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Abstract: Adenosine is a signaling molecule, which, by activating its receptors, acts as an important
player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated
effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery
(MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays
an apparently contradictory role in this receptor subtype depending on whether it is activated
on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed,
A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and
synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors
have a protective role in tissue damage and functional impairments, reducing inflammatory cell
infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination
following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected
by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation
and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as
putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.

Keywords: cerebral ischemia; oxygen-glucose deprivation; neuroinflammation; A2B receptors;
oligodendrocyte differentiation; demyelination; adenosine

1. Introduction

Adenosine as a Signaling Molecule

Adenosine is a naturally occurring nucleoside belonging to one of the oldest signaling pathways,
the purinergic system, involved in a variety of physiological and pathological processes [1]. In the CNS,
adenosine is formed intracellularly from adenosine monophosphate (AMP) degradation, particularly
under high energy demand, or extracellularly by the metabolism of released nucleotides operated
by membrane-bound ecto-enzymes like CD39 and CD73 [2]. A vesicular mechanism of adenosine
release in an excitation–secretion manner has also been postulated [3,4]. Extracellular adenosine is
removed by enzymes devoted to its degradation, such as adenosine deaminase (ADA) or adenosine
kinase (AK) [5], or taken up by the equilibrative nucleoside transporter (ENT) isoforms ENT1 and
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ENT2 [6]. Enhanced extracellular concentrations of adenosine can be considered as a general harm
signal, contributing to the recruitment of damage-associated molecular effectors [2].

Adenosine acts through the activation of four different purinergic P1 receptors: A1, A2A, A2B,
and A3 adenosine receptors (A1Rs, A2ARs, A2BRs, and A3Rs, respectively), all belonging to the
G-protein coupled, metabotropic receptor family [7]. Adenosine signaling through P1 receptors has
long been a target for drug development, with adenosine itself or its derivatives being used clinically
since the 1940s. Methylxanthines such as caffeine and theophylline have profound biological effects as
antagonists at adenosine receptors [5]. Moreover, drugs such as dipyridamole and methotrexate act by
enhancing the activation of adenosine receptors [8,9].

The most widely recognized adenosine signaling is through the activation of A1Rs, which inhibits
adenylyl cyclase (AC) through Gi/o protein activation [10]. A1Rs are widely distributed in most
species, and mediate diverse biological effects. They are dominant in the central nervous system
(CNS), with high levels being reported in the cerebral cortex, hippocampus, cerebellum, thalamus,
brainstem, and spinal cord, where they inhibit neurotransmission by different mechanisms: (1) they
decrease glutamate release by inhibiting presynaptic voltage-gated Ca2+ channels (VGCC) [11,12]
and (2) they stabilize neuronal membrane potential by increasing K+ and Cl- conductances at the
postsynaptic site [13]. Consistently, A1R stimulation has been implicated in sedative, anticonvulsant,
anxiolytic, and locomotor depressant effects in the CNS, whereas, at cardiovascular levels, they are
potent bradycardic agents [14].

The A2AR subtype is known to stimulate AC [10] being coupled to Gs proteins [7]. This receptor
subtype was isolated from a human hippocampal cDNA library [15] and, in the brain, it is also highly
expressed in the striatum/caudate-putamen nuclei [16], whereas, in the periphery, high expression
has been observed in immune tissues [17]. At central level, the functional effect of A2AR activation is
at variance from A1Rs, as they are reported to enhance glutamate release by facilitating Ca2+ entry
through presynaptic VGCC and inhibiting its uptake [18]. Moreover, A2AR inhibits voltage-dependent
K+ channels, thus promoting cell excitability and neurotransmitter release [19]. Concerning peripheral
functions of A2ARs, it is worth noting that adenosine, thanks to its actions on this receptor subtype,
is one of the most powerful endogenous anti-inflammatory agents [7]. Indeed, A2ARs are highly
expressed in inflammatory cells including lymphocytes, granulocytes, and monocytes/macrophages,
where their activation reduces pro-inflammatory cytokine production, i.e., tumor necrosis factor-alpha
(TNFα), interleukin-1β (IL-1 β), and IL-6 [20] and enhances the release of anti-inflammatory mediators,
such as IL-10 [21].

