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Abstract: Despite being banned from production for decades, polychlorinated biphenyls (PCBs)
continue to pose a significant risk to human health. This is due to not only the continued release of
legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB
production, but also the inadvertent production of PCBs as byproducts of contemporary pigment
and dye production. Evidence from human and animal studies clearly identifies developmental
neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative
role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous
system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding
questions. New questions are also emerging regarding the potential developmental neurotoxicity of
lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute
a significant proportion of contemporary human PCB exposures. Here, we review behavioral and
mechanistic data obtained from experimental models as well as recent epidemiological studies that
suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity
associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy,
lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the
relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data
gaps are addressed as well.

Keywords: arylhydrocarbon receptor (AhR); CREB signaling; dendritic arborization; developmental
neurotoxicity; neurodevelopmental disorders; polychlorinated biphenyls; PCBs; ryanodine receptor
(RyR), thyroid hormone receptor (THR)

1. Introduction

Polychlorinated biphenyls (PCBs) are a structurally related class of 209 organochlorine compounds,
individually referred to as congeners. Beginning in the late 1920s, PCB mixtures were mass-produced
worldwide for diverse industrial and commercial applications, with the world production of PCBs
estimated at 1.2–2 million tons, of which 0.2 to 0.4 million tons are believed to be “environmentally
available” [1]. However, in 1979, prompted by evidence of their environmental persistence and
growing concerns regarding human cancer risks, the United States banned commercial production of
PCBs. This was followed by a global ban on PCB production instituted by signatory nations during the
Stockholm Convention on Persistent Organic Pollutants (POPs) in 2001, which was appended in 2008
and 2014 [2,3]. These regulatory efforts resulted in the steady decline of environmental levels of legacy
indicator PCBs (i.e., congeners predominant in the original commercial mixtures that are monitored as
indicators of total PCB contamination). Yet, humans continue to be exposed to legacy PCBs because
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of their continued release from hazardous waste sites, PCB-containing equipment still in use, and
construction materials used in buildings erected prior to the ban on PCB production [4–6]. Background
levels of PCBs in environmental media are reported to range from 1–100 pg/m3 in air and 100–1000 pg/g
dry weight in soil [7]. In addition, data emerging over the past decade demonstrates widespread human
exposure to non-legacy PCB congeners that were not present in the commercial PCB mixtures [8].
These non-legacy PCBs are detected in indoor and outdoor environments and in human tissues and
the most likely source of these contaminants is off gassing from common household paints [9,10].
More than 50 non-legacy PCBs have been detected in paint pigments as inadvertent byproducts of
industrial pigment and dye production at levels ranging from 2–200 ng/g fresh weight [11]. Airborne
PCB emissions of these non-legacy PCBs can exceed 500 pg/m3 in a recently painted room [12]. Of
concern, non-legacy PCBs have also been detected in the plasma of pregnant women at levels ranging
from 0.005 ng/mL to 1.717 ng/mL [13]. In contrast to the commercially produced PCBs, levels of the
non-legacy PCBs are increasing in the environment and in human tissues [7,11].

Both human and animal studies identify the developing brain as a vulnerable target of PCBs.
Multiple reviews of the epidemiologic literature have concluded that exposure to PCBs during critical
developmental periods increases the risks of neuropsychological deficits in children, demonstrated
by impaired executive and psychomotor function, as well as deficits in attention, learning, and
memory [14–17]. More recent studies suggest that developmental PCB exposures may also increase risk
of neurodevelopmental disorders (NDDs) [14,15], specifically, autism spectrum disorders (ASD) [18–23]
and attention-deficit/hyperactivity disorder (ADHD) [24–27], and they confirm the association between
early life exposure to PCBs and general cognitive impairments without NDD diagnosis [17,28–31].
Prenatal exposure to PCBs is also associated with increased risk of low birth weight, defined as <

2500 g at birth) [32–36] and small for gestational age [37–39], both of which are prognostic indicators
of poor neurological outcome [40–43]. However, even after adjusting for birth weight and size, the
positive association between developmental PCB exposures and neuropsychological deficits remains.
Experimental animal studies confirm that developmental PCB exposures cause neurobehavioral effects
similar to those observed in humans and these outcomes occur in the absence of adverse effects on
reproductive and birth outcomes [44–47]. However, which of the 209 PCB congeners contributes to PCB
developmental neurotoxicity, and the mechanism(s) by which PCBs interfere with neurodevelopment,
remain critical questions. This review focuses on recent research that is beginning to shed light on
these questions.

2. PCB Nomenclature and Classifications

Chemically, PCBs are a complex mixture of chlorinated biphenyl isomers, or congeners, that
differ in structure. Individual congeners are identified by a numerical designation from 1 to 209,
with ascending numbers indicating increasing chlorine substituents on the biphenyl backbone [48].
Congeners with four or less chlorine substituents are referred to as lower chlorinated PCBs (LC-PCBs);
those with more than four chlorine substituents, as higher chlorinated PCBs (HC-PCBs) [8]. PCBs can
be metabolically hydroxylated or sulfonated, and 19 congeners are stable atropisomers or enantiomers,
with chiral asymmetry about their biphenyl bond axes [8]. Theoretically, each PCB enantiomer and
metabolite may have distinct interactions with biological targets and this diversity of structures and
potential modes of action explains, in part, why PCB developmental neurotoxicity has been a complex
research issue.

PCB congeners can also be subdivided into semi-volatile versus relatively non-volatile congeners.
Volatility is influenced by the number of chlorine substituents, with the HC-PCBs typically being less
volatile. Both LC-PCBs and HC-PCBs were constituents of the legacy commercial PCB mixtures, and
both LC-PCBs and HC-PCBs are present in paint pigments; however, many of the non-legacy PCBs
associated with paint pigments are LC-PCBs [8]. The HC-PCBs are more likely to bioaccumulate and
biomagnify up food chains, whereas the LC-PCBs comprise the majority of airborne PCBs found in
major cities in the United States (U.S.) and in indoor air in U.S. schools (reviewed in [8]). Based on
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the differential environmental distribution of HC-PCBs vs. LC-PCBs, it is proposed that humans are
primarily exposed to HC-PCBs via diet, particularly fish, and to LC-PCBs via inhalation [8]. However,
it is worth noting that recent studies have documented the widespread presence of the LC-PCB
congener, PCB 11, in commercial milk products in Northern California [13]; and, conversely, the
HC-PCB congener, PCB 95, is the second most abundant PCB detected in the air in U.S. schools [49].

PCBs can also be classified according to their planar structure, which is determined by the
positioning of chlorine substituents around the biphenyl backbone. PCBs with no chlorines in the
ortho position assume a coplanar geometry of the rings, and PCBs with one to four chlorines in
the ortho position assume increasing degrees of noncoplanar ring geometry (Figure 1). Coplanar
congeners can bind the aryl hydrocarbon receptor (AhR), an intracellular ligand-activated basic
helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) transcription factor that is the canonical receptor for
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Coplanar PCBs that bind the AhR are classified as
dioxin-like (DL) PCBs [50–52]. Of the 209 PCB congeners, twelve (PCBs 77, 81, 105, 114, 118, 123,
126, 156, 157, 167, 169, and 189) are identified as DL-PCBs [53]. In contrast, noncoplanar congeners
have little to no AhR binding affinity, and thus are referred to as non-dioxin-like (NDL) PCBs [50–52].
Importantly, NDL PCBs represent a significantly greater percentage of the PCBs detected in human
serum, adipose tissue, breast milk, and brain tissue from children diagnosed with a NDD [19,54–56].
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Figure 1. Basic PCB chemical structure. DL PCB congeners are typically meta (3, 3′, 5, 5′) and para (4, 4′)
substituted, with no chlorines at the ortho positions (2, 2′, 6, 6′), and are coplanar. NDL PCBs typically
have more than one ortho-substituted chlorine and adopt a non-coplanar structure.

Although environmentally relevant exposures to dioxin and DL PCBs are associated with adverse
outcomes in several organ systems, especially skin, liver and the immune system [57–59], and some are
probably carcinogenic [60], there is little data demonstrating that DL PCBs are direct developmental
neurotoxicants (but see [29,61,62]). In contrast, human, animal and mechanistic studies confirm
the developmental neurotoxicity of legacy NDL PCBs [14,19,21,26,31,63–66], and emerging evidence
suggests that non-legacy LC-PCBs also pose a risk to the developing brain [67].

3. Neurobehavioral Studies of PCB Developmental Neurotoxicity

There is an extensive body of literature describing the developmental neurotoxicity of legacy PCBs
in experimental animal models, which has been previously reviewed [44–46,68]. Many of these studies,
particularly the earlier studies, focused on the neurobehavioral effects of developmental exposures to
the legacy commercial mixtures, notably the Aroclor mixtures. Here, we will focus on reviewing those
studies that have been published in the past decade, several of which investigated the developmental
neurotoxicity of individual PCB congeners. A key consideration in evaluating these studies is the
relevance of the exposure paradigm to the human condition, both in terms of the route of exposure
and the dose. A range of PCB doses and routes of administration have been employed in animal
studies, and, in most cases, PCB levels were not measured in exposed animals. To provide a point
of reference for this section, the PCB body burden in contemporary humans is reported to be about
2.2 ng/mL in maternal sera [69] and between 0.7 to 66 ng/g wet weight in postmortem brain tissue
from individuals across the U.S. and Europe [56,70–72]. PCB levels in the brain tissue of juvenile
rats exposed to Aroclor 1254 at 1 mg/kg/day throughout gestation and lactation via the maternal diet
ranged from 0.5 to 3.0 ng/g wet weight [47]. These data suggest that, with some exceptions, the PCB
doses used in many of the animal studies discussed below result in tissue levels that are within the
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range observed in humans. Therefore, it is reasonable to conclude that behavioral deficits occurring
from such exposures are relevant to informing human health risks.

