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Abstract: The cytoskeleton has a primary role in cardiomyocyte function, including the response to
mechanical stimuli and injury. The small heat shock protein 20 (Hsp20) conveys protective effects in
cardiac muscle that are linked to serine-16 (Ser16) Hsp20 phosphorylation by stress-induced PKA,
but the link between Hsp20 and the cytoskeleton remains poorly understood. Herein, we demonstrate
a physical and functional interaction of Hsp20 with the cytoskeletal protein 14-3-3. We show that,
upon phosphorylation at Ser16, Hsp20 translocates from the cytosol to the cytoskeleton where it
binds to 14-3-3. This leads to dissociation of 14-3-3 from the F-actin depolymerization regulator
cofilin-2 (CFL2) and enhanced F-actin depolymerization. Importantly, we demonstrate that the
P20L Hsp20 mutation associated with dilated cardiomyopathy exhibits reduced physical interaction
with 14-3-3 due to diminished Ser16 phosphorylation, with subsequent failure to translocate to the
cytoskeleton and inability to disassemble the 14-3-3/CFL2 complex. The topological sequestration of
Hsp20 P20L ultimately results in impaired regulation of F-actin dynamics, an effect implicated in loss
of cytoskeletal integrity and amelioration of the cardioprotective functions of Hsp20. These findings
underscore the significance of Hsp20 phosphorylation in the regulation of actin cytoskeleton dynamics,
with important implications in cardiac muscle physiology and pathophysiology.

Keywords: Hsp20 phosphorylation; 14-3-3; actin cytoskeleton; cardiac muscle; cardiomyopathy;
heart failure

1. Introduction

The small heat shock protein 20 (Hsp20, also referred to as HspB6) is a 17 kDa molecular chaperone
with a central role in cardiac function [1,2]. Hsp20 is transiently upregulated in the heart as a compensatory
protective response to stress factors, such as exercise training, chronic β-adrenergic stimulation and
ischemic injury, as well as in human and experimental heart failure [1,3–6]. This cardioprotective role of
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Hsp20 has been shown to involve attenuation of apoptosis, reduced infarction and improved recovery
of cardiac function [5–9].

Importantly, the cardioprotective effects of Hsp20 are linked to Ser16 phosphorylation
by cAMP-dependent protein kinase (PKA) [10,11]. This has been demonstrated by adenoviral
overexpression of Hsp20 in isolated cardiomyocytes, as well as animal model studies expressing
non-phosphorylatable Hsp20 (S16A) or phosphomimetic Hsp20 (S16D) following β adrenergic
stimulation [5,6]. In particular, blockade of Hsp20-Ser16 phosphorylation in vivo was found to
exacerbate cardiac ischemia/reperfusion injury and increase cardiomyocyte apoptosis. Conversely,
the constitutively phosphorylated Hsp20-S16D conferred full protection from cardiomyocyte apoptosis
via inhibition of caspase 3 [5]. These findings indicate the critical requirement of Ser16 phosphorylation
in exerting the cardioprotective properties of Hsp20, with potential therapeutic applications in
cardiac disease.

In addition to evidence from experimental models, the identification of Hsp20 mutations in
dilated cardiomyopathy (DCM) patients has further supported the functional significance of Hsp20 in
cardiac muscle [12,13]. The first Hsp20 mutation to be reported was a single base substitution that
changes proline into leucine at amino acid position 20 (P20L). Adenovirus-mediated overexpression of
Hsp20-P20L in isolated cardiomyocytes demonstrated that the mutation abrogates the cardioprotective
properties of Hsp20. This was associated with diminished phosphorylation at Ser16 upon simulated
ischemia/reperfusion or isoproterenol treatment in cardiac myocytes. Based on these findings, it was
proposed that the P20L mutation results in impaired ability of cardiomyocytes to handle cellular
stress. The critical role of Hsp20 in cardiac physiology and pathophysiology was further highlighted
by the identification of a second mutation (S10F) in DCM patients [12]. Cardiac overexpression of
Hsp20-S10F was associated with cardiac dysfunction, heart failure and reduced survival in male mice
and peripatrum cardiomyopathy in female mice [12,14].

Mechanistically, the protective properties of Hsp20 can be attributed to its association with various
binding partners regulating cell survival or death, phosphorylation enzymes or subunits, as well as
protein phosphatases or phosphodiesterases [7,10,15–19]. Previous studies in non-muscle tissues have
reported association of Hsp20 with the cytoskeletal protein 14-3-3, an adaptor molecule interacting with
multiple proteins with diverse functions [20–22]. Among the interacting partners of 14-3-3 is cofilin-2
(CFL2), a protein that modulates actin dynamics in striated muscle [21,23]. Moreover, Hsp20 has been
involved in cytoskeletal regulation through interaction with key cytoskeletal proteins such as actin and
α-actinin [5,24]. However, the physical interactions of Hsp20 with cytoskeletal complexes and their
functional implications in cardiac muscle remain unknown.

Data presented herein underscore a significant role for the cardioprotective Hsp20-Ser16
phosphorylation in modulating the subcellular distribution and interaction of Hsp20 with 14-3-3,
leading to dissociation of CFL2 from 14-3-3 and enhanced CFL2-mediated F-actin depolymerization.
Conversely, the human Hsp20-P20L mutation which is causally linked to impaired cardiac function
displays reduced phosphorylation and diminished physical interaction with 14-3-3 leading to
aberrant regulation of CFL2-mediated F-actin depolymerization. Collectively, these findings link
PKA-mediated Hsp20 phosphorylation to cytoskeletal changes pertinent to cardiac muscle physiology
and pathophysiology.

