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Abstract: Gastric cancer (GC) is the fifth most prevalent cancer worldwide and the third leading 
cause of global cancer mortality. With the advances of the omic studies, a heterogeneous GC 
landscape has been revealed, with significant molecular diversity. Given the multifaceted nature of 
GC, identification of different patient subsets with prognostic and/or predictive outcomes is a key 
aspect to allow tailoring of specific treatments. Recently, the involvement of the microbiota in gastric 
carcinogenesis has been described. To deepen this aspect, we compared microbiota composition in 
signet-ring cell carcinoma (SRCC) and adenocarcinoma (ADC), two distinct GC subtypes. To this 
purpose, 10 ADC and 10 SRCC and their paired non-tumor (PNT) counterparts were evaluated for 
microbiota composition through 16S rRNA analysis. Weighted and unweighted UniFrac and Bray–
Curtis dissimilarity showed significant community-level separation between ADC and SRCC. 
Through the LEfSe (linear discriminant analysis coupled with effect size) tool, we identified 
potential microbial biomarkers associated with GC subtypes. In particular, SRCCs were 
significantly enriched in the phyla Fusobacteria, Bacteroidetes, Patescibacteria, whereas in the ADC 
type, Proteobacteria and Acidobacteria phyla were found. Overall, our data add new insights into 
GC heterogeneity and may contribute to deepening the GC classification. 

Keywords: gastric cancer; adenocarcinoma; ADC; signet-ring cell carcinoma; SRCC; microbiome; 
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1. Introduction 

Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third cause of cancer-
related death worldwide [1]. GC is a very heterogeneous disease from the histopathology, site of 
origin and genetic and molecular signatures standpoints [1–3]. The heterogeneity of GC patients is 
reflected by several classification systems reported over the decades; however, none of them provide 
reliable independent prognostic information [4,5]. In addition, patients exhibit distinct genetic and 
molecular profiles and comprehensive molecular analysis could help to uncover potential therapeutic 
targets. Despite this, there is still a question as to which classification should be followed for patient-
specific management. Therefore, it is necessary to identify novel biomarkers that can unravel its 
heterogeneity, potentially contributing to predict survival and providing guidance for clinical 
treatment. Among the GC subtypes, the signet-ring cell carcinoma (SRCC) has attracted research 
interest as its incidence is constantly rising [6,7]. The observed SRCC increase is largely explainable 
by changes in the used pathological classification (for a review see ref [6,7]). In particular, SRCC is 
recognized as one specific histotype, defined according to the WHO’s classification as a poorly 
cohesive carcinoma, primarily characterized by mucin-producing cells with a crescent-shaped 
nucleus centrically located [7]. SRCC has distinct features compared to other GC, including 
adenocarcinomas (ADC). Epidemiology, clinical presentation and risk factors differ substantially; 
from a molecular perspective, different mutational and gene expression profiles between SRCC and 
ADC GC have been found, suggesting that SRCC may represent a completely distinct entity [8]. Thus, 
identification of the characteristics of each GC subtype is an important step in managing patients 
properly. Recent evidence supports the involvement of the gastrointestinal (GI) microbiota in gastric 
carcinogenesis [8–11]. The GI tract is a complex environment settled by trillions of microorganisms, 
with biogeographically delineated microbial communities that constantly communicate with each 
other and with the host in a symbiotic manner. The microbiota plays a key role in the human 
pathophysiology, acting like an additional genome, therefore affecting the health and disease status 
of the host. In particular, due to its multifaceted and dynamic nature, the gut microbiome has been 
recently considered as a metabolically active organ, supporting several processes, including but not 
limited to energy metabolism, pathogen elimination and cancer development. It is well recognized 
that the gut microbiome is an important player in etiology of GI cancers, particularly dysbiosis-
associated GC. Dysbiosis, a condition characterized by GI microbiota imbalance, leads to several 
pathological conditions and may contribute to malignant transformation paving the way for 
carcinogenesis process [12–19]. Unfortunately, knowledge of the complex interactions between host 
and microbiota in cancer is still limited [20]. This is particularly true for the gastric microbiota, which 
is largely understudied compared to the intestinal counterpart [21,22]. Moreover, the majority of the 
studies evaluating stomach cancer have investigated the microbiome profile in mixed cohorts of GC 
patients without considering the different subtypes [23,24]. Consequently, the knowledge on the 
potential differences in microbiota communities between SRCC and ADC GC is rather absent, leaving 
an open gap to fulfill. 