While a diverse number of neurobehavioral outcomes have been assessed in animal models of
developmental PCB exposure, for the purposes of this review, we will focus on behavioral domains of
relevance to NDDs, specifically: (1) altered locomotor activity (hyperactivity or hyperkinetic behavior)
and attention; (2) deficits in social interaction and communication; and (3) impaired cognitive and
executive function. Below, we summarize the recent animal literature published within the past decade
that report effects of developmental PCB exposure on these behavioral domains.

3.1. Hyperactivity

Hyperactivity, or hyperkinetic behavior, is a hallmark symptom of ADHD, and deficits in sustained
attention are present in both ADHD and ASD [73]. The tests for hyperactivity in experimental animal
models are typically simple evaluations of locomotor behavior, such as spontaneous locomotor activity
or open field, or are derived from other quantitative measurements of animal movement (e.g., distance
traveled across an arena) in other tests. Table 1 summarizes the recent animal literature evaluating
locomotor behavior following developmental PCB exposures.

Table 1. Effects of developmental PCB exposure on locomotor behavior.

Model Exposure Dose(s) Route of
Exposure Exposure Window Findings Ref.

Mouse (ICR) A1254 6 mg/kg/d,
18 mg/kg/d Gavage

Lactation (PND
7–21), Postnatal

(PND 22–42)

↑ Locomotor activity in
females [74]

Mouse (ICR) A1254 18 mg/kg/d Injection
(i.p.)

Prenatal (GD 6-PND
0), Lactation (PND

0–21)
↑ Locomotor activity [75]

Mouse (Swiss
albino)

NDL PCB
mixture (PCBs
28, 52, 101, 138,

153, 180)

1 ng/kg/d,
10 ng/kg/d,
100 ng/kg/d

Gavage Lactation (PND
0–21)

↓ Locomotor activity in
1 and 10 ng/kg males [76]

Rat
(Sprague-Dawley) A1221 0.5 mg/kg,

1 mg/kg
Injection

(i.p.) Prenatal (GD 16, 18) ↑ Distance traveled in
LDB in male offspring [77]

Rat (Wistar) PCB 52, PCB 138,
PCB 180 1 mg/kg/d Dietary

(jelly)

Prenatal (GD 7-PND
0), Lactation (PND

0–21)

↓ Locomotor activity in
PCB 138 and PCB 180

groups in males;
↓ Locomotor activity in

PCB 138 group in
females

[78]

Rat (Wistar) PCB 52, PCB 138,
PCB 180 1 mg/kg/d Dietary

(jelly)

Prenatal (GD 7-PND
0), Lactation (PND

0–21)

↓ Time spent on rotarod
in PCB 52 group for

both sexes
[79]

“Postnatal” exposure indicates PCB(s) were given directly to the pup, while “lactation” exposure indicates
PCB(s) were administered directly to the dam and indirectly to the pup via consumption of milk. Abbreviations:
A1221 = Aroclor 1221; A1254 = Aroclor 1254; i.p. = intraperitoneal; GD = gestational day; LDB = light-dark box;
PND = postnatal day; ↑ = increased; ↓ = decreased.

Effects of developmental PCB exposure on locomotor activity are reported to be sex-specific and
to depend on the degree of chlorination in the PCB congener. In mice, orogastric exposure to Aroclor
1254 at 6 or 18 mg/kg/d during lactation and the juvenile period significantly enhanced locomotor
activity in females but not males, evidenced as increased travel distance and time in the center of an
open-field arena [74]. Similarly, gestational and lactational exposure to Aroclor 1254 at 18 mg/kg/d
(i.p.) resulted in increased locomotor activity in an open-field arena, with significant enhancement of
total distance traveled and distance within the center of the arena [75]. However, sex was not specified
in this study. In contrast, another study evaluated lactational exposure to a mixture of NDL PCBs
(28, 52, 101, 138, 153, and 180) via the orogastric route in mice at 1, 10, or 100 ng/kg/d and observed a
decrease in total locomotion in male offspring only [76].
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In rats, exposure to Aroclor 1221 at 0.5 or 1.0 mg/kg/d (i.p.) on gestational days (GDs) 16 and
18 decreased locomotion in male offspring, as indicated by reduced distance travelled in the light-dark
box (LDB) test [77]. While Aroclors are comprised predominantly of NDL congeners, they do contain
DL PCBs [80], so it is not possible to tell which congener type(s) mediated the effects. Further studies
in rats evaluating gestational and lactational exposure via the maternal diet to single NDL congeners
(PCB 52, 138 or 180) at 1 mg/kg/d revealed differential effects of each congener on locomotor activity
between males and females. PCB 52 was found to have no effect on motor activity in either sex, while
PCB 138 decreased activity in both males and females and PCB 180 reduced activity in males, but
not females [78]. In a second study by the same group using the same exposure paradigm, motor
coordination was assessed using the rotarod test. In this study, developmental exposure to PCB 52, but
not PCBs 138 or 180, decreased latency to fall from the rotarod apparatus [79].

These data suggest that developmental exposure to NDL PCBs decreases locomotor activity in
a congener-dependent, and, in some cases, sex-specific manner. These observations do not support
a role for NDL PCBs as risk factors for ADHD, at least not for the hyperactivity component of the
disorder. However, this is an extremely limited data set, and experiments in which animals were
developmentally exposed to Aroclor mixtures suggest that developmental PCB exposure increases
locomotor activity. Several potential explanations for this discrepancy include: (1) Aroclor mixtures
contain a subset of NDL PCBs that exert effects on locomotor behavior that are different than those
caused by the individual NDL congeners that have been tested for locomotor effects; (2) DL PCBs
in the Aroclor mixtures increase locomotor activity, and this effect predominates over the tendency
of NDL PCBs to decrease locomotor activity; and/or (3) Complex interactions between NDL and DL
congeners in Aroclor mixtures influence locomotor outcomes (see Section 5.1). Distinguishing between
these possibilities will require structure activity relationship (SAR) studies of the dose-related effects of
PCBs on locomotor behavior.

3.2. Social Deficits

Impaired recognition of social cues, reduced social interaction, and decreased communication are
clinical features of ASD, but do not present as frequently in ADHD [81]. Evaluating social behavior
in rodents and other experimental animal models is challenging because not all aspects of social
interaction between humans are recapitulated in rodents [82]. However, rodent models can capture core
aspects of sociability [83]. Broadly, sociability in rodents is defined as an individual animal’s preference
for investigating and spending time with another conspecific. Sociability can be directly tested in
a 3-chamber social approach assay and similar related assays [82,84–86]. Ultrasonic vocalizations
(USVs) and sociosexual choice are other frequently used tasks to assess sociability and communication
in rodent models [87,88]. Table 2 summarizes the recent animal literature evaluating the effects of
developmental PCB exposure on social behavior (earlier studies have been previously reviewed [44]).
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Table 2. Effects of developmental PCB exposure on social behaviors.

Model Exposure Dose(s) Route of Exposure Exposure Window Findings Ref.

Mouse (CD1)
NDL PCB mixture
(PCBs 28, 52, 101,

138, 153, 180)

10 ng/kg/d,
1 µg/kg/d Dietary (chow)

Prenatal (GD 6-PND
0), Lactation (PND

0–21)

↑ Sociability in early adulthood in both sexes;
↑ Social novelty in both sexes (1 µg/kg/d);

↓ Social interaction in middle-aged males (1 µg/kg/d)
[89]

Rat
(Sprague-Dawley) A1221 1 mg/kg Injection (i.p.)

Prenatal (GD 16, 18,
20), Postnatal 1 (PND

24, 26, 28)

↑ USV calls in female (prenatal and postnatal);
↑ Affiliative wrestling behavior in female (prenatal

and postnatal);
↓ Time spent near novel animal of opposite sex in

males exposed postnatally

[90]

Rat
(Sprague-Dawley) A1221 0.5 mg/kg,

1 mg/kg Injection (i.p.) Prenatal (GD 16, 18) ↓ Social interaction with novel conspecific in
0.5 mg/kg males [91]

Rat
(Sprague-Dawley) A1221 0.5 mg/kg/d,

1 mg/kg/d Injection (i.p.) Prenatal (GD 16, 18)
↑ USV calls in males in sociosexual context;

No effect on sociosexual behavior in females;
↓ Sociosexual interaction (nose-nose sniffs) in males

[92]

Rat
(Sprague-Dawley)

Mixture (PCBs 47,
77)

12.5 mg/kg/d,
25 mg/kg/d Dietary (chow)

Prenatal (GD 0-PND
0), Lactation (PND

0–21)

↓ Social recognition in 25 mg/kg males;
↓ Social investigation in males (both doses) [93]

1 “Postnatal” exposure indicates PCB(s) were given directly to the pup, while “lactation” exposure indicates PCB(s) were administered directly to the dam and indirectly to the pup via
consumption of milk. Abbreviations: A1221 = Aroclor 1221; i.p. = intraperitoneal; GD = gestational day; PND = postnatal day; USV = ultrasonic vocalization; ↑ = increased; ↓ = decreased.
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A recent study using a mouse model evaluated the effects of prenatal and lactational exposure to a
mixture of six NDL indicator PCB congeners via the maternal diet at 10 or 1000 ng/kg/d. This exposure
enhanced sociability and social approach in both male and female offspring, but reduced nose-nose
sniff interactions in male offspring [89]. Studies using rat models provide stronger support for the
hypothesis that developmental PCB exposure causes social behavior deficits. Exposure of pregnant
female rats to Aroclor 1221 at 0.5 or 1.0 mg/kg/d (i.p.) on GD 16 and 18 reduced social interaction
with a novel conspecific in male adult offspring [91]. Interestingly, this effect was seen at the lower
dose (0.5 mg/kg/d) and not the higher dose (1.0 mg/kg/d) of Aroclor 1221. In a second study from
this group using the same exposure paradigm, USV calls in a sociosexual context (i.e., in the presence
of a conspecific of the opposite sex) increased but nose-nose sniff interactions decreased in adult
offspring [92]. A separate rat study that also evaluated Aroclor 1221, but used a different exposure
paradigm (1 mg/kg i.p. on GD 16, 18, and 20 and on PNDs 24, 26, and 28), observed increased USV
calls and affiliative wrestling behavior in female offspring and reduced social novelty preference in
male offspring [90].

