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Abstract: Because of the rapid development of multidrug resistance, conventional antibiotics cannot
kill pathogenic bacteria efficiently. New antibiotic treatments such as antimicrobial peptides (AMPs)
can provide a possible solution to the antibiotic-resistance crisis. However, the identification of
AMPs using experimental methods is expensive and time-consuming. Meanwhile, few studies use
amino acid compositions (AACs) and physicochemical properties with different sequence lengths
against different organisms to predict AMPs. Therefore, the major purpose of this study is to identify
AMPs on seven categories of organisms, including amphibians, humans, fish, insects, plants, bacteria,
and mammals. According to the one-rule attribute evaluation, the selected features were used to
construct the predictive models based on the random forest algorithm. Compared to the accuracies
of iAMP-2L (a web-server for identifying AMPs and their functional types), ADAM (a database of
AMP), and MLAMP (a multi-label AMP classifier), the proposed method yielded higher than 92%
in predicting AMPs on each category. Additionally, the sensitivities of the proposed models in the
prediction of AMPs of seven organisms were higher than that of all other tools. Furthermore, several
physicochemical properties (charge, hydrophobicity, polarity, polarizability, secondary structure,
normalized van der Waals volume, and solvent accessibility) of AMPs were investigated according to
their sequence lengths. As a result, the proposed method is a practical means to complement the
existing tools in the characterization and identification of AMPs in different organisms.
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1. Introduction

Antimicrobial peptides (AMPs), naturally encoded by genes and usually containing 12–100 amino
acids, are the essential components of the innate immune system and can protect the host from viruses
and various pathogenic bacteria [1,2]. They are produced by various organisms, including protozoa,
bacteria, and animals, and can cause the cell death of microbes by disrupting either their cell membrane
or intracellular functions [3]. In recent years, the prevalent use of antibiotics has resulted in the rapid
growth of antibiotic-resistant microorganisms that often induce severe infection and pathogenesis.
Since antibiotic resistance is a growing phenomenon in contemporary medicine, the low drug-resistance
development of AMPs can provide a possible solution [4].

Several studies have been dedicated to the prediction of AMPs, such as AntiBP [5], AntiBP2 [6],
CAMP [7], ClassAMP [8], AVPpred [9], AMPER [10], iAMP-2L [11], iAMPred [12], AmPEP [13],
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and EFC-FCBF [14]. Specifically, the AMP database, namely APD, has collected 123 human host-defense
peptides, 220 AMPs from mammals, 1050 active peptides from amphibians, 116 AMPs from fish,
35 reptile peptides, 40 AMPs from birds, 509 AMPs from arthropods, 160 AMPs from chelicerata,
42 AMPs from molluscs, and 6 AMPs from protozoa [15]. PhytAMP currently contains 271 entries
of plant AMPs [16]. Moreover, previous studies have shown that there is a difference in amino acid
composition (AAC) among different organisms. Cysteine is a major residue in AMPs from plants,
probably because of the advantage of disulfide-bonded and defensive-like molecules [17]. In addition
to AACs, the physicochemical property, sequence order, and the pattern of terminal residues have
also been adopted in AMP prediction [13]. Furthermore, the net charge, isoelectric point, composition,
and tendency for secondary structure are related to the activities of AMPs, such as antibacterial,
antifungal, and antiviral activities [6,12,18].

With the rapid development of high-throughput proteomic technologies in recent years, machine
learning (ML) algorithms have been the primary techniques for building up sequence-based classifiers
to distinguish between AMPs and non-AMPs [13]. Mishra and Wang used AACs, physicochemical,
and structural features to predict AMPs with different activities based on support vector machine
(SVM) [17]. Meher et al. proposed the concept of the adoption of physicochemical features as the
features used in ML [12]. Bhadra et al. adopted seven physicochemical classes and three distribution
features, identifying where the first residue of a given group is located, and where 25%, 50%, 75%,
and 100% of occurrences are contained, to differentiate between AMPs and non-AMPs [13]. Specifically,
they proposed the concept of using distribution patterns as features. Additionally, there are several
online tools available for the prediction of AMPs. i-AMP2L is a two-level multilabel predictor
based on pseudo amino acid composition (PseAAC) and the fuzzy K-nearest neighbor (FKNN)
algorithm [11]. It can identify an uncharacterized peptide as AMP or non-AMP based on the amino
acid composition and physicochemical properties of sequences [11]. ADAM is a database of AMPs
and allows users to predict sequences using SVM and hidden Markov models with amino acid
composition adopted as the features [19]. DBAASP is an AMP prediction tool developed from SVM
and artificial neural network (ANN) that incorporates hydrophobicity, amphipathicity, location of the
peptide in relation to membrane, charge density, propensities to disordered structure, and aggregation
being the features [20]. MLAMP adopted ML, synthetic minority oversampling technique (SMOTE),
AACs, and physicochemical properties to construct a two-level AMP predictor [21]. CAMPR3 is a
database that collects sequences, structures, and family-specific signatures of experimentally validated
prokaryotic and eukaryotic AMPs [2]. It also provides AMP prediction tools based on random forest
(RF), SVM, ANN, and discriminant analysis (DA), which use AACs, secondary structural propensities,
and physicochemical properties as features.