2. Results

2.1. Identification of Hsp20/14-3-3 and 14-3-3/CFL2 Protein Complexes in Cardiac Muscle

To determine whether 14-3-3 interacts with Hsp20 and CFL2 in the heart, we performed pull
down assays using recombinant MBP-14-3-3 or MBP proteins and mouse cardiac protein extracts.
Western blot analysis showed that in vitro expressed 14-3-3 binds Hsp20 and CFL2 in cardiac muscle
(Figure 1a). To determine if these interactions may also occur between endogenously expressed proteins,
we examined the presence of Hsp20 and CFL2 in anti-14-3-3 immunoprecipitates from cardiac muscle
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lysates. Hsp20 and CFL2 were found to co-precipitate with 14-3-3 (Figure 1b), thereby confirming the
existence of these interactions endogenously in cardiac muscle.
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Figure 1. Identification of Hsp20/14-3-3 and 14-3-3/CFL2 protein complexes in cardiac muscle. (a) 
MBP-14-3-3 pull down assays determine its interactions with Hsp20 and CFL2 in cardiac 
homogenates. (b) Immunoprecipitation assays using 14-3-3 or IgG control antibodies confirm the 
association of 14-3-3/Hsp20 and 14-3-3/CFL2 endogenously in cardiac muscle extracts. (c,d) 
Coomassie staining showing purified GST-Hsp20 and GST-CFL2 recombinant proteins. Hsp20/14-3-
3 and 14-3-3/CFL2 interactions are direct, as shown by blot overlay assays. Specifically, 14-3-3 interacts 
with (c) phosphorylated Hsp20 and (d) both phosphorylated and non-phosphorylated CFL2, as 
determined by two independent experiments. No unspecific binding to MBP has been observed in 
control experiments (Figure S1). 

As Hsp20 function is affected by phosphorylation at Ser16 by PKA [10,25], we examined the 
impact of phosphorylation in the identified 14-3-3 protein interactions. Towards this, we performed 
blot overlay assays using GST-Hsp20 or GST-CFL2 recombinant proteins that had been previously 
phosphorylated in vitro, or left untreated for control purposes (Figure 1c). These in vitro assays 
determined that 14-3-3 interacts preferentially with phosphorylated-Hsp20, whereas GST-CFL2 
associates with 14-3-3 irrespective of its phosphorylation status (Figure 1d). The existence of low 
levels of phosphorylated Hsp20 in cardiac extracts (as shown in Figure 3c) explains the ability to 
detect the Hsp20 and 14-3-3 interaction endogenously in cardiac extracts by pull down and 
immunoprecipitation assays (Figure 1a,b). 

We conclude that CFL2 and Hsp20 may bind directly and independently of each other to 14-3-3 
in cardiac muscle. Moreover, binding of Hsp20 to 14-3-3 is modulated by PKA-mediated 
phosphorylation, indicating the presence of a regulatory protein complex with a putative functional 
significance during β-adrenergic stimulation. 

2.2. Mapping of the Minimal Regions of Hsp20 and CFL2 Responsible for Binding to 14-3-3 

The observation that 14-3-3 binds directly to Hsp20 and CFL2 in cardiac muscle prompted us to 
investigate the minimal regions of CFL2 and Hsp20 involved in 14-3-3 binding. For this purpose, we 
first generated recombinant proteins from various deletion constructs of CFL2 (Figure 2a,b). Blot 
overlay assays with 14-3-3 showed that the N-terminal fragment of CFL2, containing amino acids 1-
55, is required for binding to 14-3-3 (Figure 2b). 

Figure 1. Identification of Hsp20/14-3-3 and 14-3-3/CFL2 protein complexes in cardiac muscle.
(a) MBP-14-3-3 pull down assays determine its interactions with Hsp20 and CFL2 in cardiac
homogenates. (b) Immunoprecipitation assays using 14-3-3 or IgG control antibodies confirm the
association of 14-3-3/Hsp20 and 14-3-3/CFL2 endogenously in cardiac muscle extracts. (c,d) Coomassie
staining showing purified GST-Hsp20 and GST-CFL2 recombinant proteins. Hsp20/14-3-3 and
14-3-3/CFL2 interactions are direct, as shown by blot overlay assays. Specifically, 14-3-3 interacts with
(c) phosphorylated Hsp20 and (d) both phosphorylated and non-phosphorylated CFL2, as determined by
two independent experiments. No unspecific binding to MBP has been observed in control experiments
(Figure S1).

As Hsp20 function is affected by phosphorylation at Ser16 by PKA [10,25], we examined the impact
of phosphorylation in the identified 14-3-3 protein interactions. Towards this, we performed blot overlay
assays using GST-Hsp20 or GST-CFL2 recombinant proteins that had been previously phosphorylated
in vitro, or left untreated for control purposes (Figure 1c). These in vitro assays determined that
14-3-3 interacts preferentially with phosphorylated-Hsp20, whereas GST-CFL2 associates with 14-3-3
irrespective of its phosphorylation status (Figure 1d). The existence of low levels of phosphorylated
Hsp20 in cardiac extracts (as shown in Figure 3c) explains the ability to detect the Hsp20 and
14-3-3 interaction endogenously in cardiac extracts by pull down and immunoprecipitation assays
(Figure 1a,b).

We conclude that CFL2 and Hsp20 may bind directly and independently of each other to 14-3-3 in
cardiac muscle. Moreover, binding of Hsp20 to 14-3-3 is modulated by PKA-mediated phosphorylation,
indicating the presence of a regulatory protein complex with a putative functional significance during
β-adrenergic stimulation.

2.2. Mapping of the Minimal Regions of Hsp20 and CFL2 Responsible for Binding to 14-3-3

The observation that 14-3-3 binds directly to Hsp20 and CFL2 in cardiac muscle prompted us
to investigate the minimal regions of CFL2 and Hsp20 involved in 14-3-3 binding. For this purpose,
we first generated recombinant proteins from various deletion constructs of CFL2 (Figure 2a,b).
Blot overlay assays with 14-3-3 showed that the N-terminal fragment of CFL2, containing amino acids
1-55, is required for binding to 14-3-3 (Figure 2b).
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Figure 2. Minimal binding regions of interactions. (a) Diagrammatic representation of the various 
CFL2 deletion constructs. ADF, actin-depolymerizing factor. (b) Coomassie blue stained gel showing 
purified recombinant GST and GST-CFL2 deletion proteins. Blot overlay assays using GST-CFL2 
deletion constructs and MBP-14-3-3 determine that 14-3-3 binds to N-terminal region of CFL2 that 
includes amino acids 1-55. (c) Coomassie blue stained gel showing purified MBP-14-3-3 deletion 
proteins as well as GST-CFL2, GST and GST-p-Hsp20 recombinant proteins. (d,e) Blot overlay assays 
using MBP-14-3-3 N- or C-terminal deletion constructs determine the regions of 14-3-3 that bind to 
Ser16 phosphorylated-Hsp20 and CFL2. No unspecific binding to MBP was observed in control 
experiments (Figure S1). 
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proceeded to assess whether protein binding can occur simultaneously or in a mutually exclusive 
manner. To this end, we performed pull down assays using MBP-14-3-3 recombinant protein and 
lysates from HEK 293 cells transfected with myc-tagged-CFL2, in the presence of phosphorylated or 
non-phosphorylated recombinant GST-Hsp20 protein. Immunoblot analysis of MBP-14-3-3 
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blot overlay and immunoprecipitation assays (Figure 1c). To further evaluate the significance of 
Hsp20 phosphorylation on this, we assessed the effect of GST-Hsp20-S16A and GST-Hsp20-S16D 
phospho-mutant proteins (Figure 3c). GST-Hsp20-S16A did not appear to affect myc-CFL2 
interaction to MBP-14-3-3 upon phosphorylation (Figure 3d,e). This could be attributed to the fact 
that Hsp20-S16A is a non-phosphorylatable protein at Ser-16. On the other hand, GST-Hsp20-S16D 
exhibited increased binding to MBP-14-3-3 (Figure 3d,f), with a concomitant overall decrease of myc-
CFL2 association to MBP-14-3-3 (Figure 3d,e). No major difference is seen between GST-p-Hsp20-S16D 
and GST-Hsp20-S16D samples since Hsp20-S16D is a phosphomimetic protein at Ser-16 and is 
consequently constitutively phosphorylated. Similar findings on the impact of phosphorylation on the 