To date, animal studies of the effects of developmental PCB exposure on social behavior have
largely employed complex mixtures. One exception is a recent study using a rat model that explored the
effects of gestational and lactational exposure via the maternal diet to two higher doses (12.5 mg/kg/d
and 25 mg/kg/d) of a combination of the NDL PCB 47 and the DL PCB 77. This exposure paradigm
significantly impaired social recognition and social investigation behaviors [93]. Unfortunately, the
authors of this study did not investigate the social effects of the individual PCB congeners. Overall,
developmental PCB exposure tended to decrease sociability in males, which is consistent with the sex
bias of ASD in humans. However, based on the available data, it is not possible to discern whether
these effects are attributable to a specific class of PCBs.

3.3. Cognitive Impairment and Executive Dysfunction

Cognitive function refers to the ability of an organism to process information in their environment,
and includes learning, memory, and attention [94]. Executive functions fall under cognitive function,
and are defined as higher-order processes involved in the planning and control of goal-oriented
behavior, including the initiation, inhibition, and shifting of behavioral responses [45]. Both cognitive
and executive functions are affected in NDDs to varying degrees, though the clinical presentation of
alterations in these domains are heterogeneous in humans. A review of earlier human literature of
PCB developmental neurotoxicity concluded that executive function is possibly the most impacted
behavioral domain associated with developmental PCB exposure, with working memory and inhibitory
control appearing to be the most affected [45].

A hallmark symptom of ADHD is impulsivity, which is broadly defined as acting or behaving
without first considering potential outcomes [95]. Impulsivity, or lack of inhibitory control, can be
tested in experimental animal models using various operant paradigms, such as reversal learning
(RL), differential reinforcement of low rate (DRL), and fixed interval (FI). Additional aspects of
cognitive function, such as learning and memory, can also be probed using these assays. Spatial
learning and memory are commonly assessed using the Morris water maze (MWM) and delayed
spatial alternation (DSA), while novel object recognition (NOR) evaluates object-based attention and
short-term memory [96]. Table 3 summarizes the recent animal literature evaluating the effects of
developmental PCB exposure on cognitive behavior and executive function.
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Table 3. Effects of developmental PCB exposure on cognitive behavior and executive function.

Model Exposure Dose(s) Route of Exposure Exposure Window Findings Ref.

Mouse (ICR) A1254 6 mg/kg/d,
8 mg/kg/d Gavage Lactation (PND 7–21),

Juvenile (PND 22–42)
↓ NOR performance in females;

No effect on alternation behavior in either sex [74]

Mouse (ICR) A1254 18 mg/kg/d Injection (i.p.)
Prenatal (GD 6-PND 0),
Lactation (PND 0–21),
Postnatal (PND 21–35)

↓ Object-based attention in NOR task;
↓ Latency to enter open arms of EPM;
↑ Time spent in open arms of EPM

[75]

Mouse
(Swiss albino)

NDL PCB mixture
(PCBs 28, 52, 101,

138, 153, 180)

1 ng/kg/d,
10 ng/kg/d,
100 ng/kg/d

Gavage Lactation (PND 0–21)

↑ Escape latency in water escape task in males (1 and
100 ng/kg),

↑ Anxiety-like behavior in EPM and LDB tasks (1 and
10 ng/kg),

No effect on performance in MWM task

[76]

Mouse
(Swiss albino)

NDL PCB mixture
(PCBs 28, 52, 101,

138, 153, 180)
10 ng/kg/d Gavage Lactation (PND 0–21)

No effect on short-term memory in spontaneous
alternation task;

No effect on learning acquisition in MWM task
[97]

Rat
(Sprague-Dawley) A1221 1 mg/kg/d Injection (i.p.) Prenatal (GD 16, 18, 20),

Postnatal 1 (PND 24, 26, 28)
↑ Entries into and time spent in open arms of EPM in

females during both periods [90]

Rat
(Long-Evans) Fox River 3 mg/kg/d,

6 mg/kg/d Dietary (cookie)
Pre-conception (28 d),

Prenatal (GD 0-PND 0),
Lactation (PND 0–21)

↓ DRL performance in 3 mg/kg females;
↓ Inhibitory control in both sexes (both doses) [98]

Rat
(Long-Evans) Fox River 3 mg/kg/d,

6 mg/kg/d Dietary (cookie) Postnatal 1 (PND 27–50)

↑ Response latency in cue discrimination phase of
set-shifting task in males (3 mg/kg/d);

↓ Errors to criterion in position reversal in males
(both doses);

↓ Perseverative errors in position reversal in males
(both doses);

No effect on DRL performance

[99]

Rat
(Wistar)

PCB 52,
PCB 138,
PCB 180

1 mg/kg/d Dietary (jelly) Prenatal (GD 7-PND 0),
Lactation (PND 0–21)

↓ Learning in Y maze visual discrimination task for
PCB 138 and 180 in both sexes [79]

1 “Postnatal” exposure indicates PCB(s) were given directly to the pup, while “lactation” exposure indicates PCB(s) were administered directly to the dam and indirectly to the pup
via consumption of milk. Abbreviations: A1221 = Aroclor 1221; A1254 = Aroclor 1254; i.p. = intraperitoneal; GD = gestational day; PND = postnatal day; EPM = elevated plus maze;
DRL = differential reward of low-rate; LDB = light-dark box; MWM = Morris water maze; NOR = novel object recognition; ↑ = increased; ↓ = decreased.
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In mice, direct exposure to Aroclor 1254 at 6 or 8 mg/kg/d via gavage from PND 7–42 reduced
short-term memory in female, but not male, offspring tested in the NOR task [74], but had no effect on
spontaneous alternation behavior in either sex. Another mouse study found that i.p. administration
of Aroclor 1254 at 18 mg/kg/d to the dam throughout gestation and lactation decreased object-based
attention, evident as reduced object recognition in the NOR task and increased impulsivity in an EPM
task in offspring [75]. In contrast, mice exposed to a mixture of six indicator NDL PCB congeners
at 1, 10, or 100 ng/kg/d via the maternal diet during the lactational period exhibited no deficits in
spatial learning and memory in an MWM task or the spontaneous alternation task across two separate
studies [76,97]. The lack of effect in the study of the NDL PCB mixture compared to the previously
discussed studies of Aroclor mixture effects on cognitive function, likely reflects the 2 to 3 orders of
magnitude lower dose levels used in the NDL PCB studies. In contrast, developmental exposure to
this low level NDL PCB mixture increased anxiety-like behavior in EPM and LDB tasks [76].

The effects of PCB mixtures on cognitive and executive function have also been studied in rat
models. Gestational and postnatal exposure to 1 mg/kg/d (i.p.) Aroclor 1221 increased the number of
entries into and time spent within the open arms of the EPM in female but not male offspring [90].
Several rat studies have used a PCB mixture custom made to proportionally mimic the PCB congener
profile in fish caught in the Fox River in Wisconsin [100]. Rats were exposed to this Fox River
mixture, which was comprised of Aroclors 1242 (35%), 1248 (35%), 1254 (15%) and 1260 (15%), at 3 or
6 mg/kg/d throughout gestation and lactation via the maternal diet. This exposure paradigm produced
female-specific deficits in the DRL test and impaired inhibitory control in both sexes [98]. Interestingly,
the female DRL deficits were only observed in the low (3 mg/kg/d), but not the high (6 mg/kg/d) dose
group. Similar non-monotonic dose-response effects on cognitive behavior were reported in an older
study of rats exposed developmentally to Aroclor 1254 in the maternal diet [47]. Postnatal exposure to
the Fox River PCB mixture produced a different behavioral outcome in which males in the 6 mg/kg/d
group had fewer errors and decreased perseverative responses in an attentional set-shifting task, which
measures cognitive flexibility [99]. Despite making fewer response errors, these animals had increased
latency to respond in the set-shifting task. There appeared to be no significant effect of PCB exposure
on response inhibition in a DRL task in either sex. The differential effects of developmental PCB
exposure across these two studies underscores the importance of timing of exposure.

The neurobehavioral effects of developmental exposure to purified NDL PCB congeners in the
absence of DL PCBs have been assessed in a rat model. Gestational and lactational exposure to PCBs
52, 138, or 180 at 1 mg/kg/d in the maternal diet caused learning deficits in a Y maze task in which
the animals had to associate wall color with the location of a food reward [79]. Both male and female
offspring exposed to PCBs 138 or 180, but not PCB 52, required more trials to reach the learning
criterion of 10 correct responses per day.