The relatively new A3R subtype, cloned in 1993 [22], is coupled to Gi/o proteins and inhibits AC
but, under particular conditions or in different cell types, activation of Gq/11 by A3R agonists has also
been reported [7], with consequent increase in intracellular [IP3] and [Ca2+]. The A3R shows large
interspecies differences, with only 74% sequence homology between rat and human [23]. Its expression
is not uniform throughout the body—low levels are found in the brain and spinal cord, whereas a
predominance of this receptor subtype is described in peculiar regions at the periphery, i.e., in the
testis, lung, kidneys, placenta, heart, brain, spleen, and liver [24]. Interestingly, most of the cell types of
the immune system express functional A3Rs on their surface [25] and its activation is one of the most
powerful stimuli for mast cell degranulation [26].

2. A2B Adenosine Receptors (A2BRs)

This adenosine receptor subtype is somewhat the most enigmatic and less studied among the four
P1 receptors. Although it was cloned in 1995 [27], a pharmacological and physiological characterization
of A2BRs has long been precluded by the lack of suitable ligands able to discriminate among the other
adenosine receptor subtypes [28].

The distribution of A2BRs in the CNS on neurons and glia is scarce but widespread, whereas in
the periphery, abundant expression of A2BRs is observed in the bronchial epithelium, smooth muscles,
mast cells, monocytes, and digestive tracts such as ileum and colon [29]. Functional A2BRs have
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been also recognized in vascular beds, fibroblasts, and hematopoietic and neurosecretory cells [30].
The activation of A2BRs stimulates Gs and, in some cases, Gq/11 proteins, thus enhancing intracellular
[cAMP] or [IP3], respectively [7]. As mentioned above for the cognate A2AR subtype, in addition to brain
cells and endothelial cells, A2BRs are present on hematic cells, such as lymphocytes and neutrophils,
with the highest expression levels on macrophages [31,32]. Here, A2B receptors in most cases are
coexpressed with A2ARs and their activation exerts anti-inflammatory effects, inhibiting vascular
adhesion [32] and migration of inflammatory cells [33]. Thus, attenuation of hypoxia-associated
increases of tissue neutrophils due to infiltration in different tissues including the brain, may largely
depend on blood cell A2BR signaling [34].

Differently from the high affinity A1Rs, A2ARs and A3Rs, which are activated by physiological
levels of extracellular adenosine (low nM and high nM, respectively [35]), the A2BR needs much higher
adenosine concentrations (in the µM range) reached only in conditions of tissue damage or injury.
Such a low affinity of A2BRs for the endogenous agonist implies that they represent a good therapeutic
target, since they are activated only by high adenosine efflux reached under pathological conditions or
injury, when a massive release of adenosine occurs [35,36] or that they can be driven to function by
selective agonists

3. A2B Adenosine Receptors (A2BRs) in the Hippocampus

Similarly to the A2AR subtype, A2BR activation within the CNS is reported to increase glutamate
release [37,38]. However, a distinct mechanism has been described. Indeed, Cunha and co-workers
demonstrated that the A2BR selective agonist BAY60-6583 attenuates the predominant A1R-mediated
inhibitory control of synaptic transmission in the CA1 hippocampus [37]. These data are consistent
with the relatively abundant expression of A2BRs in hippocampal synaptosome preparations reported
by the authors [37]. The facilitatory effect of A2BRs on glutamatergic neurotransmission was assessed
in acute hippocampal slices using the electrophysiological protocol of paired pulse facilitation (PPF),
which is known to modulate short-term synaptic plasticity. Our group of research recently confirmed
that A2BRs decreases PPF, thus enhancing glutamate release, in an A1R-dependent manner. Indeed,
the effect of BAY60-6583 was prevented not only by the A2BR antagonists MRS1754 and PSB-603,
but also by the A1R blocker DPCPX [38]. Furthermore, we extended results to a newly synthetized
BAY60-6583 analogue, the A2BR-selective agonist P453 recently described [39], which proved to have
higher affinity than BAY60-6583 [38].

The fact that neither A2BR agonists [37,38] nor antagonists [40] affect basal hippocampal
glutamatergic transmission suggests that the role of A2BRs might be confined to conditions of
synaptic plasticity. Nevertheless, the effect of A2BR activation on PPF should not be underestimated as
it could be crucial to cognitive performances and mechanisms related to memory and learning [41].
Indeed, it was demonstrated that compounds able to facilitate a PPF ratio, as A2BR agonists do,
may improve cognitive processes and memory performances in behavioral tests in rodents [42].