Although AMPs are considered as an alternative drug to conventional antibiotics and has become
a model for the development of new drugs that can solve the problem of multidrug resistance, using
experimental methods to identify AMPs is expensive and time-consuming. Additionally, few studies
have used AACs and physicochemical properties with different sequence lengths against different
organisms to predict AMPs. In other words, research devoted to investigating the correlations
between AACs/physicochemical properties and different sequence lengths on different organisms is
scarce. Therefore, the major purpose of this study is to identify AMPs on seven organisms, including
amphibians, humans, fish, insects, plants, bacteria, and mammals. Note that AACs, amino acid
pairs, and the physicochemical properties (charge, hydrophobicity, polarity, polarizability, secondary
structure, normalized van der Waals volume, and solvent accessibility) of each class are the major
features that will be considered. After constructing the AMP classifiers for seven organisms, feature
selection methods will be adopted to obtain a better understanding of the sequential characteristics of
AMPs with respect to the seven categories of organisms. In addition, we will investigate these features
on positions of the sequence to explore their relations.
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2. Results

2.1. Characterization of AMPs

2.1.1. Compositional Characteristics of AMPs

Figure 1A demonstrates the average AACs of AMPs and non-AMPs. Specifically, “L”, “G”,
and “K” were abundant amino acids for AMPs, while “L”, “A”, and “G” were abundant amino acids
for non-AMPs. Additionally, there was an obvious difference in the composition of “C” (cysteine)
between AMPs and non-AMPs. Previous research has indicated that the reason should be due to the
dominance from disulfide-bonded and defensing-like molecules [17]. Meanwhile, the composition
of “K” (lysine) was different between AMPs and non-AMPs, since the AMP structural cores mainly
had positive net charges [22]. The composition of “G” (glycine) of AMPs was higher than the one
for non-AMPs. This observation is consistent with that of a previous study, which indicated that the
glycine-rich proteins (GRPs) are a group of proteins that occurs in a wide variety of organisms [23].

Figure 1B shows the AACs of AMPs with respect to the seven categories of organisms. There were
some obvious differences among these organisms. The AACs related to a hydrophobic property (“C”,
“L”, “V”, “I”, “M”, “F”, and “W”) were different among these organisms. Additionally, the composition
of “L” (leucine) in Amphibia was much higher than that in the other organisms; the composition of
“C” in plants was the highest among the seven categories of organisms; the composition of “K” and
“R”, which have positive charges, were higher than that of “E” and “D”, which have negative charges,
for each organism. Moreover, the composition of “R” in humans and mammals was higher than that in
other organisms. Because of these differences, the AACs were the critical features that differentiated
identification of AMPs on different organisms.

Figure 1. Average AACs of (A) AMPs and non-AMPs, and (B) AMPs with respect to the seven
categories of organisms.
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2.1.2. Investigation of Physicochemical Properties

Among the seven physicochemical properties we have collected, it was obvious that there was
a significant difference between AMPs and non-AMPs. Figure 2 demonstrates the comparisons of
three physicochemical properties between AMPs and non-AMPs. Hydrophobicity was obviously
different between AMPs and non-AMPs for the polar class (Figure 2A). The result could be due to
the hydrophobic interaction of the hydrophobic face with the lipidic moieties of membranes, which
also drives peptide–cell binding [24]. The value of polarity between 4.9 and 6.2 in AMPs was higher
than that in non-AMPs (Figure 2B). On the other hand, the value of polarity between 10.4 and 13
in AMPs was lower than that in non-AMPs. The activities of AMPs were found to decrease with
an increase in polarity [25]. AMPs tend to be positively charged, which is consistent with previous
research where the positive charges were influential in determining AMP activities (Figure 2C) [26].
Appendix A Figure A1 also demonstrates that the AMPs mainly had positive net charges. About half of
the AMPs had net charges between +2 and +4, and less than 5% of the AMPs had negative net charges.
In addition, the distribution of charges among non-AMPs was different from that of AMPs. Based
on these differences in physicochemical properties between AMPs and non-AMPs, we considered
these physicochemical features as the important features in the prediction of AMPs. The comparisons
of polarizability, normalized van der Waals volume, secondary structure, and solvent accessibility
are shown in Appendix A Figure A2. These observations can provide useful information for the
construction of AMP classifiers for different classes of organisms and figure out the possible reasons
for the high performance of the models.

Figure 2. Comparisons of physicochemical properties between AMPs and non-AMPs for
(A) hydrophobicity, (B) polarity, and (C) charge.
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2.1.3. Physicochemical Properties with Respect to Different Sequence Lengths

In addition to observing physicochemical properties on AMPs and non-AMPs for different
organisms, we also investigated them in different quantiles of sequence length. Figure 3A demonstrates
that the majority of AMPs with positive charges were in the 90~100th percentile of sequence length.
This is probably because charged amino acids at the tethered C-terminal increased the activity of the
peptide. According to these distributions of AMP and non-AMPs, charge is an important feature to
predict AMPs. In addition, Figure 3B illustrates the hydrophobicity in different percentiles of sequence
length. The majority of AMPs with hydrophobicity were in the 90~100th percentile of sequence
length. Previous research has indicated that a more hydrophobic and amphiphilic C-terminal obviously
infiltrated into the hydrophobic part of the target cell membrane [27]. Moreover, many physicochemical
properties vary among AMPs and different effects on AMP activities such as antibacterial, antifungal,
and antiviral activities [22]. Differences can be found in the terminal residue profiles between AMP and
non-AMPs. The remaining physicochemical properties also differed at different percentiles of sequence
length. The comparisons of polarity, polarizability, normalized van der Waals volume, secondary
structure, and solvent accessibility at different percentiles of sequence length are shown in Appendix A
Figure A3. These observations can provide some indications on the investigation on the relations
between the positions of the sequence and the physicochemical properties of AMPs and non-AMPs.