Collectively, the neurobehavioral studies published over the past decade extend the older animal
literature documenting cognitive deficits in animal models of developmental PCB exposure (reviewed
in [45,46]). They also provide evidence to suggest that environmentally relevant exposures to NDL
PCBs phenocopy the effects of Aroclor mixtures on cognitive behavior. This latter observation is
consistent with evidence from earlier rodent studies suggesting that NDL PCBs [63,64,101] and not DL
PCBs [65] are the primary driver of many of the PCB-associated cognitive and behavioral abnormalities
observed in humans. Nonetheless, this summary of the recent animal literature clearly demonstrates the
need for more comprehensive SAR studies of the neurobehavioral effects of developmental exposures
to specific PCB congeners at environmentally relevant levels in order to identify which PCB congeners
are developmental neurotoxicants and to determine whether the profile of developmental neurotoxicity
varies in a congener-specific manner.
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4. Neurodevelopmental Processes Altered by PCBs

Key to elucidating mechanism(s) of PCB developmental neurotoxicity is the identification of
specific neurodevelopmental processes that are altered by PCBs. A recent review of the human and
animal literature with respect to the neuropathology of PCB developmental neurotoxicity concluded
that even at levels that are overtly toxic, PCBs do not cause major structural changes in the developing
brain [14]. Rather, it appears that the neurobehavioral deficits linked to developmental PCB exposures
are due to subtle organizational defects in neurodevelopment that give rise to altered patterns of
synaptic connectivity [14,102–104]. The synaptic patterns established in the developing brain critically
influence cognitive function later in life [105], and altered patterns of synaptic connectivity are
associated with NDDs and cognitive impairment [106–112]. Two neurodevelopmental processes that
are important determinants of synaptic connectivity—neuronal apoptosis and the morphogenesis of
axons and dendrites—have been shown by more than one laboratory to be altered by PCBs.

4.1. PCB Effects on Neuronal Apoptosis

Neuronal apoptosis is essential to typical brain development [113–115], occurring in proliferative
zones and in postmitotic neurons in the neonatal brain [116]. During development, neuronal apoptosis
is under tight spatiotemporal control. Disruption of either the timing or the magnitude of apoptosis in a
given brain region can affect the total cell number and, consequently, neuronal connectivity, resulting in
deficits in higher-order function even in the absence of obvious pathology [114,115,117,118]. Histologic
studies in a rat model of PCB developmental neurotoxicity indicate that exposure to Aroclor 1254 at 0.1
or 1.0 mg/kg/d in the maternal diet throughout gestation and lactation significantly increases apoptosis
in the brain of offspring at PND 1 but not PND 21 [119]. Specifically, assays of caspase-3 activity, as
well as terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining of the cortex,
hippocampus, and cerebellum, revealed significantly enhanced apoptosis in all three brain regions,
with the most pronounced increase in the cerebellum [119].

In vitro studies confirm that Aroclor 1254, and other Aroclor mixtures, induce apoptosis in primary
neuronal cell cultures at concentrations that do not cause significant cytotoxicity [120,121]. Studies
of individual PCB congeners suggest that the pro-apoptotic activity of these complex PCB mixtures
are largely mediated by NDL PCB congeners. An investigation of the potential apoptotic activity of
PCB 52 in human neuronal SK-N-MC cells found that this NDL congener triggered apoptosis via
p53-independent mechanism(s) [122]. In a comparative study of PCB 47, an NDL congener, and
PCB 77, a DL congener, in primary rat hippocampal neurons, PCB 47, but not PCB 77, was observed
to significantly increase caspase-dependent apoptosis [121]. Neither PCB 47 nor PCB 77 triggered
neuronal apoptosis in primary rat cortical neurons established from the same dissection and grown
under the same culture conditions. Another comparative study of NDL vs. DL PCB congeners using
primary cultures of rat cortical neurons indicated that both the NDL congener, PCB 153, and the DL
congener, PCB 77, accelerated apoptosis in a time- and concentration-dependent manner [123]. The
extent of apoptosis was greater in the cultures treated with PCB 77 compared to the cultures treated
with PCB 153. The reason(s) for the different outcomes between the two studies with regards to the
effects of PCB 77 on neuronal apoptosis may reflect subtle differences in culture systems: primary rat
cortical neurons were maintained under serum-free conditions in one study [121] but in the presence
of serum in the other [123]. However, a more likely explanation is the significant differences in the
concentrations of PCB 77 that were tested. The study in which PCB 77 was observed to have no effect on
neuronal apoptosis tested PCB 77 at concentrations ≤ 1.0 µM because cytotoxic effects were observed
at concentrations > 1.0 µM [121]. In contrast, in the study that observed PCB 77-induced neuronal
apoptosis, PCB 77 was tested at 30, 50, and 100 µM, concentrations that caused significant cytotoxicity
within 1–3 h after exposure [123]. The relevance of neuronal apoptosis caused by exposure to overtly
cytotoxic levels of PCBs is questionable. Interestingly, the group that reported PCB 47-induced
apoptosis in primary hippocampal neurons, also observed that the NDL congener PCB 104 had no
effect on baseline apoptosis in either primary rat hippocampal or cortical neurons [121]. The reason(s)



Int. J. Mol. Sci. 2020, 21, 1013 11 of 37

for the differential effect of PCB 47 versus PCB 104 on neuronal apoptosis likely reflects differences in
their relative activity at the ryanodine receptor (RyR), as discussed in Section 5.3. Importantly, this
observation demonstrates that pro-apoptotic activity is not an inherent property of all NDL PCBs.

4.2. PCB Effects on Axonal and Dendritic Morphogenesis

Axonal and dendritic morphology are principal determinants of synaptic architecture [124,125].
The size of the dendritic arbor determines the total synaptic input a neuron can receive, and both
axonal and dendritic branching patterns influence the types and distribution of these inputs [126–129].
Moreover, dendritic shape is refined by experience, and dendritic structural plasticity is considered
the cellular substrate of learning and memory [130]. Abnormalities in neuronal structure, i.e., axonal
and dendritic number, length, and branching, are thought to underlie the clinical symptomologies
of human NDDs [81,105,131–134], and in experimental animal models, even subtle perturbations of
spatial or temporal aspects of axonal or dendritic growth are associated with altered neurobehavior.
For example, rodent models demonstrate that disrupted axonal growth [135,136] or delays in dendritic
maturation of the neocortex as a result of transient depletion of cholinergic input [137,138] can cause
persistent learning and memory deficits. Increased rates of dendritic growth, as observed in animals
exposed to cocaine in utero, are also associated with cognitive impairment [139,140].

At least one study has examined the effects of developmental PCB exposure on axonal outgrowth
in vivo [141]. In this study, pregnant rats were exposed to Aroclor 1254 in the diet at 125 ppm
throughout gestation and lactation. Weaned offspring were maintained on chow containing 125 ppm
Aroclor 1254 until brains were collected for Timm’s silver sulfide staining. The authors observed
that developmental exposure to Aroclor 1254 significantly reduced the relative size of II-P mossy
fibers in 16-, 30- and 60-day old rats. In contrast, the exposure had no effect on the size of hilar or
suprapyramidal mossy fibers or on cortical thickness. The reason(s) for the selective sensitivity to
Aroclor 1254 of granule cells that give rise to II-P mossy fibers remains unknown.

Three studies have published observations of in vivo effects of developmental exposures to
Aroclor 1254 on dendritic morphogenesis in three independent cohorts of rats of the same strain
(Long-Evans) [47,142,143]. In all three studies, dams were exposed to Aroclor 1254 in the diet
preconception and continuing throughout gestation and lactation, and all three studies tested Aroclor
at 6 mg/kg/d, although one study [47] also tested a lower dose of 1 mg/kg/d. All three groups
used Golgi staining to quantify dendritic arborization of individual neurons in the offspring’s brain.
Two of the three studies reported that developmental PCB exposure significantly altered dendritic
arborization [47,142]. The first of these two studies [142], which quantified dendritic arborization
only in male offspring, observed that Aroclor 1254 at 6 mg/kg/d caused a pronounced age-related
increase in the rate of dendritic growth in CA1 hippocampal pyramidal neurons and cerebellar Purkinje
cells. While dendritic lengths were significantly attenuated in PCB-exposed animals at PND 22,
dendritic growth was comparable to or exceeded that observed in vehicle controls at PND 60 [142]. The
second positive study [47], which measured dendritic growth at PND 31 in male offspring, reported
that developmental exposure to Aroclor 1254 increased basal dendritic arborization but blocked
experience-dependent dendritic growth in cerebellar Purkinje cells and neocortical pyramidal neurons.
In the cerebellum, these dendritic effects were only observed in the 1 mg/kg/d exposure group, and in
the neocortex, dendritic effects were more pronounced in the 1 mg/kg/d exposure group compared to
the 6 mg/kg/d exposure group. Interestingly, the lower, but not the higher, dose of Aroclor 1254 was
associated with significant deficits in spatial learning and memory in the MWM [47]. In contrast, the
third study [143], which quantified the dendritic arbor of Purkinje cells at PND 21, reported no changes
in primary dendrite length or branching area. This observation is consistent with the second study [47]
that also observed no effects on dendritic arborization in Purkinje cells in the 6 mg/kg/d Aroclor 1254
exposure group. However, both the second and third studies are at odds with the first study [142],
which reported that developmental exposure to Aroclor 1254 at 6 mg/kg/d significantly altered the
dendritic arborization of Purkinje cells. The reason(s) for this discrepancy between studies are not
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known, but since it appears that developmental PCB exposure alters the rate of dendritic growth,
perhaps the differences between studies reflect the fact that dendritic arborization was quantified at
different ages.