4. A2BRs and Oligodendrogliogenesis

We recently and originally demonstrated that A2BRs are crucially involved in oligodendrocyte
progenitor cell (OPC) maturation. We found that the selective A2BR agonists BAY60-6582 (10 µM) and
P453 (500 nM) inhibited the differentiation of purified primary OPC cultures, as demonstrated by
the reduced expression of myelin-related proteins such as myelin basic protein (MBP) or myelin
associated glycoprotein (MAG). We also demonstrated that A2BR activation reversibly inhibits
tetraethylammonium- (TEA-) sensitive, sustained IK, and 4-amynopyridine- (4-AP) sensitive, transient
IA, conductances [43]. As IK are known to be necessary to OPC maturation [44], this could be one
of the mechanisms by which A2BRs inhibit myelin production. These results are similar to what
was observed in cultured OPCs exposed to the A2AR agonist CGS21680, as demonstrated by us
in a previous work [45–47]. At variance, the activation of a Gi-coupled, P2Y-like receptor GPR17,
recently deorphanized [48,49], produces the opposite effects in OPC cultures, i.e., it increases IK [50]
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and stimulates OPC maturation [50,51]. The fact that both A2ARs and A2BRs are Gs-coupled whereas
GPR17 is a Gi-coupled receptor, let us hypothesize that cAMP is involved in the myelination process.
Indeed, when we applied the AC activator forskolin to patch-clamped cultured OPCs, we observed the
same effect as A2R agonists, i.e., a decrease in IK. Furthermore, a subsequent BAY60-65683 application
in the continuous presence of forskolin was devoid of effects [43], thus confirming that cAMP increase
is responsible at least for A2BR-mediated inhibition of IK and cell maturation. Results that forskolin
inhibit IK and cell maturation were reported in the nineties by Soliven and co-workers on cultured
ovine OPCs [52].

Interestingly, an interplay occurs in cultured OPCs between A2BRs and sphingosine kinase 1
(SphK1), one of the enzymes devoted to the synthesis of sphingosine 1 phosphate (S1P). This bioactive
lipid mediator is reported to act as a mitogen in OPC cells [43]. We demonstrated that the A2BR agonist
BAY60-6583 activates SphK1, thus rising S1P production, whereas its silencing by small interference
RNA (siRNA) increases the expression of S1P lyase, the enzyme catalyzing irreversible S1P degradation
inside the cells [43]. This observation led to hypothesize that the anti-differentiating effect exerted by
A2BR activation in OPCs is mediated by an increase in S1P intracellular levels, as confirmed by findings
that the SphK inhibitors VPC96047 or VPC96091 markedly increased MAG and MBP expression and
also significantly reduced IK currents in cultured OPCs [43].

Data about an inhibitory role of A2BR in myelin formation are consistent with recent findings
from Manalo et al. [53] who demonstrated that elevated cochlear adenosine levels in ADA−/− mice
is associated with sensorineural hearing loss (SNHL) due to cochlear nerve fiber demyelination and
mild hair cell loss. Intriguingly, A2BR-specific antagonists administered in ADA−/− mice significantly
restored auditory capacity, nerve fiber density, and myelin compaction [53]. The same authors also
provided genetic evidence for A2BR upregulation not only in ADA−/− hearing-impaired mice but also
in age-related SNHL [53].

5. Conditions of Tissue Damage: Brain Ischemia

Ischemic stroke is the second leading cause of death in industrialized countries and the major cause
of long-lasting disabilities worldwide [54]. Current treatments are confined to promote blood fluidity
after the insult by the administration of tissue plasminogen activator (tPA) within the first phases
(4–4.5 h) after stroke onset [55] and are efficient only in a restricted time window. The considerable
socioeconomic impact of this pathology, together with the lack of effectiveness of current treatments,
emphasizes the urgent need for new therapeutic targets able to prevent/repair brain damage.

Brain ischemia results from a permanent or transient reduction in cerebral blood flow mostly due
to the occlusion of a brain artery. The consequent reduction of blood and/or oxygen supply to the brain
leads to neuronal death caused by excessive glutamate release [56]. This early excitotoxic damage
is followed by a secondary chronic phase of neuroinflammation that develops hours and days after
ischemia. Either or both of these deleterious processes are important therapeutic targets.