Based on the mounting evidence and the need to disentangle GC heterogeneity, we investigated 
the possible alterations in microbiota composition and inferred functionality in order to identify 
potential biomarkers to better stratify the GC in SRCC and ADC. 

2. Results 

2.1. Microbiota Profiles of GC and Paired Non-Tumoral Samples 

We analyzed the microbiota from GC FFPE (formalin-fixed paraffin-embedded) samples, 
including 10 ADC and 10 SRCC; for all samples, paired non-tumor (PNT) counterparts were also 
investigated. For each sample, the 16S rRNA V3–V4 region analysis yielded 1,473,216 high-quality 
reads, corresponding to 1,562 amplicon sequence variants (ASVs). On average, we did not observe 
significant differences in the number of reads between tumor and normal samples (36,402.1 vs. 
37,258.7, p = 0.899, Student’s t-test). A total of 144 ASVs were identified as belonging to mitochondrial 
or chloroplast ribosomal genes and were further removed from subsequent analysis. 
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After stratifying GC by subtypes (ADC and SRCC) and their PNT, alpha diversity was evaluated 
by using both Shannon and Faith’s PD (phylogenetic diversity) indexes. The analysis did not reveal 
significant differences in the microbial community diversity in SRCC tumor samples and matched 
PNT with respect to ADC tumor samples and matched PNT. In particular, the Kruskal–Wallis test 
showed no differences in the Shannon (p = 0.238) and Faith indexes (p = 0.679); subsequently, the 
Mann–Whitney test did not highlight differences between groups (Shannon and Faith indexes, 
respectively: ADC vs. ADC-PNT p = 1.00 and p = 0.897; SRCC vs. SRCC-PNT p = 0.089 and p = 0.270; 
ADC vs. SRCC p = 0.536 and p = 1; ADC-PNT vs. SRCC -PNT p = 0.280 and p = 0.529). 

At the ASVs level, the PERMANOVA analysis revealed that the stratification of the two tumor 
types significantly explained the observed data variability in all the three applied metrics (i.e., Bray–
Curtis dissimilarity 17% p = 0.001, Figure 1A; unweighted UniFrac 14% p = 0.001, Figure 1B; weighted 
UniFrac 29% p = 0.001, Figure 1C), whereas both SRCC and ADC clustered with their normal 
counterpart. In addition, we did not observe relevant variability stratification with respect to sex 
(Bray–Curtis dissimilarity p = 0.11; unweighted UniFrac p = 0.31; weighted UniFrac p = 0.6) and 
Helicobacter pylori (HP) co-infection (Bray–Curtis dissimilarity p = 0.45; unweighted UniFrac p = 0.51; 
weighted UniFrac p = 0.23). 

 

Figure 1. Principal coordinate analysis (PCoA) plot with Bray–Curtis dissimilarity. Results revealed 
significant differences between ADC (adenocarcinoma) and SRCC (signet-ring cell carcinoma) (A). 
Composition of the gut microbiota does not significantly change between ADC and SRCC samples; 
(B) unweighted and (C) weighted UniFrac measures of beta-diversity visualized using PCoA. 

2.2. The Microbiota Profiles of SRCC Tumors Differs from ADC Tumors 

We compared the gastric microbiota composition of ADC with SRCC tumor samples. Figure 2 
A and B summarize the relative abundance at the phylum level for each sample and group, 
respectively. Significant differences were found in the relative proportion of certain phyla; 
specifically, Acidobacteria (Padj = 0.0001), Deinococcus-Thermus (Padj = 0.0019) and BRC1 (Padj = 0.0063) 
were over-represented, whereas Epsilonbacteraeota (Padj = 0.0001) was under-represented in ADC 
compared to SRCC samples. 
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Figure 2. (A) The relative abundance at the phylum level for each sample. (B) Donut charts 
representing the relative abundance of phyla in ADC and SRCC groups. In particular, relative 
abundances represent the mean of the observed abundances per phylum in each group. Outer and 
inner donut chart represents tumor and healthy counterpart tissues, respectively. 