Studies of Aroclor 1254 do not provide insights as to which PCB congener(s) influence dendritic
arborization during development; however, a subsequent study [144] demonstrated that developmental
exposure to PCB 95, a NDL congener, phenocopies the dendritic effects of Aroclor 1254. In this study,
rats were exposed throughout gestation and lactation to PCB 95 at 0.1, 1, or 6 mg/kg via the maternal diet
and the morphology of hippocampal CA1 pyramidal neuronal dendrites was assessed at PND 38 using
Golgi staining. Dendritic arborization was significantly increased in pups exposed developmentally to
PCB 95 at 0.1 or 1 mg/kg/d. However, dendritic growth in the hippocampus in the 6 mg/kg/d exposure
group was not significantly different from that of vehicle controls, recapitulating the non-monotonic
dose-response relationship observed earlier for Aroclor 1254 effects on dendritic arborization. In vitro
studies confirm that PCB 95, and another NDL congener, PCB 136, promote dendritic growth (reviewed
in [14]). At pM to nM concentrations, PCB 95 [47,144–146] and PCB 136 [147], increase dendritic
arborization in primary rat hippocampal and cortical neuron grown in neuron-glia co-cultures at
high cell density. These observations suggest that the effects of PCBs on dendritic growth are
autonomous to the brain and occur independent of systemic effects of PCBs. Interestingly, the
morphogenic effect of these NDL PCBs is selective to dendritic growth in that axonal growth was
not altered in PCB-exposed cultures relative to vehicle controls. The dendritic phenotype exhibits a
non-monotonic concentration–response relationship with enhanced dendritic growth observed at nM
to pM concentrations but not at low µM concentrations [144,147]. The biological explanation for the
lack of response at the higher end of the concentration response curve remains to be answered, but
does not reflect decreased cell viability [144,147]. The dendrite-promoting effects of PCB 95 have also
been demonstrated in primary mouse hippocampal and cortical neurons, although in this species, the
effect is sex-specific, with the sex-specificity varying between the two brain regions [148]. The species
and regional differences are thought to reflect species and regional differences in the rates of neuronal
maturation [148]. PCB 95 also promotes the formation of dendritic spines in primary rat hippocampal
neurons [149].

Studies from other laboratories have shown that the hydroxylated metabolites of NDL PCBs can
promote dendritic growth in vitro. The 4-hydroxy metabolites of PCBs 112, 165, and 187 enhanced
dendritic arborization in primary mouse cerebellar Purkinje cells [150]. Interestingly, this same
group demonstrated that the hydroxylated metabolites of NDL PCBs 106, 121, and 159 had no
dendrite-promoting activity in this same culture system; however, these compounds inhibited thyroid
hormone (TH)-induced dendritic growth [150,151]. These observations suggest that dendrite-promoting
activity is not a property of all NDL PCBs. Consistent with this observation, another laboratory
reported that PCB 66, a NDL congener whose physicochemical properties are very similar to those of
PCB 95, has no effect on dendritic arborization in primary rat hippocampal neurons when tested at the
same concentration range over which PCB 95 increases dendritic growth [144]. The properties that
confer dendrite-promoting activity may be linked to the ability to sensitize the RyR, as discussed in
more detail in Section 5.3 (and reviewed in [14,55]).

Whether DL PCBs influence dendritic arborization in the developing brain is not known. It has
been reported that mice born to dams administered TCDD at 0.6 or 3 µg/kg on GD 12.5 exhibit increased
growth of dendritic branches in both the hippocampus and amygdala at PND 14, and significantly
reduced dendritic spine densities at 16 months of age [152]. These observations suggest the possibility
that DL PCBs may modulate dendritic growth in the developing brain, but this has yet to be directly
tested. A more comprehensive understanding of the SAR of the dendrite-promoting activity of PCBs
remains a critical data gap.
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5. Molecular Mechanisms of PCB Developmental Neurotoxicity

The most widely postulated mechanisms of PCB developmental neurotoxicity include:
(1) disruption of the hypothalamic-pituitary-thyroid axis (reviewed in [153,154]); (2) altered
neurotransmitter signaling, specifically decreased dopamine levels (reviewed in [14,155]) and
potentiated GABA signaling (reviewed in [67]); (3) modulation of neuronal Ca2+ signals (reviewed
in [55]); and (4) increased intracellular levels of reactive oxygen species (ROS) (reviewed in [155,156]).
Both NDL and DL PCBs have been shown to interfere with TH homeostasis (see Section 5.2) and to
increase intracellular ROS levels [155,156]. In contrast, comparative studies of NDL versus DL congeners
indicate that NDL PCBs, but not DL PCBs, deplete intracellular dopamine concentrations [157–159],
potentiate GABA signaling [160–162], and alter Ca2+-dependent signaling [163–165].

Each of the four biological activities associated with NDL PCBs has been implicated in the control
of neuronal apoptosis and/or neuronal morphogenesis (axonal and/or dendritic growth) during typical
neurodevelopment. However, to date, experimental evidence supporting a causal role for these
biological activities in PCB effects on these neurodevelopmental processes has been reported only
for Ca2+ and ROS; therefore, this section will address these two biological activities as mechanisms
contributing to PCB developmental neurotoxicity. Because of the significant number of references in
the literature to TH disruption as a principal mechanism of PCB developmental neurotoxicity, and the
central relevance of the AhR to the mode of action of DL PCBs, these biological activities will also be
briefly discussed in the context of their potential roles in mediating PCB developmental neurotoxicity.

5.1. Arylhydrocarbon Receptor (AhR) as a Molecular Target in PCB Developmental Neurotoxicity

AhR activation, which is the canonical mode of action for TCDD, is the distinguishing feature of
DL PCBs. AhR-dependent signaling is implicated in the regulation of neurodevelopment in rodent
models [166,167]. Altered patterns of neuronal cell proliferation, migration, and maturation have been
observed in Ahr-/- mice [168,169] and in mice genetically engineered to express constitutively active
AhR [170]. These neurodevelopmental changes likely have functional consequences as evidenced by
learning and memory deficits in Ahr-/- mice [168]. Recent studies indicate that developmental exposure
of mice to TCDD alters neuronal proliferation, migration, and dendritic arborization [167,168,170–172],
and decreases USVs [173]; however, these neurotoxic effects are only observed at doses significantly
higher than those required for induction of adverse outcomes in other organ systems. Nonetheless,
these studies suggest that DL PCBs might interfere with typical neurodevelopment, as has been
reported for other chemicals that activate the AhR, such as benzo[a]pyrene [174]. However, whether
DL PCBs phenocopy the effects of TCCD on neurodevelopment at doses relevant to human exposure
has yet to be determined.

Experimental evidence does suggest, however, that DL PCB interactions with the AhR may
indirectly influence the developmental neurotoxicity of NDL PCBs. Four allelic variants of Ahr
have been described in laboratory mice [175,176], and, of these, the higher-affinity variants (e.g.,
AhRb variants) appear to enhance susceptibility to the neurotoxic effects of PCBs via induction of
cytochrome P450 (CYP) enzyme families 1A and 1B [176], which are believed to oxidize coplanar PCBs
and non-coplanar PCBs, respectively [8]. This hypothesis is based on comparative studies of PCB
developmental neurotoxicity in transgenic mice that express high-affinity AhR/wild-type CYP1A2
(Ahrb/Cyp1a2+/+) vs. mice nullizygous for Cyp1a2 that express either the high- or low-affinity AhR
(Ahrb/Cyp1a2-/- and Ahrd/Cyp1a2-/-, respectively) [177]. Gestational and lactational exposure to a mixture
of DL (PCBs 77, 105, 118, 126, and 169) and NDL (PCBs 138, 153, and 180) congeners at 5.6 mg/kg/d in
the maternal diet reduced serum thyroxine (T4) at PND 14 in offspring of all three genotypes. However,
Ahrb/Cyp1a2-/- mice exhibited a greater T4 reduction than the other two genotypes [177]. Postnatal
development of the cerebellum is particularly sensitive to TH insufficiency [175–178], and consistent
with this, PCB-exposed Ahrb/Cyp1a2-/- mice exhibited defects in cerebellar structure at PND 25 [177].
In other studies by this group, exposure to this same PCB mixture on GD 10 and PND 5 resulted in
learning and memory deficits in NOR and MWM tasks in both Ahrb/Cyp1a2-/- [178] and Ahrd/Cyp1a2-/-
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mice [179], enhanced startle response in Ahrd/Cyp1a2-/- mice [179], and increased locomotor activity
in Ahrb/Cyp1a2-/- mice [178]. In contrast, AhRb/Cyp1a2+/+ and AhRd/Cyp1a2+/+ mice did not exhibit
these neurobehavioral deficits. Collectively, these data suggest that activation of the AhR by DL PCBs
indirectly modulates PCB developmental neurotoxicity via influences on PCB metabolism.