Figure 3. Comparisons of (A) charge on different positions of sequence between AMPs and non-AMPs,
and (B) hydrophobicity at different positions of sequence between AMPs and non-AMPs.
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2.1.4. Physicochemical Properties of AMPs with Respect to Different Categories of Organism

As shown in Table 1, the distribution of AMP sequence lengths among seven categories of
organisms indicated that most of AMPs had 20–40 amino acids. Moreover, the number of AMPs
with lengths over 100 for human and mammals were much higher than that of other organisms.
Figure 4A shows that the AMPs from Amphibia tended to be hydrophobic compared with other
organisms. Furthermore, Figure 4B investigates the hydrophobicity of different percentiles of sequence
length for each organism. Most of the AMPs from Amphibia, bacteria, insects, and mammals had
hydrophobicity in the 90–100th percentile of sequence length. In contrast, the AMPs from humans in
the 10–20th and plants in the 30–40th percentiles of sequence length were hydrophobic. Appendix A
Figure A4A shows that the percentage of positively charged AMPs was larger than that of the negatively
charged AMPs for each category of organism. Appendix A Figure A4B indicates that the positively
charged AMPs from Amphibia, insects, and mammals tended to be at larger percentiles of sequence
length. Moreover, the distributions of charges in the AMPs from seven organisms are shown in
Appendix A Figure A5. We found that the charge distribution was quite different among different
organisms. The majority of AMPs from Amphibia had charges between +1 and +4. However, the AMPs
from humans and mammals tended to have charges larger than +10 because of the sequence length.
Specifically, the number of sequence lengths over 100 from humans and mammals were the largest
ones among seven categories of organisms.

Table 1. Distribution of AMP sequence lengths among different organisms on training datasets.

Organisms
Number of Peptides with Length L

L ≤ 20 20 < L ≤ 40 40 < L ≤ 60 60 < L ≤ 80 80 < L ≤ 100 100 < L Total

Amphibia 269 437 28 3 0 4 741
Bacteria 117 111 61 16 13 27 345
Fish 18 54 10 5 3 5 95
Human 11 53 13 26 7 76 186
Insects 67 94 32 12 7 8 220
Mammals 78 180 51 43 11 85 448
Plants 63 153 95 7 14 32 364

Figure 4. Comparisons of AMP hydrophobicity (A) in different categories of organisms and (B) at
different positions of sequence (percentiles of sequence length) in each category of organism.
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2.2. The Identification of Important Features

The order of importance was derived from the random forest algorithm and ranked the features
for each category of organism. Appendix A Figure A6 shows that the patterns were accurate when
the forward selection method was used to attain the approximate optimal results. These features
were included in the prediction model one by one based on the rank order of feature selection.
The performance would become better and better when more and more features were put into the
prediction model. After a certain number of features were added, the performance curves converged,
and further addition of the remaining features only affected the performance slightly. These features
were thus selected and adopted in the prediction models, which helped us to reduce the size of the
feature set. As shown in Appendix A Figure A6, the final feature sets of Amphibia, bacteria, fish,
human, insects, mammals, and plants included the top 49, 65, 53, 64, 20, 77, and 65 features, respectively.

Appendix A Figure A7 demonstrates the details of the top 100 features for each organism after
feature selection. These results indicated that the selected features differed among different organisms.
As shown in Figure 5, the number of selected features in charge class for Amphibia was much higher
than that of the other organisms that could also be found in Appendix A Figure A7A. Therefore,
charge is important for the prediction of AMPs of Amphibia. Indeed, a previous study showed that
the increase in charge could improve the antimicrobial activity of magainin peptides [28], which are
a class of AMPs found in the African clawed frog. In addition, the number of selected features in
the hydrophobicity class for bacteria was much higher than that of the other organisms, which could
also be found in Appendix A Figure A7B, because the increase in peptide hydrophobicity caused an
improvement in antimicrobial activity [29]. The number of selected features in the amino acid pair
composition (AAPC) for humans was much higher than that of other organisms, which could also be
found in Appendix A Figure A7C. Specifically, the AAPCs of “CC”, “TC”, “CR”, “CY”, and “CA” were
ranked in the top 25. Plots of humans are also shown in AAPC heat map (Appendix A Figure A8A),
where the color of the regions of “CC”, “TC”, “CR”, “CY”, and “CA” were darker than that of the other
amino acid pairs, and these pairs were from human AMPs rather than non-AMPs. The AAPC heat
map plots of other organisms are shown in Appendix A Figure A8. Moreover, “C” (cysteine) was the
top-ranked feature in plants. Because of the benefit of disulfide-bonded and defensive-like molecules,
“C” was the major amino acid residue in AMPs of plants.