Brain ischemia triggers a strong inflammatory response involving damage to the endothelium
and to the blood–brain barrier (BBB), early recruitment of granulocytes, and delayed infiltration into
the ischemic areas and the boundary zones by T cells and macrophages. This inflammatory scenario is
mainly generated by necrotic cells, reactive oxygen species (ROS) generation, and numerous other
factors caused by blood flow interruption in the brain. Once activated, these initiators of inflammation
lead to numerous responses among which is the activation of microglia, the brain’s resident immune
cells. Microglia then generate more proinflammatory cytokines [57] which in turn leads to adhesion
molecule induction in the cerebral vasculature. These are the conditions under which adenosine is
typically released in great amounts and may activate all subtypes of P1 adenosine receptors.

Protracted neuroinflammation is now recognized as the predominant mechanism of secondary
ischemic damage [58]. Thus, besides the approved treatment with tPA in the first hours after ischemia,
an important strategy to counteract the ischemic damage is to control brain injury progression after
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ischemia. Among neuromodulators involved in this event, adenosine has been recognized as a front
line endogenous mediator for anti-inflammatory responses.

During ischemia, adenosine is released in massive amounts [35,59] and has long been known to
act predominantly as an endogenous neuroprotectant agent [2,60]. Indeed, adenosine infusion into
the ischemic striatum has been shown to significantly ameliorate neurological outcome and reduce
infarct volume after transient focal cerebral ischemia [61]. This well recognized neuroprotection
by adenosine during ischemia is principally ascribed to A1R stimulation [62], as they emerged as
potent inhibitors of excitatory synaptic transmission both in vitro [63–65] or in vivo [66], as mentioned
above. In particular, A1Rs counteract overstimulation of N-methyl D-aspartate (NMDA) receptors
due to excessive glutamate release and consequent intracellular Ca2+ overload [11]. Among favorable
consequences of A1R stimulation during ischemic insults are also reduction in cell metabolism and
energy consumption [67], and a moderate hypothermia [68–70]. Unfortunately, the use of adenosine
A1R agonists in ischemia is hampered by profound central and peripheral side effects such as
bradycardia and sedation [70–72].

Of note, high levels of the enzyme AK, which recycles and removes adenosine by phosphorylation
to form AMP, results in a decrease in the ambient adenosine and thus in reduced P1 receptor activation.
The prompt ability of AK to alter adenosine availability has been recently described by Boison and
Jarvis to provide a “site and event” specificity to the endogenous protective effects of adenosine in
situations of cellular stress [73].

6. A2BRs and Brain Ischemia

As mentioned above, A2BRs are activated by µM concentrations of adenosine in tissues that
experience ischemia, trauma, inflammation, or other types of stressful insults and, interestingly,
mRNA and protein expression of A2BR increase to a greater extent after ischemia-reperfusion than
does expression of the other three adenosine receptors [74]. Few works have investigated the role of
A2BRs in brain ischemia up to now because of the low potency of adenosine for the receptors and the
few selective ligands developed so far.

Since it is known that A2BRs enhance glutamate release in the CA1 hippocampus [37,38], one of
the brain areas more susceptible to ischemic insults, the block of A2BRs may be neuroprotective as it
counteracts glutamate overload by preserving the inhibitory role of A1Rs on neurotransmission [37,38,40].
This is indeed the case in an in vitro model of brain ischemia reproduced in rat hippocampal slices
by oxygen and glucose deprivation (OGD), as demonstrated by our group of research. We recently
showed that the selective block of A2BRs by the prototypical antagonist PSB-603 (50 nM) and by
MRS1754 (200 nM) prevents irreversible synaptic failure produced by a severe, 7 min, OGD event
in CA1 hippocampal slices. We also showed, in the same work, that anoxic depolarization (AD),
an unequivocal sign of glutamate-induced excitotoxicity during OGD [75], is completely abolished in
A2BR antagonist-treated slices exposed to 7 min OGD and is significantly delayed in slices undergoing
a 30 min OGD insult. These results were accompanied by immunohistochemical analysis revealing that
the A2BR block also counteracts the reduction of neuronal density found in CA1 stratum pyramidale at
3 h after OGD insults, decreases apoptosis, and maintains activated mTOR levels similar to those of
controls, thus sparing neurons from the degenerative effects caused by the injury. Moreover, astrocytes
significantly proliferate in CA1 stratum radiatum at 3 h after the end of OGD, possibly due to
increased glutamate release [40]. A2BR antagonism significantly prevents astrocyte modifications.
Of note, neither A2BR antagonist tested protects CA1 neurons from the neurodegeneration induced
by exogenous glutamate application, indicating that the antagonistic effect is upstream of glutamate
release, in line with data indicating a presynaptic effect of A2BRs on glutamatergic terminals [37,38].