5.2. Thyroid Hormone-Mediated Mechanisms of PCB Developmental Neurotoxicity

TH influences many stages of neurodevelopment, and congenital hypothyroidism is linked to
significant neurodevelopmental defects [180–183]. There is some evidence, albeit conflicting, that TH
insufficiency may increase the risk of ASD [184,185] and is related to ADHD [186,187]. Numerous studies
in experimental animal models have shown that developmental exposure to complex PCB mixtures
decreases serum TH levels (reviewed in [153,154]); however, this relationship may be less consistent
in humans [188,189]. Early animal studies supported a role for TH insufficiency in at least some of
the auditory deficits induced by developmental Aroclor exposure [190,191]. However, the profile of
cochlear damage caused by PCBs is not entirely consistent with other models of hypothyroidism,
evidenced by the observation that TH replacement in Aroclor-exposed rats only partially ameliorated
hearing deficits [153,190–192]. Additionally, later studies supported a TH-independent mechanism
of PCB ototoxicity [193]. With regard to PCB effects on neurobehavior, data from animal models of
developmental Aroclor exposure do not support a role for TH deficiency in Aroclor effects on learning
and memory [47,194]. Similarly, studies with individual PCB congeners provide little support for the
hypothesis that TH deficiency mediates the cognitive effects of developmental PCB exposures [155].
For example, NDL PCBs 28, 118, and 153 produce similar deficits in spatial learning and memory, but
their effects on serum T4 levels vary from a marked reduction to no effect [101,195]. Conversely, DL
PCBs 77 and 126 significantly reduce serum T4 [196], but result in few, if any, cognitive behavioral
deficits [65,197,198].

In a typically developing brain, increased TH levels enhance and decreased TH levels attenuate
dendritic arborization in cerebellar Purkinje cells [183,199]. However, maternal dietary exposure
to Aroclor 1254 throughout gestation and lactation at doses of 1 or 6 mg/kg/d increased dendritic
arborization or had no effect on dendritic arborization in Purkinje cells, respectively, even though both
doses significantly decreased serum TH levels in dams and offspring [47,143]. Moreover, perinatal PCB
95 exposure significantly disrupts neuronal connectivity in the auditory cortex at a dose that has no
quantifiable effect on auditory brainstem responses (ABRs) [200]. Since altered ABRs are a confirmed
T4-dependent effect of PCBs [191], these observations suggest that T4-mediated mechanisms are not
the major factor driving PCB effects on neuronal connectivity in the auditory cortex. Moreover, NDL
PCB effects on dendritic growth are observed in serum-free cultures of primary hippocampal and
cortical neurons, which are isolated from the hypothalamic-pituitary-thyroid axis and systemic TH
influence [47,144,146,147,150].

While these observations argue against TH insufficiency playing a major role in PCB effects
on learning and memory, they do not rule out the possibility that individual PCB congeners or
their metabolites contribute to developmental neurotoxicity via direct actions at the level of the TH
receptor (THR) on target cells in the brain. However, the data regarding the activity of PCBs and their
metabolites at the THR or on THR-mediated gene transcription are inconsistent, with studies variably
reporting agonistic effects, antagonistic interactions, or no activity [150,151,201,202]. A recent study
that evaluated the THR activity of an NDL PCB mixture that proportionally mimics the PCB congener
profile detected in the blood of pregnant women in Northern California observed neither agonistic nor
antagonistic activity of these congeners when tested singly or in combination across a broad range of
concentrations [69].
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Collectively, the current literature does not provide strong support for the hypothesis that
TH-dependent mechanisms play a predominant role in mediating PCB effects on neurodevelopment.

5.3. Calcium Signaling

Activity, or experience, is important in shaping neuronal architecture and is critical for refining
neural circuits into functionally integrated networks [203–207]. Activity modulates not only structural
aspects of neuronal connectivity, such as matching the number of neurons to the size of the target field
and refining dendritic arbors and spine formation, but also neurochemical aspects of connectivity,
such as neurotransmitter phenotype [208,209]. The effects of activity on neuronal connectivity are
mediated primarily by modulation of intracellular Ca2+ [210,211], and precise control of intracellular
Ca2+ dynamics is required for typical neurodevelopment [212–214]. Many candidate NDD risk genes
encode proteins that generate intracellular Ca2+ signals or are themselves tightly regulated by local
Ca2+ fluctuations [215,216]. These genes encode Ca2+ ion channels, neurotransmitter receptors, and
Ca2+-regulated signaling proteins such as cAMP response element-binding protein (CREB) and Wnt2.
Significant evidence supports the hypothesis that altered patterns of neuronal connectivity associated
with NDDs are due in part to defects in neuronal Ca2+ signaling [210].

Many laboratories using diverse biophysical, biochemical, and cellular approaches have
consistently shown that NDL PCBs, but not DL PCBs, alter Ca2+ dynamics in neurons, evidenced as
increased intracellular Ca2+ levels and/or activation of Ca2+-dependent signaling events (reviewed
in [55]). Mechanistic studies have identified multiple molecular mechanism(s) by which NDL PCBs
influence intracellular Ca2+ levels in neurons. In vitro studies assessing pharmacological blockade
of selected Ca2+ channels indicate that NDL PCBs increase extracellular Ca2+ influx via activation of
l-type voltage-sensitive Ca2+ channels and NMDA receptors [217,218]. However, these effects are
elicited only by high PCB concentrations (>10 µM) that also produce nonspecific changes in membrane
fluidity [164]. NDL-PCBs also promote the release of Ca2+ from intracellular stores through sensitization
of ryanodine receptors (RyR) [219–221] and inositol 1,4,5-trisphosphate receptors (IP3R) [222]. Of these,
RyR sensitization is the most sensitive [55,219]. RyRs are microsomal Ca2+ ion channels that regulate
endoplasmic reticulum storage and release of Ca2+. Picomolar to nanomolar concentrations of NDL
PCBs interact directly with RyR channels to stabilize the channel in its open configuration [223,224].
This RYR-PCB interaction exhibits a stringent SAR, including stereoselectivity, as determined via
biochemical, electrophysiological, cellular, and in vivo approaches [147,224–230].

RyR activity is implicated in the regulation of neuronal apoptosis [231,232] and dendritic
growth [146,233], and several lines of evidence support a causal relationship between PCB effects on
RyRs and PCB effects on neuronal apoptosis and dendritic growth. With regard to neuronal apoptosis,
PCB 47, but neither PCB 77 nor PCB 104, triggers neuronal apoptosis in primary rat hippocampal
neurons [121]. SAR studies demonstrate that PCB 47 is a RyR-active congener whereas PCB 77 and
PCB 104 have negligible activity at the RyR [230]. Furthermore, the pro-apoptotic activity of PCB
47 in cultured neurons is inhibited by FLA 365, a selective RyR antagonist [234,235], but not by
antagonists known to block PCB-mediated Ca2+ flux through l-type voltage-sensitive Ca2+ channels,
NMDA receptors, or IP3Rs [121]. The signaling pathway(s) that connect RyR sensitization to neuronal
apoptosis are not yet known, but presumably involve caspase-3-dependent [121], p53-independent [122]
signaling mechanism(s).

SAR studies also support a causal role for RyR sensitization in PCB-induced dendritic growth.
PCBs 95 and 136, but not PCB 66, increase dendritic arborization in primary rat hippocampal and cortical
neurons [47,144,147]. PCBs 95 and 136 have potent RyR activity, whereas PCB 66 has negligible RyR
activity [230]. PCB 136 is a chiral congener that atropselectively sensitizes RyRs [236], which translates
into atropselective effects on dendritic growth. Specifically, the (−)-PCB 136 enantiomer potently
sensitizes RyR and enhances dendritic growth, whereas the (+)-PCB 136 enantiomer lacks RyR activity
and has no effect on dendritic growth [147]. Further supporting the hypothesis that RyR-dependent
mechanisms underlie PCB effects on dendritic growth are observations that pharmacological blockade
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of RyRs inhibits the dendrite-promoting activity of PCB 95 and PCB 136 in primary rat hippocampal
and cortical cultures [47,144,147], and siRNA knockdown of RyRs inhibits PCB 95-induced dendritic
growth in rat dissociated hippocampal cell cultures and hippocampal slice cultures [144]. In vivo
observations are consistent with a role for RyR in PCB developmental neurotoxicity. Aroclor 1254 is
comprised predominantly of ortho-rich PCBs with significant RyR activity [219,220]. In rats, maternal
dietary exposure to Aroclor 1254 throughout gestation and lactation showed that changes in dendritic
growth and plasticity coincide with increased [3H]-ryanodine binding [47]. Since ryanodine only binds
to RyR in its open conformation, an increase in ryanodine binding indicates increased RyR activity [55].
The dose-response relationship for the effects of Aroclor 1254 on dendritic growth and plasticity was
similar to PCB effects on RyR expression, but not to PCB effects on TH levels or sex steroid-dependent
developmental endpoints [47]. Increased RyR expression in the brain has also been associated with
Aroclor 1254-induced changes in gene expression [237,238] and locomotor activity [239].