Figure 5. Distribution of features (top 100). Shows the performance of AAC and amino acid pair
composition (AAPC), as well as physicochemical composition in different organisms.

2.3. Prediction Performance

The positive training datasets of Amphibians, bacteria, fish, humans, insects, mammals, and plants
contained 741, 345, 95, 186, 220, 448, and 364 AMPs, respectively. Accordingly, the negative training
dataset contained 1993, 6040, 1469, 6595, 1800, 6919, and 5432 non-AMPs, respectively. The performance
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of the four classifiers are given in Appendix A Table A1. According to the results, the prediction model
can predict not only positive, but also negative data efficiently. Obviously, random forest (RF) was the
best classifier for predicting AMPs in these seven categories of organisms. The accuracies of all the
models were higher than 93%, and the sensitivities of all categories of organisms were higher than 94%.
These results indicate that the used features and RF are efficient for predicting AMPs in each organism.

Furthermore, based on the performance in cross-validation, the RF model was selected to predict
the independent test data. The positive test dataset in amphibians, bacteria, fish, humans, insects,
mammals, and plants included 185, 86, 23, 46, 54, 111, and 90 AMPs, respectively. Accordingly,
the negative test dataset contained 398, 1509, 367, 1648, 450, 1729, and 1358 non-AMPs, respectively.
The prediction performance of the independent test is shown in Table 2. All the prediction accuracies of
AMPs were above 94%, except that of humans, which was 92.23% but still high. Moreover, the MCCs
for all the organisms were larger than 0.650.

Table 2. Performance of the models using data from different types of organisms in the independent test.

Organisms Sensitivity Specificity Accuracy Matthews Correlation Coefficient

Amphibia 100.00% 98.24% 98.80% 0.973
Bacteria 96.51% 96.36% 96.36% 0.746
Fish 100.00% 97.00% 97.18% 0.810
Human 97.83% 92.17% 92.33% 0.482
Insects 100.00% 97.56% 97.82% 0.900
Mammals 92.79% 94.56% 94.46% 0.673
Plants 97.78% 97.94% 97.93% 0.851

2.4. Comparison with Other AMP Prediction Tools

The performance of predicting the AMPs of different types of organisms was compared with
that of other web tools: iAMPpred [12], iAMP-2L [11], ADAM [19], DBAASP [30], MLAMP [31],
and CAMPR3 [2]. It should be noted that DBSSAP can only predict peptides with sequence lengths less
than 100; therefore, peptides longer than that were removed from our test set to fulfill the requirement.
The ROC curves of different models are shown in Figure 6. The comparisons of predicting AMPs
for each organism compared with other tools were covered under the ROC curves obtained from
our models.

The detailed performance of predicting AMPs in different categories of organisms with the
proposed models and other tools are shown in Appendix A Table A2. The accuracies of iAMP-2L,
ADAM, MLAMP, and our proposed models were higher than 92% for predicting AMPs from each
organism. Additionally, our proposed models reached the highest accuracies when predicting AMPs
from insects and plants. Although the accuracies of our proposed models in predicting AMPs in
some organisms were not the best, the sensitivities of all our models were the highest. Therefore,
the proposed models are efficient in predicting AMPs from different types of organisms.
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Figure 6. Comparison of ROC curves between our method and other prediction tools in the identification
of AMPs on (A) Amphibians, (B) bacteria, (C) fish, (D) humans, (E) insects, (F) mammals, and (G) plants.

3. Discussion and Conclusions

Because of the rapid development of multidrug resistance, conventional treatment of antibiotics
cannot kill pathogenic bacteria efficiently. Additionally, the identification of AMPs using experimental
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methods is expensive and time-consuming. Computational identification can efficiently and effectively
discover candidate peptides as antimicrobial peptides for subsequent experimental assessment,
which helps shorten the process of drug discovery [32,33]. In addition, because of the obvious
differences in amino acid composition and physicochemical properties (charge, hydrophobicity, etc.)
between AMPs and non-AMPs, and the difference in AMPs between different types of organisms, we
believe that AMPs can be predicted effectively using these features. Additionally, AMPs from different
types of organisms can be differentiated.

This study employed the one-rule attribute evaluation (OneR) method and forward-selection
method, reducing the number of features from 630 to 49, 65, 53, 64, 20, 77, and 65, respectively,
in amphibians, bacteria, fish, humans, insects, mammals, and plants. Then, four different classification
algorithms were used to build predictive models. The performance of the models in five-fold
cross-validation indicated that the feature sets were effective in the predictions. Accuracies and AUCs
for all organisms were observed to be larger than 93%, which shows that the feature set and random
forest method were efficient in predicting AMPs of different organisms. Moreover, we observed the
feature sets of the seven types of organisms and found differences among organisms. For instance,
electric charge was an important feature in the prediction of AMPs for Amphibia, because the charged
residues in Amphibia were the most important features, which had a very high rank among all features
of Amphibia. According to these differences in feature sets of the seven categories of organisms,
we conclude that AMPs from different types of organisms can be differentiated well.