Considering the class rank, Thermoleophilia (Padj < 0.0001), Deinococci (Padj = 0.0016) and Bacilli 
(Padj = 0.0463) were more abundant, while Campylobacteria (Padj = 0.0001) was less abundant in ADC 
compared to SRCC tumor samples. At the genus level, these findings were reflected in nine genera 
differentially represented between the two GC subgroups, namely Massilia, Aquabacterium, Prevotella, 
Prevotella 7, Dialister, Stenotrophomonas, Oribacterium, Halomonas and Shewanella. With regard to the 
order, family and genus taxonomic levels, the significant results are reported in Table 1. 

Based on the ASV distribution, the LEfSe (linear discriminant analysis coupled with effect size) 
tool allowed us to identify possible microbial biomarkers associated with a specific tumor subtype 
(Figure 3A). 

SRCC tumor samples were significantly enriched in the phyla Fusobacteria, Patescibacteria, 
Bacteroidetes and BRC1 and genera Prevotella 7, Fusobacterium, Actinomyces, Stenotrophomonas and 
Roseburia. On the other hand, the phyla Proteobacteria and Acidobacteria and the genera Halomonas, 
Shewanella, Pantoea, Faecalibacterium and Neoasaia were identified as potential biomarkers of the ADC 
subtype. The analysis at the ASV level allowed us to identify 27 and 20 ASVs associated with ADC 
and SRCC, respectively (Table S1). The ASVs associated with ADC belong to 13 genera, of which 9 
were Halomonas and 4 Shewanella. In SRCC, 10 genera were observed and Prevotella 7 was the most 
observed (n = 3). The cladogram (Figure 3B) summarizes the LEfSe association by representing the 
taxonomic relationship between significant ASVs associated with each group. In particular, 
enrichment of Fusobacterium, Actinomyces and Saccharimonadaceae were observed in SRCC cases, 
whereas Halomonas and Shewanella in ADC samples. 
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2.3. Prediction of Metabolic Functional Profile and Pathways 

The metagenomic functional profile, predicted with PICRUSt2, highlighted four pathways that 
were significantly deregulated in SRCC compared to ADC. Differentially abundant pathways, 
identified with the LEfSe tool, in SRCC and ADC are presented in Figure 4A. Additionally, to achieve 
insights into the relevant super-classes to which pathways belong, a circos-plot was generated (Figure 
4B and Table S2). Both tumors were particularly enriched in biosynthesis paths, with several 
overlapping super-classes and some unique metabolic pathways in SRCC tumors. 
Degradation/utilization paths were highly represented in SRCC compared to ADC and, similarly to 
the biosynthesis paths, some super-classes overlap while others are unique to SRCC. Lastly, 
generation of precursor metabolites and energy pathways were over-identified in ADC compared to 
SRCC. 
 



Int. J. Mol. Sci. 2020, 21, 9735 6 of 20 

 

Table 1. Difference in abundance in microbial communities at the phylum, class, order, family and genus taxonomic ranks. 

Phylum FC 
(ADC vs. SRCC) 

padj 

D_1__Epsilonbacteraeota −13.75 0.0001 
D_1__Acidobacteria 16.97 0.0001 

D_1__Deinococcus-Thermus 16.06 0.0019 
D_1__BRC1 8.97 0.0063 

Class FC padj 
D_1__Actinobacteria;D_2__Thermoleophilia 29.26 0.0000 

D_1__Deinococcus-Thermus;D_2__Deinococci 16.11 0.0016 
D_1__Firmicutes;D_2__Bacilli −1.02 0.0463 

D_1__Epsilonbacteraeota;D_2__Campylobacteria −13.82 0.0001 
Order FC padj 

D_1__Bacteroidetes;D_2__Bacteroidia;D_3__Cytophagales 18.32 0.0009 
D_1__Deinococcus-Thermus;D_2__Deinococci;D_3__Deinococcales 16.25 0.0012 