Ca2+-regulated translation- and transcription-dependent pathways regulate activity-dependent
dendritic growth and spine formation [240–242]. PCB 95 promotes dendritic growth by engaging these
same signaling pathways. Ca2+ imaging studies of primary rat hippocampal neurons demonstrate
that RyR-active congeners, such as PCB 95 and the (−) enantiomer of PCB 136, increase the frequency
and amplitude of Ca2+ oscillations, whereas congeners that are not RyR-active, such as PCB 66 or
the (+) enantiomer of PCB 136, have no discernable effect on neuronal Ca2+ oscillations [146,147].
Pharmacological inhibition of RyRs blocks the intracellular Ca2+ oscillations triggered by PCB 95
and (−)-PCB 136, confirming that these PCB effects are RyR-dependent. In primary rat hippocampal
neurons, the increase in intracellular Ca2+ caused by PCB 95 activates a Ca2+-dependent translational
mechanism involving mechanistic target of rapamycin (mTOR) [145]. In addition, PCB 95 triggers
sequential activation of CaMKK, CaMKIα/γ, MEK/ERK and CREB to increase transcription of Wnt2,
which acts in an autocrine fashion to promote dendritic growth [146]. Pharmacological blockade of
RyRs inhibits the activation of these signaling molecules, and experimental manipulations to inhibit
the signaling molecules in these pathways effectively block PCB 95-induced dendritic growth [145,146].
Activation of CREB by PCB 95 also upregulates miR132, which suppresses the translation of p250GAP
to promote synaptogenesis, evidenced by increased dendritic spine density and elevated frequency of
miniature excitatory post-synaptic currents [149].

Collectively, the evidence available in the published literature provides strong support for the
hypothesis that PCBs interfere with typical neurodevelopment via modulation of Ca2+-dependent
signaling (Figure 2). These observations also suggest that that RyR-active NDL PCBs are significant
contributors to PCB developmental neurotoxicity, a suggestion supported by recent epidemiological
study designed to evaluate PCBs as risk factors for ASD [19]. The authors reported that while there
were no significant associations for total PCBs and ASD, there were marginally significant associations
linking DL-PCB exposure and reduced risk for diagnosis of non-typical development (adjusted OR:
0.41 (95% CI 0.15 to 1.14)) and between RyR-active NDL PCBs and increased risk for ASD diagnosis
(adjusted OR: 2.63 (95% CI 0.87 to 7.97)). The authors of this study concluded “these analyses suggest
the need to explore more deeply into subsets of PCBs as risk factors based on their function and structure
in larger cohort studies where non-monotonic dose-response patterns can be better evaluated”.
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and/or length of PCB exposure, or the assessment of different oxidative stress biomarkers, but more likely 
reflect differences in the dose and composition of PCB mixtures used in the different studies. 

Increased levels of intracellular ROS are a significant trigger of pro-apoptotic signaling pathways 
[232,247–249], and several published studies suggest that PCB-induced ROS mediates the pro-apoptotic 

Figure 2. Experimental evidence supports a mechanistic model in which NDL PCBs alter
neuronal morphogenesis and promote neuronal apoptosis via Ca2+-dependent and/or ROS-dependent
mechanisms. CaMK, Ca2+/calmodulin-dependent protein kinase; CREB, cAMP response
element-binding protein; HC, highly chlorinated; LC, lightly chlorinated; MEK/ERK, mitogen-activated
protein kinase kinase/extracellular signal-regulated kinase; NMDAR, NMDA receptor; RyR, ryanodine
receptor; VSCC, voltage-sensitive calcium channel. Solid lines indicate that experimental evidence
directly links the upstream and downstream event; in contrast, dotted lines indicate a link but the
intervening steps have yet to be identified.

5.4. Increased ROS as a Mechanism of PCB Developmental Neurotoxicity

Several in vitro studies have demonstrated that PCBs increase intracellular levels of ROS in
neurons [243–245]. In cultured cerebellar granule neurons, exposure to Aroclor 1254, the NDL PCBs 4
or 153, or the hydroxylated metabolites of NDL PCBs 3, 14, 34, 35, 36, 39 or 68 increased intracellular
ROS levels, which caused concentration-dependent cell death [243,245]. In contrast, DL PCBs had
no effect on intracellular ROS in this model system. In vivo evidence of PCB-induced ROS in the
developing brain is conflicting. In rats, gestational and lactational exposure to environmentally relevant
levels of Aroclor 1254 (0.1 or 1.0 mg/kg/d) in the maternal diet resulted in increased oxidative stress
biomarker expression across multiple brain regions [119]. In contrast, a different study of mice exposed
via lactation to a mixture of six NDL PCBs at 1, 10 or 100 ng/kg for 14 days did not observe evidence of
oxidative stress in the brain [246]. The discrepancy between these two studies may be due to species
differences, timing and/or length of PCB exposure, or the assessment of different oxidative stress
biomarkers, but more likely reflect differences in the dose and composition of PCB mixtures used in
the different studies.

Increased levels of intracellular ROS are a significant trigger of pro-apoptotic signaling
pathways [232,247–249], and several published studies suggest that PCB-induced ROS mediates
the pro-apoptotic activity of NDL PCBs. In rats exposed throughout gestation to Aroclor 1254 in



Int. J. Mol. Sci. 2020, 21, 1013 18 of 37

the maternal diet at 0.1 and 1 mg/kg/d, PCB-induced apoptosis coincided spatially and temporally
with biomarkers of oxidative stress, specifically increased levels of 4-hydroxynonenal (4-HNE) and
3-nitrotyrosine (3-NT) as detected by western blotting [119]. A more direct link between PCB effects
on intracellular ROS and neuronal apoptosis has been demonstrated in an in vitro model. Neuronal
apoptosis induced by Aroclor 1254 or the NDL PCB 47 in primary rat hippocampal neurons was blocked
by the antioxidant α-tocopherol. The observation that pharmacologic blockade of RyRs also blocked
PCB effects on neuronal apoptosis [121] raises the possibility that RyRs and ROS interact to mediate
PCB-induced apoptosis. For example, ROS may be a consequence of RyR activation. NDL PCBs stabilize
RyRs in their open conformation, which allows release of Ca2+ from intracellular stores [55]. Increased
intracellular Ca2+ can initiate apoptosis either by directly activating caspases and/or by increasing
Ca2+ flux into mitochondria, the latter of which triggers production of ROS and results in release of
cytochrome c from mitochondria with subsequent activation of caspases [115]. Alternatively, ROS may
initiate apoptosis via targeted interactions with the RyR to activate pro-apoptotic signaling [247,250].
ROS have been shown to interact directly with RyR cysteine residues to heighten the probability
of channel opening [251–254]. Thus, NDL PCBs may sensitize RyRs indirectly as a consequence of
PCB-induced increase in ROS [121]. In support of this alternative model, quinone-generated ROS have
been shown to enhance RyR Ca2+ conductance in rabbit sarcoplasmic reticulum membranes [251].
RyR channels are tightly regulated by changes in redox potential [254,255] and are very sensitive to
modification by redox-active toxicants [251], providing a plausible mechanistic link between Ca2+

dysregulation and oxidative stress. As recently noted [14], it may also be that PCBs independently
influence RyR activation and ROS generation, and that each of these effects augments the other in a
feed-forward mechanism.

Collectively, the available data, while limited, support the hypothesis that increased intracellular
ROS contribute to PCB developmental neurotoxicity, specifically PCB-induced neuronal apoptosis,
potentially via RyR-dependent mechanisms (Figure 2). Additional studies are needed to confirm and
extend these observations to additional PCB congeners. There is also a significant data gap as to the
significance of ROS in mediating PCB developmental neurotoxicity in vivo.

6. Emerging Evidence that Non-Legacy LC-PCBs Interfere with Typical Neurodevelopment

Over the past decade, PCB congeners not found in the mixtures synthesized prior to the ban on
commercial PCB production are increasingly being identified in the human chemosphere [6,69,256].
Most of these are LC-PCBs (reviewed in [8]). The non-legacy LC-PCB, PCB 11, has recently been
detected in the serum of dairy animals [257] and in commercial cow’s milk in Northern California [258].
Of even greater concern, PCB 11 has also been found in serum of pregnant women living in Northern
California [13,69] as well as women and their adolescent children living in the greater Chicago area
and rural Iowa [6]. Analysis of PCBs in the serum of pregnant women at increased risk for having
a child with an NDD revealed that the non-legacy LC-PCBs 28 and 11 were the two most abundant
PCB congeners, and together they comprised almost 75% of the PCB burden in the maternal serum
samples [69].

In contrast to the legacy PCBs, particularly the legacy HC-PCBs, relatively little is known about
the potential developmental neurotoxicity of the non-legacy LC-PCBs. An early study reported that
the hydroxylated metabolites of eight different LC-PCBs increase ROS formation and induce cell death
in cultured cerebellar granule cells [245]. Later studies demonstrated that PCB 11 and its known
human hydroxyl and sulfated metabolites increase dendritic arborization in primary rat hippocampal
and cortical neurons [259]. These dendritic effects are observed in cultures exposed to PCB 11 at fM
concentrations, which are within the range of PCB 11 concentrations detected in the serum of pregnant
women [259]. In contrast to the HC-PCBs 95 and 136, PCB 11 and its metabolites not only increase
dendritic arborization, but also enhance axonal growth [13]. Subsequent mechanistic studies indicated
that the dendrite-promoting activity of PCB 11 is not blocked by pharmacological antagonism of the
RyR, the AhR, or the THR [259]. The antioxidant α-tocopherol and inhibitors of the L-type Ca2+ channel
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or IP3R also have no effect on PCB 11-induced dendritic growth [259]. However, pharmacological
inhibition or siRNA knockdown of CREB effectively blocks the dendritic effects of PCB 11 [259]. PCB 95,
an NDL legacy congener, also enhances dendritic arborization through CREB activation in vitro [146],
suggesting that CREB may be a point of mechanistic convergence for PCB-induced dendritic growth.
However, the upstream molecular targets of PCB 95 vs. PCB 11 differ, with PCB 95 activating CREB
via RyR sensitization [144] and PCB 11 activating CREB through RyR-independent mechanism(s)
(Figure 2). The proximal target(s) through which PCB 11 triggers CREB-dependent dendritic growth
have yet to be identified. Also not yet known is whether developmental exposure to PCB 11, or other
non-legacy LC-PCBs, affects dendritic arborization in vivo and, if so, whether dendritic effects coincide
with neurobehavioral deficits.