Furthermore, the performance of the models was compared with that of iAMPpred, iAMP-2L,
ADAM, DBAASP, MLAMP, and CAMPR3 using the same testing dataset. The accuracies of iAMP-2L,
ADAM, MLAMP, and proposed models were higher than 92% in predicting each organism. In addition,
the sensitivity of the proposed models in predicting AMPs of seven organisms were the highest. As a
result, the proposed models are believed to complement the existing tools in predicting AMPs and
differentiate AMPs on different types of organisms. Last but not least, the proposed methods also lead
a promising way to the design of new AMPs, which will enlighten the future of drug development.
Accordingly, we believe that the proposed model in preclinical characterization of predicting AMPs
will improve the long-term efficiency of AMP drug development.

4. Materials and Methods

4.1. Data Collection and Preprocessing

This study was divided into three parts as shown in Figure 7, data collection and preprocessing,
feature investigation, and model training and evaluation. At first, positive datasets were collected
from several databases. Then, AMPs were classified based on the types of organisms they came from.
Negative datasets were downloaded from UniProt. After filtering conditions, all the non-AMPs were
classified into seven types of organisms. Then, the sequence analysis tool, CD-HIT, was used to remove
sequences that were 40% similar to positive dataset sequences in the negative dataset. The independent
testing datasets of each organism were generated by drawing 20% of the data from the corresponding
organism dataset. The AAC, amino acid pair composition (AAPC), and physicochemical properties in
different sequence lengths of data were included in our feature sets. Then, the feature sets of each
organism were analyzed by feature-selection methods to dig out the important features. With these
selected features, prediction models were designed by four different kinds of algorithms. Finally,
the predictive performances were compared after 5-fold cross validation and independent testing.
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Figure 7. Conceptual framework. This study was divided into three parts: data collection and
preprocessing, feature investigation, and model training and evaluation.

AMPs are common in nature and have been discovered in almost all forms of life, from single-celled
bacteria to multicellular organisms such as animals and plants [17]. In this study, we collected the
positive dataset by capturing naturally existing and experimentally validated AMP sequences from
different organisms from several databases, CAMP [7], APD [15], ADAM [19], and DRAMP [21].
We collected all the AMPs and deleted the duplicated ones. Then, all the AMPs were classified into
seven organisms, which contained 232, 926, 118, 274, 454, 431, and 559 from humans, amphibians,
fish, insects, plants, bacteria, and mammals. We followed the data preparation procedure conducted
in other studies to generate our negative dataset [11,34]. For the construction of negative data, we
extracted protein sequences without the annotations of membrane, toxic, secretory, defensive, antibiotic,
anticancer, antiviral, and antifungal properties from UniProt. Unique sequences were collected, which
contained 11,275, 3656, 3005, 5225, 24,443, 281,434, and 33,483 non-AMPs from humans, amphibians,
fish, insects, plants, bacteria, and mammals. In order to prevent the overestimation of predictive
performance in this investigation, the CD-HIT program [35] was applied to remove similar sequences
from the training dataset. It would be possible that some negative data were identical to some of the
positive data in the training dataset, potentially causing “false positive” or “false negative” predictions.
Consequently, CD-HIT was further applied by running CD-HTT-2D across positive and negative
training datasets with 100% to 40% sequence identity to solve this problem. In this study, we reduced
sequence redundancy of the negative dataset by removing the data with a 40% sequence similarity
in all seven negative datasets. Then, for different types of organisms, we compared the sequence
similarity between positive and negative datasets, and we removed sequences that were 40% similar to
positive dataset sequences in the negative dataset. After filtering, our negative datasets had 8243, 1993,
1836, 2250, 6790, 7549, and 8648 non-AMPs from humans, amphibians, fish, insects, plants, bacteria,
and mammals. The independent testing datasets of each organism were generated by separating 20%
from the corresponding dataset. A summary of the positive and negative datasets is given in Table 3.
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Table 3. Number of peptides in training and testing datasets among different organisms.

Organisms
Training Dataset Testing Dataset

Positive Negative Positive Negative

Amphibia 741 1595 185 398
Bacteria 345 6040 86 1509

Fish 95 1469 23 367
Human 186 6595 46 1648
Insects 220 1800 54 450

Mammals 448 6919 111 1729
Plants 364 5432 90 1358

4.2. Feature Constructions

AACs were obtained separately for each sequence, so were the ratios of all 20 amino acids.
There are 20 amino acids, so this feature set had 20 dimensions. The following is an example of how
to obtain AAC from a sequence “AIFIFIRWLLKLGHHGRAPP”. First, we calculated the frequency
of the 20 amino acid residues in this sequence. Then, the frequency of isoleucine (I) in this sequence
was computed as (3(Number of I)/20(Sequence length)) = 0.15. Finally, the frequency of amino acid
residues of this sequence will be calculated as AAC features.

AAPC is the ratio of the occurrences of the amino acids in pairs of two in each sequence. There are
20 amino acids, so this feature was 20 by 20 and equaled 400 dimensions. The same example was
adopted to illustrate the determination of AAPC. First, we calculated the number of occurrences for
400 amino acid pairs in this sequence. Then, the frequency of “IF” pairs in the sequence was computed
as (3(Number of IF)/19(Sequence length − 1)) = 0.105. Finally, the frequencies of 400 amino acid pairs
of this sequence were taken as 400 AAPC features.