We consolidated the concept of A2BRs acting through inhibition of presynaptic A1R subtype
by showing that the application of a brief, reversible, synaptic episode of 2 min duration delays the
reduction of evoked field potentials during OGD ascribed to A1R activation [38].
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However, beyond neuroprotection exerted by A2BR antagonists acting at the neuro-glial level,
it is worth noting that the bulk of evidence in the literature points to a beneficial role exerted by A2BR
agonists acting on the same receptor subtype expressed also on peripheral blood cells [32,34]. Indeed,
studies in mice ablated of A2BRs on bone marrow cells indicate an important contribution of vascular
A2BRs in attenuating vascular leakage during hypoxia [34]. It was also found that activation of A2BRs
in a model of femoral artery injury is vasoprotective as it reduces myocardial infarct size in rabbit and
mouse hearts when administered before or at the onset of reperfusion [32].

Of note, post-treatment with intravenous BAY60-6583 (1 mg/kg) reduces lesion volume in the
absence or presence of tPA (10 mg/kg) and attenuates brain swelling, blood–brain barrier disruption,
and tPA-exacerbated hemorrhagic transformation (HT) at 24 h after ischemia induced by transient (2 h)
middle cerebral artery occlusion (tMCAo) [74]. Additionally, in the same work, BAY60-6583 mitigates
sensorimotor deficits in the presence of tPA and inhibits tPA-enhanced matrix metalloprotease-9
activation, thus decreasing BBB permeability 24 h after ischemia [74]. Protection from BBB permeability
after ischemia might protect from blood cell infiltration, that on their turn promote expansion of the
inflammatory response in the ischemic tissue [25].

Our group of research contributed to the field by demonstrating that the chronic treatment with
BAY60-6583, administered intraperitoneally twice/day for 7 days at the dose of 0.1 mg/kg, from 4 h
after focal ischemia induced by tMCAo, since one day after ischemia protects from neurological
deficit. Seven days after ischemia it protects from ischemic brain damage, neuronal death, microglia
activation, and astrocyte alteration [76]. Interestingly, 7 days after ischemia, the A2B agonist decreases
TNF-α and increases IL-10 levels in the blood [76]. Both cytokines are considered valuable blood
markers of the brain damage following an ischemic insult [77]. Among putative mechanism mediating
protective effects of A2B agonists, it is worth mentioning that A2BR agonists reduce the expression
of TNF-α in primary microglia cultures [78] and increase IL-10 production from murine microglial
cells [79] with consequent rescuing of the resting state of microglia. Besides a protection due to a direct
agonism of A2BR located on rat microglial and/or astrocytic cells, observation that 2 days after tMCAo,
BAY60-6583 significantly reduces granulocyte infiltration in the cortex [76] and supports the idea that
A2BR activation on peripheral endothelial and blood cells is involved in counteracting inflammation of
brain parenchyma. This possibility is also supported by the evidence that adenosine A2BR knock out
(KO) mice show increased basal levels of TNF-α and expression of adhesion molecules in lymphoid
cells, resulting in increased leukocyte rolling and adhesion [34]. Actually, increasing evidence indicates
a role for A2BR in the modulation of inflammation and immune responses in distinct pathologies like
cancer, diabetes, as well renal, lung, and vascular diseases [80]. Indeed, stroke and inflammation are
strictly interrelated. Brain ischemia induces profound inflammatory changes in peripheral organs
(especially lungs and gut) as early as 2 h after tMCAo in mice as detected by whole body single photon
emission computed tomography (SPECT)-based imaging protocols [81]. Such peripheral inflammatory
changes, in turn, may contribute to poorer recovery after stroke [81]. Data suggest that the A2BR
agonists can be proposed as adjuvant therapy to the accepted pharmacological strategy with tPA in
brain ischemia.