7. Relevance of PCB Developmental Neurotoxicity to NDDs

Genetic, histologic, in vivo imaging and functional data in the human literature all point to altered
patterns of neuronal connectivity as the biological basis for intellectual disabilities and the behavioral
and cognitive abnormalities associated with many NDDs, including ASD and ADHD [107,112,132,133].
The candidate genes most strongly associated with NDD etiology encode proteins that regulate
the organizational aspects of neuronal network patterning during development and influence the
balance of excitatory to inhibitory synapses [104,107,109,260,261]. Enlarged dendritic arbors and
increased dendritic spine density are observed post mortem in the hippocampus of individuals with
ASD [262], and imaging studies of individuals with ASD and ADHD have revealed evidence of
disrupted regional connectivity within the brain [81,263–267]. For example, ASD is hypothesized
to reflect cortical dysconnectivity characterized by local hyperconnectivity and long-range regional
hypoconnectivity [133,262,268,269].

Epidemiological studies have identified an association between developmental PCB exposure and
increased risk of ASD [18–23] and ADHD [24–27], with a recent study suggesting that RyR-active NDL
PCBs may be driving this association [19]. Observations that PCBs, and in particular NDL congeners,
modulate the same neurodevelopmental processes that are altered in ASD, ADHD and intellectual
disabilities, suggest a biologically plausible mechanism to explain these associations. However, it is
not likely that developmental PCB exposures cause NDDs, but rather that PCBs interact with genetic
susceptibility factors to influence individual NDD risk [104]. Genetically determined imbalances in
synaptic connectivity may provide a biological substrate for elevated susceptibility to PCBs effects
on neuronal apoptosis, axonal and dendritic growth, and activity-dependent refinement of synaptic
connections [104,261].

One way that heritable genetic susceptibilities might amplify the adverse effects of PCB exposure
is if both factors (genes × environment) converge to dysregulate the same signaling pathways
that control neuronal connectivity during critical periods of development [104,270] (Figure 3). As
discussed earlier (Sections 4 and 5; also reviewed in [14]), NDL PCBs promote neuronal apoptosis and
enhance dendritic arborization by activating Ca2+-dependent signaling. A large number of candidate
NDD risk genes encode proteins involved in Ca2+ signaling [215,216], and defects in neuronal Ca2+

signaling contribute to altered patterns of neuronal connectivity associated with NDDs [210]. Studies
investigating gain-of-function human RYR mutations have demonstrated that specific RYR mutations
confer sex-, gene-, and dose-dependent vulnerability to pharmacological (halogenated anesthetic) and
environmental (heat) stressors that trigger malignant hyperthermia and subsequent muscle damage
in otherwise asymptomatic individuals [271,272]. Moreover, PCB 95 is significantly more potent and
efficacious in causing Ca2+ dyshomeostasis in human mutant R615C-RYR1 channels compared to wild
type RYR1 channels in vitro [273]. While a previous SNP study concluded there was no evidence of an
association between RYR3 and ASD in a Japanese population [274], a subsequent GWAS identified
RYR2 as an ASD candidate gene when evaluating sex as a covariate [275].
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Figure 3. PCBs may interact with heritable mutations in cAMP response element-binding protein
(CREB) signaling to influence neurodevelopmental disorder (NDD) risk.

Directly relevant to the proposal that PCBs converge on signaling pathways that are dysregulated
by NDD risk genes, the effects of PCB 95 and PCB 11 map onto Ca2+-dependent signaling pathways
disrupted in NDDs. For example, Timothy syndrome is caused by a gain-of-function mutation in the
L-type Ca2+ channel CaV1.2. This syndrome has a 100% incidence of NDD and 60% rate of ASD [276].
Neurons differentiated from induced pluripotent stem cells derived from Timothy syndrome patients
exhibit increased intracellular Ca2+ oscillations and increased expression of genes associated with
Ca2+-dependent regulation of CREB, including CaMK [277]. Altered CREB signaling is implicated in
various NDDs [278–281]. Consistent with these clinical observations, PI3Kγ knockout mice exhibit an
ADHD-like behavioral phenotype coincident with enhanced CREB signaling [279] and transgenic mice
expressing human mutations in CREB binding protein exhibit increased stereotypy, social deficits, and
learning and memory deficits [282]. One downstream effector of CREB activation is miR132, which
has been shown to be elevated in individuals with ASD [283–285]. Wnt, another downstream effector
of CREB, is also implicated in the pathogenesis of ASD, and is thought to underlie the stereotyped,
repetitive behaviors observed in ASD patients [286,287]. There is also evidence suggesting that
disrupted Wnt signaling can impair social behaviors as a result of disrupted brain organizational
patterning and interhemispheric connectivity in a manner reminiscent of ASD [288].

Whether PCBs interact with heritable mutations in Ca2+ signaling to increase risk of adverse
neurodevelopmental outcomes has yet to be determined, but published observations suggest hypotheses
to be tested in both epidemiological and experimental animal studies.

8. Conclusions, Data Gaps, and Directions for Future Study

The available neurobehavioral and mechanistic studies in experimental animal and cell culture
models suggest that NDL PCBs are driving PCB developmental neurotoxicity. This conclusion is
supported by a recent epidemiological investigation of PCBs as risk factors for ASD that found no
association between developmental exposure to DL PCBs and neuropsychiatric deficits in children,
but did identify an association, albeit weak, between NDL PCBs, specifically those that are RyR-active,
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and increased risk of ASD diagnosis [19]. While the data currently available do not support a major
role for DL PCBs in PCB developmental neurotoxicity, they also do not rule out the possibility that DL
PCBs play some role, possibly in modifying neurotoxic responses to NDL PCBs [177,179]. However,
clearly there is a need for more studies evaluating potential neurodevelopmental effects of individual
PCB congeners and mixtures that better replicate contemporary human exposures than the legacy
Aroclor mixtures. This will require a more comprehensive understanding of the congener profile and
concentrations of contemporary human maternal and neonatal PCB exposures. To achieve this, it
will be necessary to move away from the traditional practice of quantifying legacy indicator PCBs
and towards non-biased screening for a broad spectrum of PCBs and their metabolites, including
non-legacy PCBs, in relevant human tissue samples.

There still remains uncertainty as to the molecular mechanisms mediating PCB effects on
neurodevelopment. Mechanistic studies suggest that NDL PCBs cause neurobehavioral deficits
by interfering with neuronal apoptosis and dendritic arborization, in large part via RyR, ROS and
CREB-dependent mechanisms. However, much of the literature describing mechanisms of PCB
developmental neurotoxicity is based on either complex mixtures or a small subset of individual
congeners, leaving significant uncertainty regarding the generalizability of these mechanisms to the
broad spectrum of PCBs. In addition to determining congener-specificity, there is a need to identify
dose-response relationships of PCB effects on molecular and cellular endpoints, and to establish causal
relationships between molecular, cellular and neurobehavioral endpoints with the goal of identifying
robust adverse outcome pathways linking molecular initiating events to neurotoxic outcomes at the
organism and population levels [289]. The continual evolution of high(er)-throughput methfods for
analyzing molecular and cellular endpoints will be of great utility in addressing these data gaps.

To date, there is a paucity of data—both epidemiological and nonclinical—describing the
developmental neurotoxicity of the non-legacy LC-PCBs. The urgency of addressing this data
gap is suggested by evidence that these congeners represent the most abundant PCBs in the serum
of pregnant women at increased risk of having a child with an NDD [69]. This is heightened by
experimental data demonstrating that PCB 11 and human relevant metabolites of PCB 11 alter neuronal
morphogenesis in vitro at extremely low concentrations (reviewed in [67]). It needs to be determined
whether these in vitro effects of PCB 11 are predictive of in vivo effects, and whether they extend to
other LC-PCBs. This point is underscored by a recent risk assessment that detected several airborne
LC-PCBs for which there are limited to no toxicological data [290].

In summary, while PCBs are arguably among the most studied developmental neurotoxicants,
there remain significant, and important, questions that require investment of research resources in
order to rigorously assess the risk that these contaminants pose to the developing human brain.
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Abbreviations

ABR Auditory brain stem response
ADHD Attention-deficit hyperactivity disorder
AhR Arylhydrocarbon receptor
ASD Autism spectrum disorder
bHLH/PAS Basic helix-loop-helix/Per-Arnt-Sim
CREB cAMP response element-binding protein
DL Dioxin-like
DNT Developmental neurotoxicity
DRL Differential reinforcement of low-rate
DSA Delayed spatial alternation
EPM Elevated plus maze
GD Gestational day
4-HNE 4-Hydroxynonenal
GWAS Genome-wide association study
LDB Light-dark box
MWM Morris water maze
NDD Neurodevelopmental disorder
NDL Non-dioxin-like
NOR Novel object recognition
3-NT 3-Nitrotyrosine
PCB Polychlorinated biphenyl
PKC Protein kinase C
PND Postnatal day
POPs Persistent organic pollutants
ROS Reactive oxygen species
RyR Ryanodine receptor
SAR Structure activity relationship
SNP Single nucleotide polymorphism
T4 Thyroxine
TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin
TH Thyroid hormone
THR Thyroid hormone receptor
TUNEL Terminal deoxynucelotidyl transferase nick-end labeling
U.S. United States
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