D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Oceanospirillales 6.08 0.0237 
D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Alteromonadales 6.04 0.0095 
D_1__Proteobacteria;D_2__Alphaproteobacteria;D_3__Sphingomonadales 4.18 0.0095 

D_1__Actinobacteria;D_2__Actinobacteria;D_3__Propionibacteriales 1.69 0.0095 
D_1__Actinobacteria;D_2__Actinobacteria;D_3__Bifidobacteriales −5.15 0.0241 

D_1__Bacteroidetes;D_2__Bacteroidia;D_3__Bacteroidales −5.46 0.0009 
D_1__Epsilonbacteraeota;D_2__Campylobacteria;D_3__Campylobacterales −12.84 0.0009 

Family FC padj 
D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Oceanospirillales;D_4__Halomonadaceae 5.92 0.0468 

D_1__Proteobacteria;D_2__Alphaproteobacteria;D_3__Sphingomonadales;D_4__Sphingomonadaceae 3.78 0.0415 
D_1__Actinobacteria;D_2__Actinobacteria;D_3__Bifidobacteriales;D_4__Bifidobacteriaceae −5.48 0.0415 

D_1__Firmicutes;D_2__Clostridia;D_3__Clostridiales;D_4__Lachnospiraceae −5.72 0.0342 
D_1__Bacteroidetes;D_2__Bacteroidia;D_3__Bacteroidales;D_4__Prevotellaceae −7.18 0.0003 

D_1__Firmicutes;D_2__Clostridia;D_3__Clostridiales;D_4__Peptostreptococcaceae −10.45 0.0415 
Genus FC padj 

D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Betaproteobacteriales;D_4__Burkholderiaceae; 
D_5__Aquabacterium 

22.47 0.0000 
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D_1__Proteobacteria; D_2__Gammaproteobacteria; D_3__Betaproteobacteriales; D_4__Burkholderiaceae; 
D_5__Massilia 

17.23 0.0000 

D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Alteromonadales;D_4__Shewanellaceae;D_5__Shewanella 5.93 0.0327 
D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Oceanospirillales;D_4__Halomonadaceae;D_5__Halomonas 5.72 0.0284 

“D_0__Bacteria;D_1__Bacteroidetes;D_2__Bacteroidia;D_3__Bacteroidales;D_4__Prevotellaceae;D_5__Prevotella 7 −6.71 0.0020 
D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Xanthomonadales;D_4__Xanthomonadaceae; 

D_5__Stenotrophomonas 
−11.66 0.0159 

D_1__Firmicutes;D_2__Clostridia;D_3__Clostridiales;D_4__Lachnospiraceae;D_5__Oribacterium −11.75 0.0200 
D_1__Bacteroidetes;D_2__Bacteroidia;D_3__Bacteroidales;D_4__Prevotellaceae;D_5__Prevotella −12.50 0.0003 

D_1__Firmicutes;D_2__Negativicutes;D_3__Selenomonadales;D_4__Veillonellaceae;D_5__Dialister −16.08 0.0019 
FC: Fold Change. 
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Figure 3. (A) LEfSe (linear discriminant analysis coupled with effect size) identified the most differentially abundant taxa between ADC, ADC PNT (paired non-
tumor), SRCC and SRCC PNT. Only taxa meeting an LDA (linear discriminant analysis) significant threshold of >2 are shown. (B) Taxonomic cladogram obtained 
from LEfSe analysis of 16S sequences. In particular, two shapes are used to plot the nodes: circle and hexagon, corresponding to taxonomic and ASV clades, 
respectively. The node bodies are filled if associated to one specific condition following the LEfSe analysis. Moreover, the nodes background is imposed if all the 
child nodes belong to the same macro-group (i.e., ADC group and SRCC group correspond to tumor and healthy tissues collected from ADC and SRCC subjects, 
respectively). Unannotated clades correspond to ambiguous taxa in the reference taxonomy (i.e., SILVA).
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Figure 4. (A) LEfSe identified the most differentially abundant PICRUSt-predicted KEGG pathways between 
ADC and SRCC. SRCC-enriched pathways are indicated with a negative LDA score (purple) and pathways 
enriched in ADC with a positive score (orange). Only pathways meeting an LDA significant threshold of > 2 
are shown. (B) Circos plot was generated to achieve insights into the relevant super-classes to which 
pathways belong. 
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3. Discussion 

