL-1β secretion, caspase-1 processing, and cell death were not regulated by GEF-H1 
expression in mouse macrophages. 

 
Figure 2. GEF-H1 is not required for NLRP3-mediated IL-1β secretion, capase-1 processing, and LDH 
release in LPS-primed macrophages incubated with nigericin. (A) Quantitative RT-PCR analysis of 
Nlrp3, Pycard, and Casp1 mRNA expression in untreated wild-type (WT) and Arhgef2-/- bone marrow 
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macrophages. Values are normalized to the expression of Gapdh. (B) Representative western blot 
analysis of NLRP3, ASC, and Pro-Caspase-1 (ProCasp1) in untreated WT and Arhgef2-/- (-/-) BMDMs. 
(C) IL-1β released by LPS-primed WT and Arhgef2-/- BMDMs treated with NLRP3, AIM, or NLRC4 
inflammasome inducers. (D) Representative western blot analysis of pro-caspase-1 (Casp1 p45), 
active-caspase-1 subunit p20 (Casp1 p20), and ASC in the supernatants or cell lysates of LPS-primed 
WT and Arhgef2-/- (-/-) BMDMs left unstimulated or incubated with indicated inflammasome 
activators. (E) LDH released by LPS-primed WT and GEF-H1-deficient BMDMs incubated with 
nigericin. n = 3 independent experiments per group. Data represent the mean ± SD. Statistical analyses 
were performed using an unpaired two-tailed t-test. 

2.3. GEF-H1 Is Not Required for α-Tubulin Acetylation and Mitochondria Redistribution in LPS-Primed 
Macrophages Incubated with NLRP3 Inducer 

Microtubules are the well-known platforms for mediating the intracellular transport of various 
organelles [27]. Published studies have shown that microtubule α-tubulin acetylation is an essential 
regulator of NLRP3 activation [11]. Moreover, microtubule acetylation promotes the accessibility of 
microtubule-associated proteins to microtubules [28]. We first transfected plasmids encoding GEF-
H1 in COS-7 cells and examined the level of α-tubulin acetylation (Figure 3A). GEF-H1 
overexpression led to increased acetylation of α-tubulin, indicating that GEF-H1 may involve in the 
regulation of α-tubulin acetylation in COS-7 cells. To extend the previous observation that GEF-H1 
does not influence NLRP3 inflammasome activation, we determined if GEF-H1 is required for the 
acetylation of α-tubulin during NLRP3 activation in macrophages. Interestingly, western blot 
analysis did not show any alteration of total or acetylated α-tubulin in LPS-primed GEF-H1-deficient 
BMDM in response to NLRP3 inflammasome activator when compared to WT BMDM (Figure 3B), 
suggesting that GEF-H1 was not essential or required for microtubule acetylation in mouse 
macrophages. 

It has been reported that acetylation of α-tubulin controls the assembly of the inflammasome 
complex, particularly NLRP3 [11]. In addition, microtubule motor protein dynein facilitates ASC on 
mitochondria moving toward NLRP3 on the endoplasmic reticulum in response to NLRP3 
inflammasome activators [11]. Considering GEF-H1 binds to the dynein motor on microtubules [29], 
we therefore addressed whether GEF-H1 affects mitochondrial distribution in macrophages with or 
without NLRP3 inflammasome inducers. Immunofluorescence staining showed that mitochondria 
evenly distributed in the cytosol of both unstimulated WT and GEF-H1-deficient macrophages. 
Treatment of nigericin further promoted the aggregation of mitochondria located at the perinuclear 
region of WT and GEF-H1-deficient macrophages, indicating GEF-H1-deficiency did not affect the 
localization and distribution of mitochondria upon NLRP3 inflammasome activation (Figure 3C). 
Together, our results suggested that GEF-H1 is not involved in the acetylation of α-tubulin nor the 
redistribution of mitochondria in LPS-primed macrophages incubated with NLRP3 inducer nigericin. 
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Figure 3. GEF-H1 is not involved in α-tubulin acetylation and mitochondria redistribution in LPS-
primed macrophages incubated with nigericin. (A) Representative western blot analysis of acetylated 
α-tubulin in GEF-H1-overexpressed COS-7 cells. (B) Representative western blot analysis of α-tubulin 
acetylation in LPS-primed BMDMs left unstimulated or stimulated with nigericin. (C) Representative 
immunofluorescence images of mitochondria distribution in LPS-primed BMDMs left unstimulated 
or stimulated with nigericin. Data are from one experiment representative of three independent 
experiments. 