Figure 2. Minimal binding regions of interactions. (a) Diagrammatic representation of the various
CFL2 deletion constructs. ADF, actin-depolymerizing factor. (b) Coomassie blue stained gel showing
purified recombinant GST and GST-CFL2 deletion proteins. Blot overlay assays using GST-CFL2
deletion constructs and MBP-14-3-3 determine that 14-3-3 binds to N-terminal region of CFL2 that
includes amino acids 1-55. (c) Coomassie blue stained gel showing purified MBP-14-3-3 deletion
proteins as well as GST-CFL2, GST and GST-p-Hsp20 recombinant proteins. (d,e) Blot overlay assays
using MBP-14-3-3 N- or C-terminal deletion constructs determine the regions of 14-3-3 that bind to Ser16
phosphorylated-Hsp20 and CFL2. No unspecific binding to MBP was observed in control experiments
(Figure S1).

We next mapped the minimal region of 14-3-3 that is required for association with CFL2 and
Hsp20 by generating N- and C-terminal deletion constructs of 14-3-3 (Figure 2c). Blot overlay assays
with GST-CFL2 demonstrated that the N-terminal region of 14-3-3, containing amino acids 1–120,
is required for binding to CFL2 (Figure 2d). In contrast, the binding of 14-3-3 to phosphorylated Hsp20
requires the C-terminal fragment of 14-3-3 encompassing amino acids 115–247 (Figure 2e). We conclude
that different regions of 14-3-3 are involved in interactions with Hsp20 and CFL2.

2.3. Hsp20 Competes with CFL2 for Binding to 14-3-3

As both Hsp20 and CFL2 interact with 14-3-3, albeit at different regions of the protein,
we proceeded to assess whether protein binding can occur simultaneously or in a mutually exclusive
manner. To this end, we performed pull down assays using MBP-14-3-3 recombinant protein and
lysates from HEK 293 cells transfected with myc-tagged-CFL2, in the presence of phosphorylated
or non-phosphorylated recombinant GST-Hsp20 protein. Immunoblot analysis of MBP-14-3-3
precipitates showed reduced binding of CFL2 in the presence of phosphorylated, compared to
non-phosphorylated, Hsp20 (Figure 3a,b, * p < 0.05, t test, two-tailed n = 3). This was associated
with increased binding of phosphorylated GST-Hsp20 to MBP-14-3-3, in agreement to the findings
from blot overlay and immunoprecipitation assays (Figure 1c). To further evaluate the significance
of Hsp20 phosphorylation on this, we assessed the effect of GST-Hsp20-S16A and GST-Hsp20-S16D
phospho-mutant proteins (Figure 3c). GST-Hsp20-S16A did not appear to affect myc-CFL2 interaction
to MBP-14-3-3 upon phosphorylation (Figure 3d,e). This could be attributed to the fact that Hsp20-S16A
is a non-phosphorylatable protein at Ser-16. On the other hand, GST-Hsp20-S16D exhibited increased
binding to MBP-14-3-3 (Figure 3d,f), with a concomitant overall decrease of myc-CFL2 association to
MBP-14-3-3 (Figure 3d,e). No major difference is seen between GST-p-Hsp20-S16D and GST-Hsp20-S16D
samples since Hsp20-S16D is a phosphomimetic protein at Ser-16 and is consequently constitutively
phosphorylated. Similar findings on the impact of phosphorylation on the association of Hsp20 with
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14-3-3 were obtained by immunoprecipitation of endogenous protein complexes in PKA-phosphorylated
and non-phosphorylated mouse cardiac protein extracts. As shown in Figure 3g,h, the association of
14-3-3 with Hsp20 increased in PKA-phosphorylated extracts, whereas interaction with CFL2 decreased.
These findings reveal the competitive nature of the CFL2 and Hsp20 association with 14-3-3 and the
critical role of Hsp20 phosphorylation by PKA in these interactions.
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Figure 3. Phosphorylated Hsp20 displaces CFL2 from 14-3-3 protein complex. (a) Pull down assays using
MBP-14-3-3 recombinant protein and lysates from HEK 293 cell transfected with myc-CFL2. Binding of
CFL2 to 14-3-3 was examined in the presence of GST-Hsp20 or Ser16-phosphorylated GST-Hsp20.
(b) Quantification of CFL2/14-3-3 binding in the presence of GST-Hsp20 or Ser16-phosphorylated
GST-Hsp20 (* p < 0.05, t test, two-tailed; n = 3). Data are the mean ± SD. (c) Coomassie blue
stained gel showing purified recombinant GST-Hsp20-S16A and GST-Hsp20-S16D recombinant
proteins. (d) Pull down assays using MBP-14-3-3 recombinant protein and lysates from HEK
293 cell transfected with myc-CFL2. Binding of CFL2 to 14-3-3 was examined in the presence
of GST-Hsp20-S16A, GST-Hsp20-S16D, or phosphorylated GST-Hsp20-S16A and phosphorylated
GST-Hsp20-S16D. (e) Quantification of CFL2/14-3-3 binding in the presence of GST-Hsp20-S16A
or GST-Hsp20-S16D (* p < 0.05 vs. Hsp20-S16A -PKA, t test, two-tailed; n = 3). Data are the
mean ± SD. (f) Quantification of 14-3-3 binding to GST-Hsp20-S16A or GST-Hsp20-S16D (* p < 0.05 vs.
Hsp20-S16A-PKA, t test, two-tailed; n = 3). Data are the mean ± SD. (g) Immunoprecipitation assays in
PKA-phosphorylated or non-phosphorylated cardiac extracts confirmed the enhanced binding of Ser-16
phosphorylated Hsp20 to 14-3-3, along with associated reduction in the phosphorylated CFL2/14-3-3
interaction. (h) Quantification of the impact of PKA treatment on the levels of Hsp20 phosphorylation
in cardiac extracts (input) and 14-3-3 interaction (* p < 0.05, t test, two-tailed; n = 3). Data are the
mean ± SD.