Taken together, data point toward the possibility that stimulation of A2BR plays a dual time-related
role after ischemia. In the early hours after ischemia, a robust and sustained increase in cerebral
extracellular levels of adenosine able to activate low affinity A2BRs in the brain may contribute
to expand excitotoxicity. However, in the hours and days following ischemia, when profound
neuroinflammation develops, A2BRs located on glial, vascular endothelial, and blood cells exert a
prevalent immunomodulatory role attenuating the neuroinflammation. Thus, on the whole, it appears
that A2BRs located on any cell type of the brain and on vascular and blood cells partake in either
salvage or demise of the tissue after a stroke and represent an important target for drugs that have
different therapeutic time-windows after stroke.

Since it is known that an A2BR agonist administered within the first 4 h after brain ischemia is
able to reduce neurological deficit measures at 24 h after the insult [76], we could hypothesize that a
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beneficial effect of A2BR activation could be achieved by administration of a selective agonist starting
at 1 day after stroke. Table 1 summarizes A2BR-mediated effects in in vitro or in vivo experimental
models of brain ischemia.

Table 1. Effects of adenosine A2BR receptor (A2BR) activation or blockade in different in vitro or in vivo
experimental approaches.

A2BR-Mediated Effects In Vitro Ischemia in Rat
Hippocampal Slices (OGD)

In Vivo Ischemia Model
(MCAo) in the Rat

In Vivo Model of
Multiple Sclerosis

(EAE) in the Mouse

A2BR activation ↓ A1R-mediated inhibition
of Glu release [38]

Protects from brain
damage, neurological
deficit [76], and BBB

disruption [74]

Reverses MSC-mediated
BBB repair [82]

A2BR block Protects from AD and
synaptic failure [40] unknown Protects from myelin loss and

neurological damage [83]

Glutamate: Glu. Anoxic depolarization: AD. Oxygen and glucose deprivation: OGD. Middle cerebral artery
occlusion: MCAo. Experimental autoimmune encephalomyelitis: EAE. Mesenchymal stem cells: MSCs.

In recent years, a similar dual role of the other subtype of A2Rs, the A2AR, was described. Indeed,
antagonists at this receptor proved neuroprotective when applied during in vitro OGD [84,85] or in
the acute post-ischemic phase after MCAo in rats [86–89], whereas the same receptor agonists proved
protective at later phases after ischemia by decreasing neuroinflammation [35,90]. This “paradoxical”
role of the A2ARs has been discussed in several review papers [35,91].

Hence, it appears that the reciprocal influence of central (neuro-glia) versus peripheral
(blood vessels–inflammatory cells) mechanisms involved in brain ischemia are hard to dissect.

What recently and interestingly emerged about the A2BR subtype is that it might be a “sensor”
of blood oxygen levels and rescue hypoxic tissues by an additive mechanism involving the release
of oxygen from erythrocytes. Indeed, recent findings obtained in humans challenged with altitude
indicate that A2BRs expressed on erythrocytes elevate their O2 releasing capacity by increasing
2,3-biphosphoglycerate (2,3-BPG) levels in an AMP-activated protein kinase-dependent manner [92].
Of note, the same authors also reported a significant increase in plasma adenosine concentrations and
soluble CD73 activity in 21 healthy humans within 2 h of arrival at 5260 m altitude [92]. These findings
unveiled a novel mechanism of human adaptation to hypoxia, in this case due to high altitude,
and pointed to A2BRs as possible targets to facilitate O2 release capacity to peripheral tissues and a
potential therapeutic approach for counteracting hypoxia-induced tissue damage.

7. A2BRs and Demyelinating Diseases

Demyelination occurs in a variety of pathological conditions affecting central or peripheral nervous
systems. As an example, myelin disorganization in caudate/putamen striatal nuclei have been reported
by us [88] and others [93,94]. Furthermore, chronic demyelinating diseases, such as multiple sclerosis
(MS), are highly invalidating pathologies with elevated incidence among the “under 40” population
worldwide [95], but an efficacious therapy is still lacking.