GC is a heterogeneous disease affected by different genetic and environmental factors. Although 
Helicobacter (H.) pylori represents the most well-established risk factor for GC, only 1–2% of infected 
patients develop cancer [25,26]. This relationship between H. pylori and GC well describes the 
paradigm on how heterogeneity at the level of the microbiome and host may affect disease 
susceptibility and its behavior. In this context, the specific influence of additional factors on the 
disease and, in particular, of the microbiome, might be important in GC development. Indeed, the 
interaction between microbiota and host cells along the GC tract is a key player in influencing and 
modulating the immune system [27–30], with many reports showing changes in the microbiota 
composition in different inflammatory-sustained conditions [31,32]. In our study population, 50% of 
tumor samples were H. pylori positive (4 ADC and 6 SRCC) strengthening the need for further 
investigations. Along this perspective, we performed an omic approach aimed at identifying a set of 
potential markers for a better stratification in ADC or SRCC type. Indeed, knowledge on the potential 
differences in microbiota communities between SRCC and ADC GC is completely lacking; this is 
mostly due to the fact that the majority of the studies did not consider the GC subtypes and analyzed 
mixed cohorts of stomach cancer patients. 

With the aim of characterizing the microbiota residing in the stomach tract that could actively 
contribute to gastric carcinogenesis, we compared the microbiome profile of 20 GC patients stratified 
according to the different types (i.e., ADC and SRCC). In addition, all the GC samples were compared 
with their matched normal counterparts; however, regarding this, we did not observe significant 
differences. 

In our cohort of patients, Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were the 
most abundant phyla in all samples, regardless of presence of the tumor (Table S3). This finding is in 
line with general reports which highlight Bacteroidetes and Firmicutes followed by Actinobacteria 
and Proteobacteria as the most abundant taxa of the intestinal microbiota of a healthy adult [33–36], 
although the composition and prevalence may change in cancer patients [37–39]. Interestingly, when 
we compared the two tumor types, both weighted and unweighted UniFrac and Bray–Curtis 
dissimilarity showed significant community-level separation between them. To the best of our 
knowledge, this is the first study to separately consider SRCC and ADC GC types, therefore, our data, 
even if preliminary, pave the way to further investigations in larger cohorts of patients. Specifically, 
comparing the median relative abundance profiles, we observed a pronounced difference in 
Proteobacteria (49.9% vs. 70.7% in SRCC vs. ADC), Firmicutes (8.4% vs. 12.2%) and Bacteroidetes 
(11.2% vs. 3.8%). Through the LEfSe tool we identified potential microbial biomarkers associated with 
a specific GC subtype. In particular, SRCC samples were significantly enriched in the phyla 
Fusobacteria, Bacteroidetes, Patescibacteria and BRC1. The latter is present with very low relative 
abundance (1% only) and no association with chronic degenerative diseases is reported in the 
literature. Patescibacteria members are 3.4-times higher compared to ADC, however their relative 
abundance is very low (1.7%) and no data are reported in the literature regarding any potential 
association with cancer. On the contrary, Fusobacteria and Bacteroidetes, both including anaerobic 
bacteria, have been shown to be enriched in cancer, including colorectal, oral and head cancers [40–
43]. This is interesting, in particular with regard to Fusobacteria; indeed, considering that tumor site 
distribution in SRCC and ADC was similar, we can speculate that its presence does not depend on 
the site, but is a possible biomarker for SRCC. At the genus level, the genera Prevotella 7 
(Bacteroidetes) and Stenotrophomonas (Proteobacteria), confirm the results obtained by using DESeq2. 
The first has been recently described as a pathogen associated with nosocomial infections in 
immunocompromised and neonatal patients and the second has been associated with chronic 
gastritis [21,44]. 