2.4. Isoproterenol-Induced Phosphorylation of Hsp20 Changes Its Subcellular Distribution by Promoting Its
Interaction with 14-3-3

Having established the association of 14-3-3 with Hsp20 in vitro and the influence of Hsp20
phosphorylation thereof, we next examined the nature of this interaction under conditions of
endogenous activation of PKA ensued by isoproterenol (ISO) treatment. ISO is an agonist of
the β2-adrenergic receptor (β2AR) which elevates cAMP and thus, PKA activity. To this end,
we first transfected HEK 293 cells with a myc-tagged Hsp20 expression vector and found by
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immunofluorescence that Hsp20 preferentially localizes to the cytosol (Figure 4a). This observation was
reproduced using crude fractionation assays in detergent-soluble (cytosolic) and detergent-insoluble
(cytoskeletal) fractions (Figure 4b), consistent with previous findings in cardiomyocytes [5].
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Figure 4. Localization of Hsp20 protein in HEK 293 cells and redistribution in the presence of 14-3-3.
(a) Immunofluorescence analysis of HEK 293 cells transfected with myc-tagged-Hsp20 and examination
of its localization with the cytoskeletal marker, actin. Scale bar 5 µm. (b) Fractionation study of
myc-Hsp20 and examination of its localization in cytosolic soluble (S) and cytoskeletal insoluble
(I) cell fractions. (c) 1 µM ISO treatment results in efficient Ser16 phosphorylation of myc-Hsp20.
(d) Immunofluorescence analysis of HEK 293 cells transfected with myc-tagged-Hsp20 and examination
of its localization with the cytoskeletal actin following ISO treatment. Calculation of Pearson’s correlation
coefficient determined no significant alteration in the subcellular distribution of myc-Hsp20 following
ISO treatment. Data are the mean ± SD; n = 15 cells from each group. Scale bar 5 µm. (e) Fractionation
of ISO treated HEK 293 cells transfected with myc-Hsp20 and GFP vector or (g) GFP-14-3-3 construct
and determination of myc-Hsp20 subcellular location. (f,h) Quantification of myc-Hsp20 distribution
in the presence of GFP or GFP-14-3-3 (* p < 0.05, t test, two-tailed; n = 3). Data are the mean ± SD.
(i) Fractionation of ISO treated HEK 293 cells transfected with myc-Hsp20-S16A and GFP-14-3-3 or
(j) myc-Hsp20-S16D and GFP-14-3-3 constructs and determination of their subcellular location.

Given that Hsp20 phosphorylation affects its interaction with 14-3-3 (Figure 1), we proceeded
to assess the levels and subcellular distribution of phosphorylated Hsp20 following treatment with
ISO. ISO induced a rapid (within 5 min) phosphorylation of Hsp20 at Ser16 which was maintained
at later time points (Figure 4c). ISO treatment did not result in major changes in Hsp20 localization,
as observed by immunofluorescence analysis (Figure 4d). To determine the effect of phosphorylation
on 14-3-3/Hsp20 localization, we used more detailed biochemical assays and performed crude
fractionation assays on myc-tagged Hsp20-transfected HEK 293 cells in the presence of GFP-14-3-3 or
GFP as control. In GFP-transfected cells, ISO treatment did not affect Hsp20 subcellular distribution to
soluble versus insoluble fraction (Figure 4e,f). However, ISO treatment of cells co-transfected with
GFP-14-3-3 led to an increase in the amount of myc-Hsp20 in the cytoskeletal fraction where 14-3-3
predominantly resides (Figure 4g,h), * p < 0.05, t test, two-tailed n = 3). Moreover, the cytoskeletal
fraction contained phosphorylated Hsp20 (Figure 4g) suggesting that its redistribution occurs in
phosphorylation-dependent manner. This is clearly demonstrated by analysis of the phospho-mutant
constructs myc-Hsp20-S16A and myc-Hsp20-S16D which served as negative and positive controls in
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our study. Indeed, ISO treatment did not enhance the distribution of myc-HSp20-S16A to the insoluble
fraction, while myc-Hsp20-S16D exhibited a more equal distribution in both soluble and insoluble
fractions (Figure 4i,j). These findings underscore the role of Hsp20 phosphorylation in regulating its
interaction with 14-3-3 and thus, its subcellular localization.

2.5. The Human Phosphorylation-Impairing Hsp20-P20L Mutation Displays Reduced 14-3-3 Interaction

The P20L mutation of Hsp20 found in patients with dilated cardiomyopathy, is linked to reduced
Hsp20 phosphorylation and abrogation of its cardioprotective effects [13]. As Hsp20 phosphorylation
impacts on its interaction with 14-3-3, we reasoned that Hsp20-P20L may display reduced binding to
14-3-3. In line with this prediction, blot overlay assays demonstrated that recombinant Hsp20-P20L
has significantly reduced capacity to bind to 14-3-3 upon PKA treatment, when compared to the WT
Hsp20 (Figure 5a).

 

 

 

 

 

Figure 5 

 

 

 

 

 

 

Figure 5. The human P20L mutation in Hsp20 inhibits its association with 14-3-3. (a) Coomassie
staining of GST-Hsp20 recombinant proteins. Blot overlay assays using GST-Hsp20-WT or P20L and
MBP-14-3-3 determine diminished binding of PKA-treated P20L mutant protein to 14-3-3. No unspecific
binding to MBP was observed in control experiments (Figure S1). (b) Immunofluorescence analysis
of HEK 293 cells transfected with myc-Hsp20-P20L and examination of its localization with the
cytoskeletal marker, actin. Calculation of Pearson’s correlation coefficient determined no significant
alteration in the subcellular distribution of myc-Hsp20-P20L, when compared to myc-Hsp20. Data are
the mean ± SD; n = 15 cells from each group. Scale bar 5 µm. (c) Fractionation of 1 µM ISO treated
HEK 293 cells transfected with myc-Hsp20-P20L and GFP-14-3-3 determines no significant alteration
of myc-Hsp20-P20L subcellular location. (d) Quantification of myc-Hsp20-P20L distribution in the
presence GFP- 14-3-3. Data are the mean ± SD; n = 3.