It is interesting to note that elevated adenosine levels have been detected in cerebrospinal fluid of
MS patients [96,97]. Furthermore, an upregulation of A2AR [98] and A2BR [83] has been reported in
peripheral blood leukocytes of MS patients and in the CNS [82] and peripheral lymphoid tissues [83,99]
in a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE).

Hence, a crucial role of adenosine, and in particular of A2AR and/or A2BR subtypes,
in demyelinating pathologies have been postulated. Under these conditions, excessive signaling by
excitatory neurotransmitters like glutamate may be deleterious to neurons and oligodendroglia by
exacerbating excitotoxicity and contributing to brain injury. For this reason, the inhibitory effect
on glutamate release described above for antagonists at both A2R subtypes could prove protective.
This was indeed the case, as demonstrated by Chen and colleagues [100] and by Wei and co-workers [83]
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who reported that A2AR and A2BR antagonists, respectively, alleviated the clinical symptoms of EAE
and prevented demyelination and CNS damage. Recent data by Liu and co-workers [82] confirmed that
A2BR activation seems to participate in EAE-induced damage as BAY60-6583 reverted the protective
effects, i.e., reduced inflammatory cell infiltration and demyelination, exerted by mesenchymal stem
cell therapy in EAE mice. Of note, the above results demonstrating a deleterious role of A2BRs in
demyelinating diseases are in agreement with our in vitro data demonstrating that A2BR blockade [44],
as well as A2AR antagonism [45], facilitates OPC differentiation in vitro.

However, things are probably more complicated as suggested by the fact that, again, A2R-mediated
actions are mainly anti-inflammatory when observed in a longer time-span. Indeed, genetically
modified A2AR−/− EAE mice are more prone to EAE-induced damage [45], and the A2AR agonist
CGS61680 ameliorates EAE by reducing Th1 lymphocyte activation and cytokine-induced BBB
dysfunction [101]. Indeed, adenosine receptors are expressed also by infiltrating lymphocytes,
macrophages, and microglial cells and, accordingly, many works suggest that the possible beneficial
effects linked to this pathway are mainly related to the immune-modulating consequences rather than
to a remyelinating or neuroprotecting effect. The dual role of A2ARs in demyelinating diseases has
been elegantly commented by Rajasundaram who tried to reconcile the apparently paradoxical data
reported up to now about A2ARs in demyelinating diseases [102].

Unfortunately, data about the effects of A2BR ligands in demyelinating pathologies are not that
abundant yet, as shown in Table 1.

8. Conclusions

In conclusion, results underlie that after hypoxia/ischemia, brain injury results from a complex
sequence of pathophysiological events that evolve over time—a primary acute mechanism of
excitotoxicity and periinfarct depolarizations followed by a secondary brain injury activation triggered
by protracted neuroinflammation. Information so far acquired indicates that adenosine A2BRs located
on any cell type of the brain and on vascular and blood cells partake in either salvage or demise of the
tissue after a stroke, including protracted demyelination.

Thus, they all represent important targets for drugs having different therapeutic time-windows
after stroke. The final protective outcome for an agonist versus antagonist compound depends on time
of administration and district of activation of the receptor targeted by the drug.
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Abbreviations

4-AP 4-amynopyridine
A1Rs A1 receptors
A2ARs A2A receptors
LD linear dichroism
A2BRs A2B receptors
A3Rs A3 receptors
AC adenylyl cyclase
ADA adenosine deaminase
AK adenosine kinase
AMP adenosine monophosphate
BBB blood brain barrier
CA1 cornus ammonis 1
cAMP cyclic adenosine monophosphate
CNS central nervous system
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ENT equilibrative nucleoside transporter
IK potassium current
IL-1β interleukin-1β
IL-6 interleukin-6
IL-10 interleukin-10
IP3 inositol 1,4,5-triphosphate
MAG myelin associated glycoprotein
MCAo middle cerebral artery occlusion
MBP myelin basic protein
NMDA N-methyl D-aspartate
PPF paired pulse facilitation
OGD oxygen-glucose deprivation
ROS reactive oxygen species
S1P sphingosine 1 phosphate
siRNA small interference RNA
SNHL sensorineural hearing loss
SphK1 sphingosine kinase 1
TNFα tumor necrosis factor-alpha
TEA tetraethylammonium
tPA tissue plasminogen activator
VGCC voltage-gated Ca2+ channels
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