With regard to potential biomarkers for the ADC type, Acidobacteria and Proteobacteria phyla 
were found. Concerning the first phylum, data are quite limited; indeed, there are no studies focused 
on gastric cancer. However, a recent work by Zhao et al. showed that the Acidobacteria phylum was 
associated with a better response to chemotherapy in lung cancer patients [45]. Therefore, further 
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research in GC patients is strongly warranted. Regarding the second phylum, an increase in 
Proteobacteria, including several opportunistic pathogens and pathobionts, is commonly observed 
in humans with severe intestinal inflammation, including patients with inflammatory bowel disease 
[46–48]. According to Shin and coworkers, Proteobacteria could serve as a marker of microbiota 
instability as they are a minor component (5%) within a balanced gut-associated microbial 
community, while microbiota disruption (i.e., dysbiosis) generally leads to an increase in their 
proportion [49]. Among the genera associated with ADC, the halophilic Halomonas and Shewanella 
(both Proteobacteria) were the most represented. Both have been already described in GC 
microbiomes [22,50], probably due to their ability to colonize the stomach once gastric secretion is 
reduced. However, the result is quite attractive, as a recent study by Ren et al., performed on Asian 
patients, reported a high abundance of these bacteria in patients with gastric polyps compared to 
healthy controls [50]. In this work, the authors hypothesized that the abundance of halophilic bacteria 
could be related to the high consumption of preserved or salty food [50]. Thus, by relating the 
hypothesis of Ren and co-workers with our data, we could hypothesize that a diet promoting 
halophilic bacteria may be a risk factor for GC and in particular for the ADC type. With regard to 
metabolic prediction, a high number of pathways involving L-arginine biosynthesis were observed 
in ADC, but not in SRCC. Arginine is pivotal for the growth of human cancer and in regulating tumor 
metabolism, including the synthesis of nitric oxide (NO), polyamines, nucleotides, proline and 
glutamate. Although arginine is not an essential amino acid, it enhances tumor growth and its 
restriction inhibits the growth of metastatic tumors [51,52]. Confirming the importance of this amino 
acid, some tumors, including hepatocellular carcinoma and melanoma, are auxotrophic to arginine. 
Interestingly, a work by Kim et al. performed on a cell model of ADC demonstrated that arginine 
depletion induces G1-phase cell cycle arrest and apoptosis [53]. This finding, together with our data, 
suggests that ADC cells are auxotrophic to arginine; however, tumors can also rely on external 
sources, including bacteria, to obtain nutrients, including arginine. A growing emphasis has been 
given to the NO pathway, as it profoundly affects physiological function, and, in turn, an imbalance 
in its levels may promote cancer [54]. In view of these considerations, targeting the NO signaling 
might be of major importance as a therapeutic target in ADC compared to SRCC. With regard to 
SRCC, we observed a higher number of inferred metabolic pathways involved in degradation (13 
paths versus 8, in SRCC and ADC, respectively), with three of those belonging to carboxylate 
degradation and two related to C1 compound utilization and assimilation, which were not found in 
ADC. Three unique classes of pathways related to biosynthesis were also observed in SRCC. Among 
them, we found the class belonging to pyrimidine biosynthesis, which could represent a metabolic 
target for this GC subtypes. Interestingly, pyrimidine metabolism pathways have been correlated 
with progression of breast and lung cancer in previous studies [55]. Therefore, its presence in SRCC 
alone could be related to the poorer prognosis usually associated with SRCC compared to ADC [56]. 

Over the past decades, advances in sequencing technologies and high-throughput analysis have 
delivered new insights into the genetic heterogeneity that underlies the distinct GC molecular 
subtypes [57–59]. Unfortunately, with regard to microbiota, no other studies have previously 
investigated SRCC and ADC GC types as distinct populations, thus we cannot compare our data with 
other evidence. In general, our results highlighted specific differences in microbiome prevalence 
between SRCC and ADC; this is in agreement with molecular analysis at the genetic and epigenetic 
level which highlighted specific profiles based on the GC subtype [60,61]. 