Previous studies have organized amino acids into several physicochemical property groups [13,17].
As shown in Appendix A Table A3, seven physicochemical properties were used in the grouping:
(1) charge, (2) hydrophobicity, (3) polarity, (4) polarizability, (5) secondary structure, (6) normalized
van der Waals volume, and (7) solvent accessibility. For each of these seven physicochemical properties,
20 amino acids were grouped into 3 classes. For example, for the charge property, the 3 classes were
positive (K and R), neutral (A, N, C, Q, G, H, I, L, M, F, P, S, T, W, Y and V), and negative (D and E).
For each 21 (= 7 × 3) classes, we generated 10 classes based on the percentiles of sequence length,
such as 0~ 0, 10~20th, 20~30th, . . . , and 90~100th percentiles of sequence length. The ratio of each
amino acid of each physicochemical property class in each quantile class was calculated. We illustrated
these computations with the sample sequence “AALKGCWTKSIPPKPCFGKR” according to the
charge property and its three classes, positive, neutral, and negative. First, we split the sequence into
10 partitions, and then we calculated the ratio of the representative amino acids in each partition.
The first partition (0–10th quantile) was the sequence “AA”, which did not contain Class 1 and Class
3, but 2 of them were in the Class 2 charge. It means that the number of Class 2 sequences in the
0~10th percentile of sequence length was 2. Finally, the frequency of charge of Class 2 was computed
as (2(0–10th percentile contained Class 2)/20(Sequence length)) = 0.1. After these calculations, we
could obtain results at ten different positions, seven physicochemical properties of amino acids, three
classes for each property, and final 210 (= 7 × 3 × 10) features in total for each sequence. Therefore,
each sequence was transformed into 630 features (AAC (20) +AAPC (400) + physicochemical properties
in different sequence length (210)).

4.3. Model Construction and Feature Selection Methods

In this study, OneR feature selection method was used to select features. This feature selection
method can be found in Weka, which was the major analytic tool in this study [36]. OneR is a simple
classification algorithm. As its name indicates, it generates a rule to predict the data. A contingency
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table was constructed for each predictor against the target, and then the best rule with the lowest total
error, also named as “one rule”, was selected.

RF is a classifier proposed by Breiman L., who published the ensemble of multiple classifiers
based on random feature selection. The main idea about random forests is constructing a multitude
of decision trees, and each tree is construct by random sampling of the training data. This machine
learning method is considered as an appropriate classifier for processing a large-scale dataset, especially
an imbalanced dataset. It corrects the habit of decision trees overfitting their training sets. This method
was used in this study and generated by Weka. SVM is a supervised learning model based on associated
learning algorithms using regression analysis to classify data [37]. The positive and negative training
datasets were used for building a predictive model with the identified support vectors. In this study,
a binary classification problem (AMP versus non-AMP) has been considered. The discriminatory ability
of an SVM classifier is determined by a hyperplane in a high-dimensional space that can discriminate
the AMPs from the non-AMPs. K-nearest neighbor models (KNN) is an instance-based algorithm used
in classification. In a binary classification between positive and negative samples, every data point
is a vector in a multidimensional feature space with a class label (AMPs or non-AMPs). Users can
decide a value k, related to the scale of the subgroup, for prediction. A testing data point without a
label was classified using k nearest training samples. In this study, many values of k tried to achieve
the best performance. Decision tree (DT) is a tree-like model in which each internal node represents a
“test” on an attribute, each branch represents the outcome of the test, and each leaf node represents
a class label (positive or negative data) [38]. J48 is a classification model based on constructing a
decision tree with the top-down process. The process starts from the test of the root node and follows
the appropriate branch based on the test. A tree-like graph with a model of decisions was generated
during the prediction. The outcome is the contents of the leaf node, and the conditions along the path
is decided by a decision rule. Decision rules can be generated by constructing association rules and
can denote temporal or causal relations.

4.4. Evaluation Matrics

The predictive models in this study based on machine learning methods have been trained and
validated via five-fold cross-validation. The training dataset was divided into five non-overlapping
subgroups with approximately equal sizes. In each round, four subgroups were used for training, and
one for testing, and then the validation process was repeated five times. Then, the five validation
results were combined to generate a single estimation. The performance of the trained models was
estimated using sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews correlation coefficient
(MCC). The definitions are given below.

Sn =
TP

TP + FN
(1)

Sp =
TN

FP + TN
(2)

Acc =
TP + TN

TP + TN + FP + FN
(3)

MCC =
(TP× TN) − (FP× FN)√

(TP + FP) × (TP + FN) × (FP + TN) × (TN + FN)
(4)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and
false negatives, respectively. In this study, to evaluate the performance of the ML models, a ranking
list of features was generated by feature selection methods. After using the forward-selection method,
the features that resulted in the best performance were used to design the models.
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Abbreviations

AMPs Antimicrobial peptides
AACs Amino acid compositions
ML Machine learning
SVM Support vector machine
PseAAC Pseudo amino acid composition
FKNN Fuzzy K-nearest neighbor
ANN Artificial neural network
SMOTE Synthetic minority oversampling technique
RF Random forest
DA Discriminant analysis
AAPC Amino acid pair composition
OneR One rule attribute evaluation
KNN K-nearest neighbor models
Sn Sensitivity
Sp Specificity
Acc Accuracy
MCC Matthews correlation coefficient
TP True positives
TN True negatives
FP False positives
FN False negatives

Appendix A

Figure A1. Comparisons of charge distributions between AMPs and non-AMPs.
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Figure A2. Comparisons of physicochemical properties between AMPs and non-AMPs for
(A) polarizability, (B) normalized van der Waals volume, (C) secondary structure, and (D)
solvent accessibility.