2.4. GEF-H1 Is Dispensable for the Immune Defense against Salmonella typhimurim Infection in 
Macrophages 

Thus far, we found no evidence of the involvement of microtubule-associated GEF-H1 in the 
activation of NLRP3 inflammasome. In addition to the maturation and secretion of IL-1β, the 
activation of inflammasomes also mounts an innate immune defense against microbial infection in 
macrophages. To further assess the role of GEF-H1 in inflammasome-mediated host defense, we 
subjected WT and Arhgef2-/- BMDMs to Salmonella pathogenicity island 1 (SPI-1) type 3 secretion 
system (T3SS)-independent Salmonella enterica serovar Typhimurium (S. typhimurium) infection that 
drives activation of the NLRP3 inflammasome [30]. S. typhimurim grown to stationary phase, which 
resulted in the reduced expression of SPI-1 [31], elicited similar amounts of IL-1β released from 
cultured WT and Arhgef2-/- BMDMs at 16-h post-infection (Figure 4A). The extent of IL-1β secretion 
was correlated with the processing of capsase-1 to its active form caspase-1 p20 subunit as determined 
by western blotting in the culture supernatants (Figure 4B) of WT and GEF-H1-deficient 
macrophages. Moreover, WT and Arhgef2-/- BMDMs contained similar numbers of bacteria at 3-h 
post-infection (Figure 4C). Similarly, we did not observe any difference in LDH release between WT 
and GEF-H1-deficient macrophages upon S. typhimurim infection (Figure 4D). Together, these results 
indicate that GEF-H1 is not critical for NLRP3-mediated immune defense against S. typhimurim 
infection in macrophages. 
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Figure 4. GEF-H1 has minimal impact on immune defense against S. typhimurium infection. (A) IL-1β 
released by LPS-primed WT and GEF-H1-deficient BMDMs infected with S. typhimurim at different 
MOI. (B) Representative western blot analysis of pro-caspase-1 (Casp1 p45), active-caspase-1 subunit 
p20 (Casp1 p20), and ASC in the supernatants or cell lysates of LPS-primed BMDMs left unstimulated 
or infected with S. typhimurim at indicated MOI. (C) LDH released by LPS-primed WT and GEF-H1-
deficient BMDMs infected with S. typhimurim (MOI = 10) at different time points. (D) Intracellular 
CFU was measured by a gentamicin protection assay in LPS-primed WT and GEF-H1-deficient 
BMDMs infected with S. typhimurim at MOI = 10 for 3 h. n = 3 independent experiments per group. 
Data represent mean ± SD. Statistical analyses were performed using unpaired two-tailed t-test. 

3. Discussion 

In the current study, we aimed to evaluate the impact of GEF-H1 and cell cytoskeletons on 
NLRP3 inflammasome activation in mouse macrophages. We demonstrate that the activation of 
NLRP3 inflammasome depends on intact microtubule networks. In contrast, neither AIM2 
inflammasome nor NLRC4 inflammasome requires microtubules for IL-1β secretion. We also showed 
that the actin network is required for phagocytosis-dependent activation of NLRP3 inflammasome. 
In contrast, the actin network is dispensable for phagocytosis-independent NLRP3, NLRC4, and 
AIM2 inflammasome activation in BMDMs. Furthermore, GEF-H1 deficiency has minimal impact on 
NLRP3-driven IL-1β maturation and caspase-1 processing as well as NLRP3-mediated immune 
response against S. typhimurium infection in mouse bone marrow macrophages. 