Subcellular analysis of Hsp20-P20L-transfected HEK 293 cells demonstrated no major alterations
in the localization of the mutated versus WT protein (Figures 4a and 5b). This was confirmed by
cell fractionation experiments, which demonstrated primarily cytosolic localization of Hsp20-P20L,
similar to the WT protein. However, unlike WT Hsp20 (Figure 4g), P20L could not successfully
translocate to the cytoskeletal fraction containing GFP-14-3-3 upon ISO treatment (Figure 5c,d, n = 3).
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We conclude that the naturally occurring Hsp20-P20L mutation displays diminished 14-3-3 interaction
and mobilization to the cytoskeletal fraction under stress conditions, such as β-adrenergic stimulation.

2.6. Hsp20-P20L Fails to Compete with CFL2 for Binding to 14-3-3

As the P20L mutation diminishes the association of Ser16 phosphorylated-Hsp20 with 14-3-3
(Figure 5), and given the competitive nature of Hsp20 and CFL2 binding to 14-3-3 (Figure 3),
we hypothesized that the Hsp20-P20L mutation may not impair the 14-3-3 interaction with CFL2.
To address this hypothesis, we tested the capacity of recombinant MBP-14-3-3 protein to bind myc-CFL2
expressed in HEK 293 cells in the presence of recombinant phosphorylated versus non-phosphorylated
GST-Hsp20-P20L. The results of the pull down assays showed that GST-Hsp20-P20L treated with
PKA did not reduce the interaction of 14-3-3 with CFL2 (Figure 6a,b). This was associated with
significantly reduced phosphorylated Hsp20-P20L protein binding to MBP-14-3-3 in the pull down
sample (Figure 6c,d). This is also evident by immunoblot analysis with GST antibody, showing that
phosphorylation of WT Hsp20 resulted in enhanced binding to MBP-14-3-3, however, this effect was
not observed for GST-Hsp20-P20L (Figure 6c). As a consequence, in the presence of phosphorylated
GST-Hsp20-P20L there was no significant reduction in 14-3-3 binding to CFL2, in contrast to WT Hsp20
(Figure 6c,d). These findings indicate inability of Hsp20-P20L to compete with CFL2 for 14-3-3 binding,
compared to WT Hsp20 (Figure 6c,d). In line with the observation that Hsp20 phosphorylation affects
its interaction with 14-3-3 (Figure 1), Hsp20-P20L displayed reduced phosphorylation at residue Ser16
(Figure 6e). This finding is consistent with our observation of reduced Hsp20-P20L binding to 14-3-3
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Figure 6. Ser16- Hsp20-P20L fails to displace CFL2 from 14-3-3 protein complex. (a) Pull down assays
using MBP-14-3-3 recombinant protein and lysates from HEK 293 cells transfected with myc-CFL2.
Binding of CFL2 to 14-3-3 was examined in the presence of GST-Hsp20-P20L or Ser16-phosphorylated
GST-Hsp20-P20L. (b) Quantification of CFL2/14-3-3 binding in the presence of GST-Hsp20-P20L or
Ser16-phosphorylated GST-Hsp20-P20L. Data are the mean ± SD; n = 3. (c) Representative pull down
assay showing the diminished effect of Hsp20-P20L in competing with CFL2 for 14-3-3 binding,
when compared to WT Hsp20. (d) Quantification of CFL2/14-3-3 binding in the presence of GST-Hsp20
or GST-Hsp20-P20L (* p < 0.05 vs. Hsp20-PKA, t test, two-tailed; n = 3). Data are the mean ± SD; n = 3.
(e) Reduced Ser16 phosphorylation of Hsp20-P20L mutant, in comparison to Hsp20-WT protein.
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Collectively, these data suggest that the Hsp20-P20L mutation not only affects the direct interaction
of this protein with 14-3-3, but it also impairs the regulation of the CFL2/14-3-3 interaction.

2.7. Hsp20 Phosphorylation Regulates CFL2-Mediated Actin Depolymerization

CFL2 is a major regulator of actin dynamics and a key player in actin depolymerization [26].
We therefore evaluated whether Hsp20 phosphorylation may regulate CFL2-mediated actin
depolymerization. To this end, we performed in vitro pyrene-F-actin depolymerization assays
using equivalent amounts of recombinant GST-CFL2, MBP-14-3-3 and PKA-phosphorylated or
non-phosphorylated GST-Hsp20 proteins. The results show that addition of 14-3-3, in the presence
or absence of Hsp20, did not influence the severing activity of CFL2 (Figure 7a,b). In contrast, the
addition of phosphorylated Hsp20 protein in the depolymerization reaction along with 14-3-3 resulted
in increased CFL2-mediated actin depolymerization (Figure 7a,b, * p < 0.05 vs. CFL2 and ‡ p < 0.05 vs.
CFL2:14-3-3:Hsp20, t-test, two-tailed, n = 3). Importantly, compared to Hsp20-WT, the phosphorylated
Hsp20-P20L protein displayed a significantly reduced effect on CFL2 activity (Figure 7a,b, # p < 0.05 vs.
CFL2:14-3-3:phospho-Hsp20, t-test, two-tailed, n = 3). However, phosphorylated Hsp20-P20L exhibited
significantly enhanced CFL2-mediated actin depolymerization when compared to non-phosphorylated
Hsp20 († p < 0.05 vs. CFL2:14-3-3: Hsp20, t-test, two-tailed; n = 3). Preliminary findings on
Hsp20-S16A and Hsp20-S16D indicate that PKA-treatment of Hsp20-S16A had no effect on CFL2
activity, while PKA-treated Hsp20-S16D exhibited enhanced CFL2-mediated F-actin depolymerization,
similar to phosphorylated GST-Hsp20 (data not shown). Collectively, these findings reveal an important
role of Hsp20 phosphorylation in the regulation of actin dynamics.
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depolymerization assays were performed in the presence of GST-CFL2, MBP-14-3-3 and GST-Hsp20
recombinant proteins. Phosphorylated Hsp20 enhanced depolymerization of F-actin by CFL2, while this
effect was reduced in the presence of phosphorylated Hsp20-P20L mutant protein. (b) Calculation
of the slope of F-actin depolymerization of the different protein combinations. (* p < 0.05 vs. CFL2;
# p < 0.05 vs. CFL2:14-3-3:phospho-Hsp20; † p < 0.05 vs. CFL2:14-3-3:Hsp20; ‡ p < 0.05 vs. CFL2:14-3-3:
Hsp20, t-test, two-tailed; n = 3). Data are the mean ± SD.
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3. Discussion