Figure A3. Cont.
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Figure A3. Cont.
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Figure A3. Comparisons of physicochemical properties between AMPs and non-AMPs at different
positions (quantiles of sequence length) for (A) polarity, (B) polarizability, (C) normalized van der
Waals volume, (D) secondary structure, and (E) solvent accessibility.

Figure A4. Comparisons of AMP charges (A) for different categories of organisms and (B) at different
positions of sequence (percentiles of sequence length) in each category of organism.
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Figure A5. Charge distribution of AMPs from different organisms.

Figure A6. Performance with different numbers of features using forward selection method for
(A) amphibians, (B) bacteria, (C) fish, (D) humans, (E) insects, (F) mammals, and (G) plants. Note that
the red point means the number of features associated with the accuracy for the optimal model.
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Figure A7. Cont.
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Figure A7. Cont.
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Figure A7. Top 100 features for (A) Amphibians, (B) bacteria, (C) fish, (D) humans, (E) insects,
(F) mammals, and (G) plants. The rank column with blue background color indicates that the feature
was selected from the feature-selection method. The features marked red in (A) are related to charge
property which is the majority member among the top 100 features for Amphibians. The features
marked yellow in (B) are associated with the hydrophobicity which is the majority member among
the top 100 features for bacteria. The features marked orange in (D) are related to AAPC which is the
majority member among the top 100 features for human.

Figure A8. Cont.
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Figure A8. AAPC heatmaps for (A) human, (B) amphibians, (C) bacteria, (D) fish, (E) insects,
(F) mammals, and (G) plants.

Table A1. Performance of training datasets for the AMPs derived from different organisms. The optimal
models which contain best prediction performance are marked in blue background color. It would
be noted that the optimal model was determined as the one with the minimum difference between
sensitivity and specificity.

Organisms Classifier Sensitivity Specificity Accuracy Matthews Correlation Coefficient

Amphibia RF 99.19% 99.18% 99.19% 0.981
DT 97.84% 98.81% 98.50% 0.965

KNN 96.76% 99.81% 98.84% 0.973
SVM 98.92% 98.93% 98.93% 0.975

Bacteria RF 95.94% 96.18% 96.16% 0.735
DT 86.67% 97.95% 97.34% 0.769

KNN 73.62% 99.44% 98.04% 0.7959
SVM 95.94% 95.94% 95.94% 0.725

Fish RF 96.84% 96.87% 96.87% 0.789
DT 73.68% 98.43% 96.93% 0.728

KNN 68.42% 99.52% 97.63% 0.774
SVM 82.11% 99.86% 98.79% 0.889

Human RF 94.09% 93.07% 93.10% 0.489
DT 74.19% 98.15% 97.49% 0.615

KNN 68.28% 98.94% 98.10% 0.654
SVM 88.17% 87.82% 87.83% 0.354

Insects RF 96.36% 96.33% 96.34% 0.838
DT 91.36% 97.56% 96.88% 0.849

KNN 85.91% 98.28% 96.93% 0.842
SVM 95.00% 95.11% 95.10% 0.793

Mammals RF 94.42% 95.24% 95.19% 0.708
DT 83.71% 92.60% 92.06% 0.560

KNN 74.55% 98.92% 97.43% 0.767
SVM 93.97% 93.97% 93.97% 0.662

Plants RF 97.53% 97.39% 97.39% 0.822
DT 88.74% 98.82% 98.19% 0.851

KNN 80.49% 99.45% 98.26% 0.845
SVM 96.70% 96.70% 96.70% 0.786

Note. RF = random forest; DT = decision tree; KNN = K-nearest neighbor; SVM = support vector machine.
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Table A2. Comparisons of independent testing results between our method and other prediction tools
in the identification of AMPs on different organisms.

Organisms Classifier Sensitivity Specificity Accuracy Matthews Correlation Coefficient

Amphibia Our method 100.00% 98.24% 98.80% 0.973
iAMPpred 98.92% 1.51% 32.42% 0.017
iAMP-2L 96.76% 98.99% 98.28% 0.960
ADAM 98.38% 99.50% 99.14% 0.980

DBAASP 90.22% 76.92% 89.34% 0.477
MLAMP 90.27% 98.24% 95.71% 0.900

CAMPR3_RF 98.92% 1.01% 32.08% −0.004
CAMPR3_SVM 97.30% 1.01% 31.56% −0.064
CAMPR3_ANN 92.97% 54.77% 66.90% 0.454
CAMPR3_DA 95.14% 0.75% 30.70% −0.135

Bacteria Our method 96.51% 96.36% 96.36% 0.746
iAMPpred 84.88% 1.99% 6.46% −0.183
iAMP-2L 83.72% 99.54% 98.68% 0.867
ADAM 90.70% 98.87% 98.43% 0.855

DBAASP 35.44% 80.00% 57.86% 0.173
MLAMP 65.12% 99.47% 97.62% 0.743

CAMPR3_RF 90.70% 1.99% 6.77% −0.108
CAMPR3_SVM 79.07% 2.72% 6.83% −0.218
CAMPR3_ANN 68.60% 45.00% 46.27% 0.062
CAMPR3_DA 76.74% 2.78% 6.77% −0.239