The importance of microtubule dynamics has been suggested in the initiation of RLR-mediated 
[24] or NLRP3-dependent innate immune responses [10,11] in mouse macrophages. While the 
microtubule-associated immune modulator GEF-H1 is crucial for RLR-mediated signaling [24], data 
presented in the current study suggest that GEF-H1 is not critically involved in the regulation of 
NLRP3 activation and immune defense. Moreover, several studies have indicated that α-tubulin 
acetylation facilities the NLRP3 inflammasome assembly and activation [11,32]. Although we did 
find the overexpression of GEF-H1 in COS-7 cells leads to increased α-tubulin acetylation, this post-
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translational modification of microtubules is independent of GEF-H1 for NLRP3 inflammasome 
activation in macrophages incubated with NLRP3 inducers. Furthermore, we also demonstrated that 
the cell cytotoxicity of WT and GEF-H1-deficient macrophages in response to NLRP3 inducers and S. 
typhimurium are comparable. GEF-H1 may therefore minimally impact the activation of NLRP3-
dependent gasdermin D for pryoptosis in macrophages. Thus, one can anticipate that the activation 
of NLRP3 inflammasome more likely depends on other microtubule-associated proteins, such as 
microtubule-affinity regulating kinase 4 (MARK4) [15]. 

Whether GEF-H1 controls the activation of other inflammasomes remains to be explored. Similar 
to what we observed that colchicine abrogates NLRP3-dependent IL-1β release, a recent study has 
found that colchicine also suppresses the release of pyrin inflammasome-mediated IL-1β in a RhoA-
dependent manner [33–35]. Given that colchicine treatments are known to induce the release of GEF-
H1 from microtubules [19] and GEF-H1 is the specific activator for RhoA [16,17], it would be critical 
to examine whether GEF-H1 regulates the pyrin inflammasome activation that plays a critical role in 
pyrin-mediated autoinflammatory disorders such as familial Mediterranean fever (FMF) and 
hyperimmunoglobulinemia D syndrome (HIDS) [33,36]. Intriguingly, upon the pyrin inflammasome 
activation, GEF-H1-deficient BMDMs secreted significantly higher IL-1β in the cell supernatants 
when compared to those of WT BMDMs suggesting that GEF-H1 may play a regulatory role in the 
pryin inflammasome activation (Supplementary Figure 1). A more detailed analysis of the interaction 
among the pyrin inflammasome, RhoA, and GEF-H1 is required to further delineate the underlying 
mechanisms.  

Inflammasome-mediated innate immune response is critical for host defense against S. 
typhimurium because mice lacking Nlrp3, Nlrc4, caspase-1, and IL-1β are highly susceptible to S. 
typhimurium infection [30,37,38]. S. typhimurium translocates bacterial virulence factors and small 
amount of flagellin by type III secretion system (T3SS) to induces capase-1 activation via both the 
NLRP3 inflammasome [30] and NLRC4 inflammasome [39]. In the current study, we have observed 
that the deficiency of GEF-H1 does not affect the immune response and susceptibility of BMDMs in 
response to S. typhimurium infection. These results further establish the dispensable role of GEF-H1 
in innate immune defense against S. typhimurium infection in murine macrophages.  

Together, our studies unravel a dispensable role of GEF-H1 in regulating NLRP3 inflammasome 
activation and immune defense against S. typhimurium in mouse macrophages. Future work is 
required to identify the critical molecules that differentially control either microtubule-based or 
microtubule-independent inflammasome activation for developing better therapeutic strategies to 
inflammasome-mediated inflammatory diseases.  

4. Materials and Methods 

4.1. Mice 

Arhgef2-/- C57BL/6 mice were generated as previously described [24] and were obtained from 
Hans-Christian Reinecker (Massachusetts General Hospital, Harvard Medical School). WT C57BL/6 
mice were obtained from the National Laboratory Animal Center (NLAC), NARLabs (Tainan, 
Taiwan). All animals were bred and housed at National Taiwan University Animal Resource Center 
under specific pathogen-free (SPF) conditions according to institutional guidelines. All experiments 
were carried out on female mice at 8- to 12-week old with protocols approved by the Institutional 
Animal Care and Use Committee (IACUC) at National Taiwan University (approval code: NTU-103-
EL-68, 1 November 2014). 

