
## **Supplementary Materials:**

**Table S1.** Genotypic analysis of MM- and MH-hybrid cells via short tandem repeat analysis.

| Locus               | iMSC#3 | HS578T<br>Hyg | WH#7 | MH#9 | Pocus               | iMSC#3 | MDA-MB-<br>231 Hyg | MM#2       | MM#3       |
|---------------------|--------|---------------|------|------|---------------------|--------|--------------------|------------|------------|
| D3 S1358            | 128    | 128           | 129  | 129  | D3S1358             | 128    | 129                | 128        | 128        |
| TH01 <sup>1</sup>   | 170    |               | 170  | 170  | TH01 <sup>1</sup>   |        | 166                | 166        | 166        |
|                     | 174    | 174           | 174  | 174  |                     | 170    |                    | 170        | 170        |
|                     |        | 177           | 177  | 177  |                     | 174    |                    | 174        | 174        |
| D21 S11             | 215    |               | 215  | 216  | D21 S11             |        | 177                | 177        | 177        |
|                     | 210    | 220           | 219  | 220  |                     | 215    | 004                | 216        | 216        |
|                     | 223    | 220           | 223  | 223  |                     | 223    | 224                | 223        | 223        |
|                     | 223    | 234           | 233  | 233  | D18 S51             |        | 238                | 238<br>295 | 238        |
| D18S51              | 306    | 234           | 307  | 307  | D 10331             | 306    | 295                | 307        | 307        |
|                     | 300    | 314           | 314  | 314  |                     | 300    | 314                | 314        | 314        |
|                     | 226    | 314           |      |      |                     | 326    | 314                | 326        | 326        |
|                     | 326    |               | 326  | 326  | Penta E             | 320    | 408                | 408        | 408        |
| Penta E             | 413    | ***           | 413  | 413  | D5S818              | 413    | 400                | 413        | 413        |
|                     |        | 418           | 418  | 418  |                     | 424    |                    | 423        | 423        |
|                     | 424    | 424           | 424  | 423  |                     | 127    |                    | 127        | 127        |
| D5S818              | 127    |               | 127  | 127  |                     | 135    | 135                | 135        | 135        |
|                     |        | 131           | 131  | 131  | D13\$317            | 176    |                    | 176        | 176        |
|                     | 135    |               | 135  | 135  |                     |        | 196                | 196        | 196        |
| D13\$317            | 176    |               | 176  | 176  |                     | 200    |                    | 200        | 200        |
|                     |        | 188           | 188  | 188  | D7\$820             |        | 221                | 220        | 220        |
|                     | 200    |               | 200  | 200  |                     | 224    | 224                | 224        | 224        |
| D7S820              | 224    |               | 224  | 224  |                     | 228    |                    | 228        | 228        |
|                     | 228    | 228           | 228  | 228  | D16 S539            | 283    |                    | 283        | 283        |
| D16S539             | 283    |               | 283  | 283  |                     | 287    |                    | 287        | 287        |
|                     | 287    |               | 287  | 287  |                     |        | 291                | 291        | 291        |
|                     |        | 291           | 291  | 291  | CSF1PO <sup>2</sup> | 338    |                    | 338        | 338        |
| CSF1PO <sup>2</sup> | 338    |               | 338  | 338  |                     |        | 342                | 342        | 342        |
|                     | 346    | 346           | 346  | 346  |                     | 346    | 346                | 346        | 346        |
| Penta D             |        | 394           | 394  | 394  | Penta D             | 399    |                    | 399        | 399        |
|                     | 399    |               | 399  | 399  |                     | 413    | 408                | 408<br>413 | 408<br>413 |
|                     | 413    |               | 413  | 413  |                     | 413    | 422                |            |            |
|                     | 7.5    | 418           | 418  | 418  |                     | 104    | 422<br>104         | 422<br>104 | 423<br>104 |
| Am                  | 104    | 104           | 104  | 104  | ^""                 | 110    | 104                | 110        | 110        |
|                     | 110    | .54           | 110  | 110  | vWA <sup>3</sup>    | 138    |                    | 138        | 138        |
| vWA <sup>3</sup>    | 138    |               | 138  | 139  | VWA                 | 130    | 142                | 142        | 142        |
|                     | 146    |               | 146  | 146  |                     | 146    |                    | 146        | 146        |
|                     | 140    | 150           |      |      |                     |        | 158                |            | 158        |
| D8S1179             | 222    | 130           | 150  | 150  | D8S1179             | 222    |                    | 222        | 222        |
|                     | 222    | 226           | 222  | 222  |                     |        | 226                | 226        | 226        |
|                     | 000    | 226           | 226  | 226  |                     | 230    |                    | 230        | 230        |
|                     | 230    |               | 230  | 230  | TPOX <sup>4</sup>   | 269    | 269                | 269        | 269        |
| TPOX <sup>4</sup>   | 269    | 269           | 269  | 269  |                     |        | 273                | 273        | 273        |
|                     | 281    |               | 281  | 281  |                     | 281    |                    |            | 281        |
| FGA <sup>5</sup>    | 337    |               | 337  | 337  | FGA <sup>5</sup>    | 337    |                    | 337        | 337        |
|                     | 346    |               | 346  | 346  |                     | 346    | 346                | 346        | 346        |
|                     |        | 350           | 350  | 350  |                     |        | 350                | 350        | 35         |

 $^1$ TH01: human tyrosine hydrolase;  $^2$ CSF1PO: human c-fms proto-oncogene for CSF-1 receptor;  $^3$ vWA: human von Willebrand factor;  $^4$ TPOX: human thyroid peroxidase;  $^5$ FGA: human alpha fibrinogen



**Figure S1.** Cytotoxicity tests with Doxorubicin demonstrated, that hybrid cells MH#7, MH#9 and MM#3 exhibited a resistance against  $0.1\mu$ M Doxorubicin. Shown are the means (with SEM) of three independent XTT-assays.

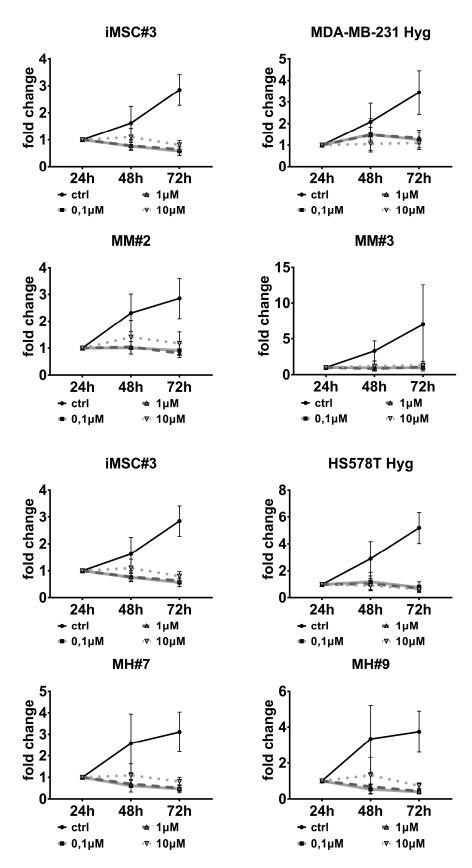



Figure S2. XTT-analysis of cells treated with different concentrations (0,1/  $1/10\mu M$ ) of Paclitaxel. In contrast to the results for Doxorubicin, treatment with Paclitaxel led to the death of nearly all cells. Shown are the means (with SEM) of three independent experiments.