β-Adrenergic stimulation of cardiomyocytes, such as under stress conditions, leads to activation
of PKA and phosphorylation of key proteins governing Ca2+ cycling and contractility. Among them,
Hsp20 and its phosphorylation have emerged as important determinants of cardiac muscle function [10,11].
However, the regulatory mechanisms underpinning these events are only partly characterized. Herein,
we present evidence that PKA-mediated phosphorylation of Hsp20 regulates its subcellular distribution,
with important downstream functional implications pertinent to the cardioprotective role of Hsp20
(Figure 8).
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Figure 8. Graphical representation of the proposed contribution of Hsp20 phosphorylation to the
regulation of actin cytoskeleton dynamics. (a) Hsp20 phosphorylation by PKA during β-adrenergic
stimulation leads to Hsp20 subcellular translocation to the cytoskeleton, where it interacts with
14-3-3. For this association to occur, phosphorylated Hsp20 competes with CFL2 for 14-3-3-binding
that results in CFL2 dissociation from 14-3-3. This triggers CFL2 activation, leading to enhanced
F-actin depolymerization activity and regulation of actin dynamics in order to maintain cytoskeletal
integrity and function. (b) The human phosphorylation impairing Hsp20-P20L mutated protein exhibits
diminished phosphorylation at Ser16 and significantly reduced binding to 14-3-3, with consequent
failure to displace CFL2 from 14-3-3. As a result, aberrant regulation of CFL2-mediated F-actin
depolymerization. This would lead to cytoskeletal disruption and myofibrillar damage during stress
conditions, contributing towards cardiac dysfunction.

In cardiomyocytes, Hsp20 has been described to exhibit cytosolic localization [27,28], however,
following β-adrenergic stimulation, it has been shown to translocate to myofibrils and co-localize
with actin [5]. We herein demonstrated that the intracellular redistribution of Hsp20 involves its
association with 14-3-3, a cytoskeletal protein that serves as an adaptor molecule regulating target
proteins containing specific phosphoserine motifs [29–32]. Moreover, our findings indicate that this
interaction is modulated by PKA-mediated phosphorylation of Hsp20 at Ser16, potentially bringing
phosphorylated Hsp20 into proximity with other cytoskeletal proteins and modulating their function.
Indeed, treatment of 3T3 cells with a phosphopeptide analog of HSP20 was shown to alter focal
adhesion protein localization and regulate actin cytoskeleton [21].

To date, 14-3-3 proteins have been estimated to interact with over 200 proteins [33,34] that are
involved in a wide range of biological processes including cell signaling, regulation of cell cycle
progression, intracellular trafficking/targeting, cytoskeletal structure and transcription [29,31,35,36].
The effects of 14-3-3 on their targets include: (1) conformational changes; (2) physical occlusion of
sequence-specific or structural protein features of its binding partner; or (3) scaffolding by anchoring
proteins within close proximity [36,37]. The latter may be of particular relevance to the 14-3-3/Hsp20
complex in the context of cardiac function. This is supported by the fact that upon binding to
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14-3-3, Hsp20 translocates to the cytoskeleton where it can interact with α-actinin and actin [5,24].
In addition, Hsp20 has previously been reported to affect cytoskeletal dynamics [21], including F-actin
depolymerization in rat aorta [38], although the mechanisms underlying these functions remained
undefined. We herein demonstrated that through its binding to 14-3-3, Hsp20 modulates the 14-3-3/CFL2
complex formation, with direct implications on actin-depolymerization. Importantly, we show that
the dissociation of 14-3-3 from CFL2 depends on Hsp20 phosphorylation. Thus, upon β-adrenergic
stimulation and PKA activation, phosphorylated Hsp20 competes with CFL2 for 14-3-3-binding,
resulting in displacement of CFL2 from the 14-3-3 protein complex (Figure 8). Displacement from
14-3-3 is unlikely to be related to CFL2 phosphorylation, since in our competition protein binding
assays (shown in Figure 3a) only non-phosphorylated CFL2 was used. Release of CFL2 from 14-3-3
renders it susceptible to phosphatases leading to its dephosphorylation [21]. This ultimately triggers
CFL2 activation, leading to enhanced F-actin depolymerization activity.

The identification of the mechanism mediating Hsp20 translocation to the cytoskeleton and
modulation of F-actin depolymerization may have important implications in deciphering the
involvement of Hsp20 in cardiac disease. Hsp20 has been shown to translocate from the cytosol to
myofibrils following cardiac and skeletal muscle ischemia [5,39]. Ischemia is an established trigger
of apoptosis [40], which in turn leads to a series of cytoskeletal modifications including cytoskeletal
disruption due to cleavage of actin and alterations in actin dynamics [41–43]. The stress-induced,
phosphorylation-dependent translocation of Hsp20 to myofibrils protects against apoptosis [5,39] and
promotes cytoskeletal integrity. Mice overexpressing Hsp20 exhibit significantly reduced myofibril
damage and myocardial infarct size following ischemia–reperfusion injury [7]. Given that cytoskeletal
disruption plays a crucial role in the pathogenesis of myocardial ischemic injury [44,45], our findings
underscore the potential of Hsp20 phosphorylation in promoting cardiomyocyte cytoskeleton
integrity, protection from apoptosis and prevention of myocardial dysfunction. In line with these
findings, the upregulation of other Hsp proteins, such as Hsp27, has been shown to serve as an
adaptive mechanism towards stabilization and protection of the actin cytoskeleton to prevent its
disruption [46–52].

The relevance of this regulatory mechanism to heart disease pathogenesis is further underscored
by the molecular and cellular implications of the phosphorylation impairing Hsp20-P20L mutation
that has been observed in dilated cardiomyopathy patients [13,53]. At the cellular level, Hsp20-P20L
displays reduced cardioprotective properties under stress conditions [13], while at the molecular level,
these effects have been attributed to the reduced phosphorylation of Hsp20-P20L at Ser16 [13].