4.2. Bone Marrow-Derived Macrophages, COS-7 Cells, and Plasmid 

Bone marrow-derived macrophages (BMDM) were generated by flushing bone marrow cells 
from femurs and tibia of WT and Arhgef2-/- mice followed by depleting erythrocytes using 
Ammonium-Chloride-Potassium (ACK) lysis buffer (Gibco), passing cells through a 70 μM cell 
strainer. Resuspending cells in DMEM (Gibco) supplemented with 10% FBS (Gibco), 1% 
penicillin/streptomycin (Gibco), and 20 ng/mL M-CSF (eBioscience). COS-7 cells were purchased 
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from Bioresource Collection and Research Center (BCRC) and cultured by DMEM supplemented 
with 10% FBS (Gibco) and 1% penicillin/streptomycin (Gibco). Cells were maintained at 37 °C, 5% 
CO2 for six days before experiments. Plasmid encoding GEF-H1 (pCMV6-Entry-hGEF-H1) was 
purchased from Origene. 

4.3. Treatments and Measurement of Il-1β 

WT or GEF-H1-deficient BMDMs were seeded in 6-well plates at 2 × 106/well with serum-free 
DMEM overnight at 37 °C, 5% CO2. BMDMs were then primed with or without 100 ng/mL LPS 
(Invivogen) in serum-free DMEM at 37 °C, 5% CO2 for 6 h followed by incubation with the 
inflammasome activators for 6 h: 1 μg/mL poly(dA:dT) (Invivogen) complexed with lipofectamine 
2000 (Invitrogen), 1 μg/mL flagellin (Invivogen) complexed with lipofectamine 2000 (Invitrogen), 5 
μM nigericin (Invivogen) complexed with lipofectamine 2000 (Invitrogen), or 0.4 mg/mL alum crystal 
(Invivogen) (Invitrogen). In the disruption of cytoskeleton experiments, BMDMs were first pretreated 
with 10 μM nocodazole (Sigma), 10 μM colchicine (Sigma), or 5 μM cytochalasin D (Sigma) for 1 h 
followed by the aforementioned stimulus. BMDM cell supernatants were collected and centrifuged 
at 3000 rpm for 5 min to remove debris. The concentration of Il-1β in supernatants was measured 
using commercial enzyme-linked immunosorbent assay (ELISA) kits (R&D system) based on the 
manufacturer’s instructions. 

4.4. Immunoblotting 

BMDMs were lysed as previously described [24] and protein concentrations were measured by 
BCA protein assay kit (Pierce). Cleared lysates were separated by 12% SDS-PAGE followed, 
transferred onto PVDF membranes (Millipore) and then blocked for 1 h at room temperature with 
5% nonfat dried milk in PBST (phosphate-buffered saline, 0.1% Tween-20). Membranes were then 
probed with antibodies against GEF-H1 (abcam, Cat. #ab155785, 1:1000), NLRP3 (Adipogen, Cat. # 
AG-20B-0014-C100, 1:2000), ASC (santa cruz, Cat. #sc-22514-R, 1:1000), caspase-1 (santa cruz, Cat. #sc-
514, 1:1000), acetylated α-tubulin (cell signaling, Cat. #5335, 1:1000), total α-tubulin (abcam, Cat. 
#ab4074, 1:1000) and β-actin (cell signaling, Cat. #3700, 1:10000) for 16 h at 4 °C. Peroxidase-
conjugated goat anti-rabbit (Jackson ImmunoResearch Laboratories, Cat. #111-035-003, 1:10000), goat 
anti-mouse (Jackson ImmunoResearch Laboratories, Cat. #115-035-003, 1:10000), donkey anti-goat 
(Jackson ImmunoResearch Laboratories, Cat. #705-035-003, 1:10000) antibodies were used as 
secondary antibodies according to the sources of first antibodies for 1 h at room temperature. 

For detection of cleaved caspase-1 in BMDM supernatants. Supernatants were collected and 
transferred into Vivaspin 500 Protein Concentrator columns (GE Healthcare) and centrifuged at 
14,000 rpm at 4 °C until the remaining volume in the column was less than 100 μL. The concentrated 
supernatants were transferred into microcentrifuge tubes and diluted the samples with 4× Laemmli 
Sample Buffer (BioRAD). The volume of each sample was adjusted equally by adding 1× Laemmli 
Sample Buffer (BioRAD). Samples were separated by 14% SDS-PAGE followed by immunoblotting 
using an antibody against caspase-1 (Adipogen, 1:1000) for 16 h at 4 °C. Peroxidase-conjugated goat 
anti-mouse (Jackson ImmunoResearch Laboratories, 1:10000) was used as a secondary antibody for 1 
h at room temperature. Uncropped images are shown in the Supplementary Figures 2–6. 