We are aware that from a technical point of view FFPE could not represent the ideal specimen 
for microbiome studies. Since formalin is recognized to affect DNA quality, this may have limited 
our capability to detect bacteria. However, considering that all samples were handled equally, we do 
not expect the formalin fixation to impact the observed differences in bacterial load and prevalence 
between groups, as previously reported [62]. Nevertheless, given the limited availability of 
fresh/frozen samples, unravelling the potential of FFPE samples for microbiome analysis could have 
a massive effect on the field. Our work shows that FFPE could be used a starting material to analyze 
microbiome communities in oncological patients. 
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4. Material and Methods 

4.1. Samples Collection 

A total of 20 GC patients, all of Caucasian ethnicity, were included in this study. All surgical 
specimens were reviewed at multiheaded microscope by two pathologists (GR, MR) and a consensus 
diagnosis was established according to the most recent World Health Organization classification of 
gastric tumors [63]. For every patient, both tumor and PNT FFPE samples were available from the 
same surgical procedure, collected in different FFPE blocks; tumor FFPE were confirmed SRCC and 
ADC phenotypes. Tissue was defined normal (non-tumor tissue) by three different pathologists who 
evaluated independently the material. 

All patients were resected at the Infermi Hospital, between 2009 and 2015. The study was 
approved by the Wide Catchment Area of Romagna (AVR) Scientific Medical committee (protocol 
number 0006002/2017). Table 2 summarizes the main clinical characteristics of the GC patients. 

Table 2. Summary of the patients’ characteristics. 

# 
Patient Subgroup Grade Site HP Sex Age at 

Diagnosis Other Characteristics 

6 ADC G3 angulus − M 65 / 

11 ADC G3 
antrum-
pylorus 

+ M 67 
chronic gastritis inflammatory 

infiltrate 

12 ADC G4 antrum − F 61 
chronic atrophic gastritis with 

intestinal metaplasia 

25 ADC G3 
antrum -

Body 
− F 68 / 

26 ADC G3 Body + F 81 
chronic atrophic gastritis with 

intestinal metaplasia 

33 ADC G3 angulus − F 82 
chronic atrophic gastritis with 

intestinal metaplasia 
37 ADC G3 antrum + F 85 chronic gastritis 

42 ADC G3 cardias − F 80 
chronic atrophic gastritis with 

intestinal metaplasia 

46 ADC G3 antrum + F 71 
chronic atrophic gastritis with 

intestinal metaplasia 
52 ADC G3 angulus − F 82 chronic active gastritis 
18 SRCC G3 pylorus − M 81 chronic gastritis 

20 SRCC G4 
antrum-

Body 
+ M 72 

chronic atrophic gastritis with 
intestinal metaplasia 

36 SRCC G3 
antrum-

Body 
+ F 82 

chronic atrophic gastritis with 
intestinal metaplasia 

39 SRCC G3 antrum + F 89 
chronic atrophic gastritis with 

intestinal metaplasia 

41 SRCC G4 angulus − M 69 
chronic atrophic gastritis with 

intestinal metaplasia 

43 SRCC G3 
antrum-
pylorus 

− F 72 
chronic atrophic gastritis with 

intestinal metaplasia 

44 SRCC G3 
antrum-
piloro 

+ M 61 chronic gastritis 

45 SRCC G4 antrum + M 85 
chronic atrophic gastritis with 

intestinal metaplasia 

47 SRCC G3 
antrum-
pylorus 

+ M 58 chronic gastritis 

48 SRCC G3 angulus − M 77 / 
−: negative; +: positive; /: missing information 
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4.2. 16S rRNA Sequencing and Bioinformatics  

Total DNA of 40 FFPE samples from 20 GC patients was isolated using RecoverAll Total Nucleic 
Acid Isolation Kit (ThermoFisher Scientific, Waltham, MA, USA), according to the manufacturer’s 
protocol. In particular, 10 samples were ADC, 10 were SRCC and 20 were matched non-tumor 
samples. Briefly, for microbiome analysis, the V3–V4 hypervariable regions of the 16S rRNA gene 
were amplified by using universal primer pairs [64] with Illumina overhang adapter sequences. PCR 
products of ~460 bp were purified using a magnetic bead-based, indexed by limited-cycle PCR using 
Nextera technology and were additionally purified using Agencourt AMPure XP magnetic beads. 
Indexed libraries were pooled at an equimolar concentration, denatured and diluted before loading 
onto the MiSeq flow cell. Sequencing was carried out on an Illumina MiSeq platform using a 2 × 300 
bp paired-end approach. Sequencing reads were deposited in the National Center for Biotechnology 
Information Sequence Read Archive (NCBI SRA; BioProject ID PRJNA641258). 