Our findings demonstrate that the impaired ability of mutant Hsp20 to become phosphorylated
at Ser16, leads to significantly reduced binding to 14-3-3, and aberrant regulation of CFL2-mediated
F-actin depolymerization (Figure 8), possibly contributing towards cardiac pathogenesis under stress
conditions. In line with this notion, lack of CFL2 regulation, as observed in CFL2-deficient mouse models
or human mutations of CFL2, results in progressive sarcomeric disruption and actin accumulation due
to reduced depolymerization of actin filaments that lead to myopathy [54–56].

In conclusion, we herein describe a mechanism through which β-adrenergic stimulation modulates
Hsp20 subcellular localization and function in cardiomyocytes. We show that the PKA-mediated
phosphorylation of Hsp20 promotes its translocation to the cytoskeleton where it modulates the
interaction of 14-3-3 with CFL2 and consequently impacts F-actin depolymerization. Through this
mechanism, the stress-induced Hsp20 phosphorylation could safeguard cytoskeletal integrity and
protection from injury during stress conditions. Conversely, the human phosphorylation impairing
Hsp20-P20L mutation disrupts formation of the 14-3-3/Hsp20 protein complex, fails to displace CFL2
from 14-3-3 and leads to aberrant control of actin dynamics. Under stress conditions, this leads to
cytoskeletal disruption and myofibrillar damage that is anticipated to affect cardiac contractility and
contribute to cardiac pathology. Therapeutic approaches modulating Hsp20 phosphorylation may
thus hold promise in combating heart disease.
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4. Materials and Methods

4.1. Generation of Recombinant Proteins

The generation of the full length 14-3-3 gamma (amino acids 1–247) expression construct was
performed by RT-PCR on human muscle cDNA using primer-1 (5′ GCGAAGATGGTGGACC 3′)
and primer-2 (5′ CTTAATTGTTGCCTTCGCCG 3′). Deletion expression constructs of 14-3-3 were
generated using primer-1 and primer-3 (5′ CTTTGCTCTCGTACTGGGTC 3′) (amino acids 1–120) or
primer-4 (5′ ACCCAGTACGAGAGCAAAGTG 3′) and primer-2 (amino acids 115–247). PCR products
were cloned in the EcoRI/SalI sites of the pMALc2x vector (New England Biolabs, Ipswich, MA, USA).
The authenticity of all constructs was confirmed by sequence analysis (Macrogen Europe B.V.,
Amsterdam, The Netherlands). The expression constructs of GST-Hsp20 (amino acids 1–160) containing
the wild-type or the Hsp20-P20L variant, as well as the different GST-CFL2 constructs containing full
length and deletion fragments of CFL2, have been previously reported [16,53,57].

Protein expression of all of the above constructs was performed as previously described [58].
Recombinant proteins were purified by affinity chromatography on Glutathione SepharoseTM 4B
Beads (GE Healthcare, Life Sciences, Buckinghamshire, UK) or amylose resin (New England Biolabs,
Ipswich, MA, USA) and, where appropriate, fusion-peptides were eluted from the beads according to
manufacturer’s instructions.

4.2. Pull down Assays

Pull down assays were performed as previously described [58,59]. Briefly, cardiac homogenates
of mouse origin were prepared in 10 mM NaPO4 (pH 7.2), 2 mM EDTA, 10 mM NaN3, 120 mM
NaCl and 1% NP-40, supplemented with protease inhibitors (Sigma-Aldrich, Munich, Germany).
Equivalent amounts of recombinant MBP and MBP-14-3-3 recombinant proteins bound to amylose
resin (New England Biolabs) were mixed with 0.5 mg of cardiac homogenates at 4 ◦C for 16 h.
The beads were washed with 10 mM NaPO4 (pH 7.2), 10 mM NaN3, 120 mM NaCl, 0.1% (v/v)
Tween-20 and were subsequently analyzed by Western blot using Hsp20, phospho-Hsp20 (Ser16)
(AbCam, Cambridge, UK), CFL2 and phospho-CFL2 (Merck Millipore, Darmstadt, Germany) primary
antibodies and peroxidase-conjugated goat anti-rabbit (GE Healthcare Life Sciences, Buckinghamshire,
UK) secondary antibody. Immunoreactive bands were detected using Pierce ECL Plus reagents
(ThermoFisher Scientific, Waltham, MA, USA).

4.3. Protein Phosphorylation

Protein phosphorylation of cardiac protein homogenates or GST-Hsp20 recombinant protein was
performed in vitro using the cAMP-dependent protein kinase (PKA), catalytic subunit (New England
Biolabs), as previously described [53]. Briefly, proteins were incubated with 1× PKA Reaction Buffer
(50 mM Tris-HCl pH 7.5, 10 mM MgCl2), supplemented with 200 µM ATP (Sigma-Aldrich) and
1250 units of the PKA catalytic subunit. Samples were incubated at 30 ◦C for 1 h and subsequently
used for pull down or blot overlay assays.

GST-CFL2 recombinant protein phosphorylation was performed as previously described [57].
In brief, GST-CFL2 was incubated with the cardiac protein extracts in 3.1 mM ATP, 3 mM NaF and 3 mM
Na3VO4 at 25 ◦C for 30 min. The samples were washed three times with wash buffer (15 mM NaF, 2 mM
Na3VO4, 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.05% (v/v) Tween-20). GST-CFL2 phosphorylation
was confirmed by Western blotting using an anti-phospho-CFL2 antibody (Merck Millipore, MA, USA).

4.4. Immunoprecipitations

Immunoprecipitation experiments were performed in mouse cardiac extracts, as previously
described [60,61]. Briefly, pre-clearing of the cardiac extracts was performed with protein-A/G agarose
beads (Santa Cruz Biotechnology, Heidelberg, Germany) on a rotary wheel at 4 ◦C for 1 h. The pre-cleared
protein extracts were then incubated overnight on a rotary wheel at 4 ◦C with mouse monoclonal



Int. J. Mol. Sci. 2020, 21, 9572 13 of 18

14-3-3 antibody (Santa Cruz Biotechnology) or mouse IgG control antibody (Jackson ImmunoResearch,
Ely, UK) and protein-A/G agarose beads. Immunoprecipitates were collected by a 5 min spin at
2000 rpm, washed three times in PBS, and analyzed by Western blot analysis.