4.5. Detection of Lactate Dehydrogenase (LDH) Release 

Cell death was assessed by measuring the release of LDH in BMDMs. Released LDH in BMDM 
cell culture supernatants was analyzed by CytoTox96 cytotoxicity assay (Promega). The percentage 
of LDH release was calculated as 100 × [(experimental LDH release; medium background) / 
(maximum LDH release; medium background)]. 

4.6. Quantitative RT-PCR (qRT-PCR) 

Total RNA from WT and GEF-H1-deficient BMDMs was extracted by TRIzol (Invitrogen). 1 μg 
of total RNA was reverse transcribed to cDNA using iScript cDNA synthesis kit (Bio-Rad). The 
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expression of Il1b was performed using iQ SYBR green supermix (Bio-Rad) and analyzed on CFX96 
real-time PCR detection system (Bio-Rad). The mRNA level of Nlpr3, Pycard, Casp1 was normalized 
to that of Gapdh. Primers used for qRT-PCR analysis were listed as follows: Nlrp3, forward, 5′-
GCTCCAACCATTCTCTGACC-3′ and reverse, 5′-AAGTAAGGCCGGAATTCACC -3′. Pycard, 
forward, 5’-AGGAGTGGAGGGGAAAGC-3’ and reverse, 5’-AGAAGACGCAGGAAGATGG-3’, 
Casp1, forward, 5’-AGGAATTCTGGAGCTTCAATCAG-3’ and reverse, 5’-
TGGAAATGTGCCATCTTCTTT-3’, Gapdh, forward, 5′-AACTTTGGCATTGTGGAAGG-3′ and 
reverse, 5′-GGATGCAGGGATGATGTTCT-3′. 

4.7. Confocal Microscopy 

WT or Arhgef2-/- BMDMs were seeded into 12 mm circular cover glasses (Karl Hecht Assistant) 
primed with LPS, stimulated with indicated inflammasome inducers followed by staining with 
Mitotracker Deep Red FM (Invitrogen). Images were acquired with SP8 LIGHTNING confocal 
microscope (LEICA). 

4.8. Bacterial Infection and Gentamycin Protection Assay 

Salmonella typhimurium SL1344 was grown in LB at 37 °C overnight. WT or Arhgef2-/- BMDMs 
were seeded in 6-well plates and spin-infected with Salmonella typhimurium at the multiplicity of 
infection (MOI) of 25 for 800 g, 15 min at room temperature followed by incubation at 37 °C for 45 
min. Cells were washed twice before the addition of 100 μg/mL gentamicin (Sigma) in DMEM with 
10% FBS for 1 h to eliminate extracellular bacteria. Cells were then given fresh DMEM with 10% FBS 
and 10 μg/mL gentamicin (Sigma) for the rest of the experiment. To determine the intracellular 
replication of bacteria, cells were lysed by 1% Triton X-100 (Sigma) in PBS. Serially diluted cell lysates 
were spread on LB agar plates and incubated at 37 °C for 16 h for colony enumeration. 

4.9. Statistical Analysis 

Two-tailed unpaired student’s t-test or one-way analysis of variance (ANOVA) were carried to 
determine the statistical significance of the experimental results. A p-value < 0.05 was considered 
statistically significant. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1. 
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Abbreviations 

PRR 
NLRP3 

Pattern recognition receptor 
NLR family pyrin domain-containing protein 3 

NLRC4 NLR family CARD domain-containing protein 4 
NLR NOD-like receptor 
CARD Caspase activation and recruitment domain 
NOD Nucleotide-binding oligomerization domain 
NOD1 Nucleotide-binding oligomerization domain-containing protein 1 
NOD2 Nucleotide-binding oligomerization domain-containing protein 2 
AIM2 Absent in melanoma-2 
NEK7 NIMA-related kinase 7 
NIMA Never in mitosis gene a 
MARK4 Microtubule-affinity regulating kinase 4 
GEF-H1 
WT 

Guanine nucleotide exchange factor-H1 
Wild-type 

BMDM 
LPS 
SPI-1 
T3SS 

Bone marrow-derived macrophage 
Lipopolysaccharide 
Salmonella pathogenicity island 1 
Type 3 secretion system 

RLR RIG-I-like receptor 
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