Fish Our method 100.00% 97.00% 97.18% 0.810
iAMPpred 91.30% 1.63% 6.92% −0.117
iAMP-2L 86.96% 99.46% 98.72% 0.882
ADAM 95.65% 99.18% 98.97% 0.912

DBAASP 82.61% 80.00% 81.58% 0.620
MLAMP 91.30% 99.46% 98.97% 0.908

CAMPR3_RF 91.30% 1.36% 6.67% −0.130
CAMPR3_SVM 95.65% 2.18% 7.69% −0.034
CAMPR3_ANN 82.61% 50.68% 52.56% 0.157
CAMPR3_DA 86.96% 1.36% 6.41% −0.194

Human Our method 97.83% 92.17% 92.33% 0.482
iAMPpred 91.30% 22.88% 24.73% 0.055
iAMP-2L 54.35% 98.18% 96.99% 0.482
ADAM 52.17% 98.91% 97.64% 0.534

DBAASP 40.54% 86.84% 64.00% 0.310
MLAMP 50.00% 98.36% 97.05% 0.464

CAMPR3_RF 93.48% 0.85% 3.36% −0.092
CAMPR3_SVM 82.61% 1.09% 3.31% −0.215
CAMPR3_ANN 69.57% 48.67% 49.23% 0.059
CAMPR3_DA 84.78% 1.46% 3.72% −0.167

Insects Our method 100.00% 97.56% 97.82% 0.900
iAMPpred 94.44% 39.11% 45.04% 0.217
iAMP-2L 94.44% 96.67% 96.43% 0.835
ADAM 100.00% 96.67% 97.02% 0.870

DBAASP 70.37% 90.91% 73.85% 0.469
MLAMP 72.22% 98.00% 95.24% 0.740

CAMPR3_RF 87.04% 1.33% 10.52% −0.227
CAMPR3_SVM 87.04% 1.33% 10.52% −0.227
CAMPR3_ANN 87.04% 43.33% 48.02% 0.192
CAMPR3_DA 79.63% 1.56% 9.92% −0.314

Mammals Our method 92.79% 94.56% 94.46% 0.673
iAMPpred 95.50% 68.94% 70.54% 0.322
iAMP-2L 68.47% 98.73% 96.90% 0.712
ADAM 65.77% 99.48% 97.45% 0.753

DBAASP 45.88% 83.02% 60.14% 0.295
MLAMP 51.35% 98.44% 95.60% 0.568

CAMPR3_RF 93.69% 1.27% 6.85% −0.096
CAMPR3_SVM 92.79% 1.91% 7.39% −0.085
CAMPR3_ANN 78.38% 48.58% 50.38% 0.129
CAMPR3_DA 88.29% 2.14% 7.34% −0.140
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Table A2. Cont.

Organisms Classifier Sensitivity Specificity Accuracy Matthews Correlation Coefficient

Plants Our method 97.78% 97.94% 97.93% 0.851
iAMPpred 90.00% 0.81% 6.35% −0.190
iAMP-2L 77.78% 98.67% 97.38% 0.773
ADAM 84.44% 98.67% 97.79% 0.815

DBAASP 34.94% 88.46% 47.71% 0.219
MLAMP 58.89% 98.82% 96.34% 0.654

CAMPR3_RF 86.67% 0.59% 5.94% −0.264
CAMPR3_SVM 83.33% 0.88% 6.01% −0.282
CAMPR3_ANN 74.44% 47.57% 49.24% 0.107
CAMPR3_DA 75.56% 1.10% 5.73% −0.357

RF = random forest; DT = decision tree; KNN = K-nearest neighbor; SVM = support vector machine; ANN = artificial
neural network; DA = discriminant analysis.

Table A3. Physicochemical properties and groupings of amino acids [13].

Physicochemical
Properties

Group

Class 1 Class 2 Class 3

Charge Positive
K, R

Neutral
A, N, C, Q, G, H, I, L, M,
F, P, S, T, W, Y, V

Negative
D, E

Hydrophobicity Polar
R, K, F, D, Q, N

Neutral
G, A, S, T, P, H, Y

Hydrophobic
C, L, V, I, M, F, W

Polarity Polarity value 4.9~6.2
L, I, F, W, C, M, V, Y

Polarity value 8.0~9.2
P, A, T, G, S

Polarity value 10.4~13
H, Q, R, K, N, E, D

Polarizability
Polarizability value
0~0.108
G, A, S, D, T

Polarizability value
0.128~0.186
C, P, N, V, E, Q, I, L

Polarizability value
0.219~0.409
K, M, H, F, R, Y, W

Secondary Structure Helix
E, A, L, M, Q, K, R, H

Strand
V, I, Y, C, W, F, T

Coil
G, N, P, S, D

Normalized van der
Waals volume

Volume range 0~2.78
G, A, S, T, P, D

Volume range 2.95~4.0
N, V, E, Q, I, L

Volume range 4.03~8.08
M, H, K, F, R, Y, W

Solvent accessibility Buried
A, L, F, C, G, I, V, W

Exposed
R, K, Q, E, N, D

Intermediate
M, P, S, T, H, Y
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