4.5. Blot Overlay Assays

Protein interactions were assessed in vitro by blot overlay assays, as previously
described [16,53,57,60,62]. Briefly, purified GST, GST-Hsp20 and phosphorylated GST-Hsp20
recombinant proteins were separated by SDS-PAGE and transferred to nitrocellulose membranes.
Following blocking, the membranes were incubated with MBP-14-3-3 fusion protein. The blots were
probed with anti-MBP and the immunoreactive bands were visualized using ECL reagents. In another
set of experiments, GST, GST-CFL2 and phosphorylated GST-CFL2 recombinant proteins were allowed
to interact with MBP-14-3-3, as described above.

In a different set of experiments, mapping of the minimal binding domain of 14-3-3 to CFL2 was
performed using equal amounts of GST, GST-CFL2 (amino acids 1–166), GST-CFL2 (amino acids 1–55),
GST-CFL2 (amino acids 19–154) and GST-CFL2 (amino acids 105–166) proteins that were separated
by SDS-PAGE and allowed to interact with MBP-14-3-3 (amino acids 1–247), as described above.
Western blot analysis with an MBP antibody (New England Biolabs) determined the minimal region of
CFL2 required for 14-3-3 binding.

In parallel, GST, GST-CFL2 and phosphorylated GST-Hsp20 recombinant proteins were allowed to
interact with MBP-14-3-3 (amino acids 1–120) or MBP-14-3-3 (amino acids 115–247), as described above.

4.6. Actin Depolymerization Assay

The Actin Polymerization Biochem Kit (Cytoskeleton, Denver, CO, USA) was used to investigate
actin dynamics in vitro on a PerkinElmer LS 55 Fluorescence spectrometer (PerkinElmer Ltd.,
Bucks, UK), as previously described [57,61]. The F-actin depolymerization was performed using
GST-CFL2 and MBP-14-3-3 in the presence or absence of GST-Hsp20.

4.7. Cell Culture, Transfections and Immunofluorescence Studies

HEK 293 cells (ECACC, Salisbury, UK) were maintained in Dulbecco’s modified Eagle medium
supplemented with 10% fetal bovine serum (ThermoFisher Scientific), as previously described [58,59].
The full-length Hsp20 mammalian expression constructs of wild-type or Hsp20-P20L were generated
by PCR, using previously reported primers [53], while the full-length CFL2 construct was generated
with primers 5′ATGGCTTCTGGAGTTACA 3′ and 5′ TGGCACTTGACTGTCATT 3′. PCR products
were cloned in the pCMV-Tag3 (Stratagene, Amsterdam, The Netherlands) vector.

For immunofluorescence analysis, the myc-Hsp20 construct was transiently transfected in HEK 293
cells with Lipofectamine™ 2000 (ThermoFisher Scientific), according to the manufacturer’s instructions.
Twenty-four hours after transfection, cells were fixed for 20 min at 25 ◦C with ice cold methanol,
washed three times with phosphate-buffered saline (1× PBS) and permeabilized for 30 min at 25 ◦C
in PBS containing 0.1% Triton X-100. The cells were then washed in PBS prior to incubation with
blocking buffer (1× PBS, 1 mg/mL BSA and 10 mM NaN3) for 1 h at 25 ◦C. Hsp20 (AbCam) or actin
(Merck Millipore) primary antibodies were diluted in blocking buffer and applied to the cells for 1 h at
25 ◦C. Samples were washed again with PBS and counterstained for 1 h at 25 ◦C with the appropriate
secondary antibody (anti-rabbit Alexa Fluor 488, or anti-Alexa Fluor mouse 568) (Invitrogen) diluted in
blocking buffer. Following further washes with PBS, samples were mounted with Vectashield medium
containing DAPI (Vector Laboratories, Burlingame, CA, USA) and analyzed on a Leica confocal laser
scanning microscope (Leica TCS SP5 on a DMI6000 Inverted Microscope, with the acquisition software
program LAS-AF). Localization analysis for Hsp20 and actin was performed using Colocalization
Threshold plugin of ImageJ.
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4.8. PCR Mutagenesis

For the generation of Hsp20-S16A and Hsp20-S16D constructs, PCR mutagenesis was performed
on WT Hsp20 myc-tagged or GST-tagged plasmids, as previously described [63]. Specifically, for
Hsp20-S16A constructs, primers 5′ TTGGCTGCGCCGCGCCGCCGCCCCGTTGCCCGGACTTTCGG
3′ and 5′ CCGAAAGTCCGGGCAACGGGGCGGCGGCGCGGCGCAGCCAA 3′ were used, while
primers 5′ TTGGCTGCGCCGCGCCGACGCCCCGTTGCCCGGACTTTCGG 3′ and 5′ CCGAAA
GTCCGGGCAACGGGGCGTCGGCGCGGCGCAGCCAA 3′ were used for the generation of
Hsp20-S16D constructs.

4.9. Cell Fractionation

Cell fractionation experiments were performed as previously described [5]. In brief, transfected
HEK 293 cells were harvested and resuspended in ice-cold lysis buffer containing 10 mM Tris pH
7.5, 10 mM NaCl, 5 mM MgCl2, 1 mM phenylmethanesulfonyl fluoride and 0.5% Triton X-100,
supplemented with protease inhibitors. Samples were centrifuged for 5 min at 2000 rpm and 4 ◦C,
and the supernatant was used as the detergent-soluble fraction. The pellet was washed with the same
buffer and then used as the detergent-insoluble fraction. For the isoproterenol treatment, cells were
incubated for 5 min with 1 µM isoproterenol (ISO) at 37 ◦C (Sigma-Aldrich) and then harvested for
fractionation experiments, as described above.

4.10. Protein Binding Competition Experiments

The competition of Hsp20 and CFL2 for 14-3-3 binding was examined by pull down assays.
In particular, HEK 293 cells were transfected with the full length myc-CFL2 construct and after 24 h
the cells were lysed in 50 mM Tris-HCl, pH 8.0, 150 mM NaCl and 1% NP-40, supplemented with
protease inhibitors (Sigma-Aldrich). Pull down assays were performed using myc-CFL2 HEK 293 cell
lysates that were incubated with MBP-14-3-3 recombinant protein bound to amylose resin, in the
presence of phosphorylated or non-phosphorylated GST-Hsp20 eluted protein. Protein binding to
MBP-14-3-3 was determined by Western blot analysis using myc (Sigma-Aldrich) or phospho-Hsp20
(AbCam) antibodies.
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