Raw sequence data were denoised and ASVs were inferred by applying DADA2 (v1.10.1) 
[65,66]. Following the ASVs inference, human contaminants were identified by using bowtie2 
(v2.3.4.1) [67] and the hg19 assembly of the human genome. ASVs were taxonomically classified by 
using the QIIME2 [68] plugin classify-sklearn [69] and the release 132 of the SILVA database [70]. A 
rooted phylogenetic tree based on ASV sequences was obtained by applying the QIIME2 plugin 
align-to-tree-mafft-fasttree [71,72]. The metagenome functional profile and in particular functional 
pathways were predicted by using PICRUSt2 [73]. In particular, PICRUSt2 places the inferred ASV 
sequences on a reference phylogenetic tree collecting about 20,000 full 16S rRNA sequences from 
prokaryotic genomes. The ASVs placement allows the prediction of genes content and the 
normalization of it according to ASVs abundances. Finally, functional pathways were inferred by 
using MinPath [74] upon the KEGG [75] database annotations. Alpha and beta diversity analysis were 
performed by using the R packages Phyloseq (v1.26.1) [76] and Vegan (v2.5–6) [77]. For this purpose, 
ASVs counts and pathways were normalized by using rarefaction. The Shannon and the Faith’s 
phylogenetic diversity (PD) indices were inferred to measure the intra-samples diversity (alpha 
diversity). The non-parametric Kruskal–Wallis and Mann–Whitney statistical tests were performed 
to compare the alpha diversity distributions between conditions. Differences in community structure 
between samples (beta diversity) were evaluated using the Bray–Curtis dissimilarity index and 
weighted and unweighted UniFrac phylogenetic metrics [78]. Permutational Multivariate Analysis 
of Variance Using Distance Matrices (PERMANOVA, 999 permutations) was computed using the 
Adonis function of the Vegan package by considering sample type, sex and their interaction. In order 
to identify statistically significant taxa and functions, normalized counts were compared using 
DESeq2 [79] by considering sample type, sex, age and sampling site. The obtained p-values were 
normalized using the Benjamini–Hochberg formula; a corrected Padj < 0.05 was considered statistically 
significant. Finally, ASVs and pathways associated with a specific status (i.e., ADC vs. SRCC) were 
identified by using linear discriminant analysis (LDA) coupled with effect size (LEfSe) [80]. LDA 
scores (log 10) ≥ 2 were retained. 

5. Conclusions 

In conclusion, our data add new insights into GC heterogeneity, serving as a foundation for 
future research directed at a better diagnosis and precision treatment. Indeed, our data showed 
differences in the prevalence of microbiota communities in GC. Furthermore, at the same time, we 
found significant differences between the two tumor subtypes, ADC and SRCC, which have not been 
previously described and therefore are potentially useful to provide additional information on 
prognosis. We are fully aware that the study is preliminary, and our conclusions are limited by the 
lack of proper healthy controls, a replication dataset and the small sample size; therefore, findings 
will require confirmation in further studies. Nevertheless, our findings, if confirmed by further 
studies, may contribute to deepening the GC heterogeneity and its classification scheme, which may 
facilitate personalized medicine in ADC and SRCC. 
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Abbreviation 

GC Gastric cancer 

SRCC Signet-ring cell carcinoma 

ADC Adenocarcinoma 

PNT Paired non-tumor 

ASV Amplicon sequence variants 

GI Gastrointestinal 

FFPE Formalin-Fixed Paraffin-Embedded 

PCoA Principal coordinate analysis 

PD Phylogenetic Diversity 

LEfSe Linear discriminant analysis Effect Size 

LDA Linear Discriminant Analysis 
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