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Abstract: Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the
hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis.
Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation
therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic
approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive
castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues,
where their binding to both GnRH agonists and antagonists is associated with significant
antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP
signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic
strategy for CRPC patients with many clinical trials demonstrating that the combined use of these
drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves
disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked
to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that
the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while
sparing nontumor cells. Some of these compounds have already entered clinical trials.

Keywords: castration-resistant prostate cancer (CRPC); GnRH receptors (GnRH-R); antiproliferative/

proapoptotic activity; GnRH agonists; GnRH antagonists; cytotoxic GnRH-based bioconjugates

1. Introduction

Gonadotropin-releasing hormone (GnRH) is the hypothalamic decapeptide (pGlu-His-Trp-
Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) known to play a central role in the control of the hypothalamic-
pituitary-axis in mammals [1–4]. It is produced by a small number of hypothalamic neurons
and released in a pulsatile way into the hypophyseal circulation to reach the gonadotropes in
the anterior pituitary where it binds to its specific receptors (GnRH-R). By binding to these receptors,
GnRH triggers the synthesis and release of the two gonadotropoins LH (lutinizing hormone) and FSH
(follicle stimulating hormone), thus stimulating gonadal sex steroid hormone production and gamete
maturation in both sexes [5–8].

The pituitary GnRH-R is a protein (328 amino acids) belonging to the GPCR (rhodopsin-like
G protein coupled receptor) family. It is encoded by a gene on chromosome 4q13.2 and consists of
three exons interrupted by two introns (Table 1). The protein is structurally characterized by a core
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formed by seven transmembrane domains, an extracellular N-terminal domain (35 amino acids) and a
typically short (1–2 amino acids) intracellular C-terminal domain [9–12]. This feature of GnRH-R has
been linked to its slow internalization and desensitization upon hormone stimulation [13,14].

Table 1. Human Gonadotropin-releasing hormone (GnRH) receptors.

Name of Gene GNRHR GNRHR2

Chromosome location 4q13.2 1q12

Name of protein GnRH-R GnRH-II-R

Length 328aa 292aa

GNRHR2 shares 41% sequence identity with GNRHR.

The intracellular signaling pathway triggered by GnRH-R activation at the pituitary level has
been widely investigated and is now well characterized. Binding of the decapeptide to its receptors
leads to the activation of the Gαq/11 subunit of a heterotrimeric G protein complex, stimulating,
in turn, its direct effector phospholipase Cβ (PLCβ). PLCβ catalyzes the formation of diacylglycerol
(DAG) and inositol triphosphate (IP3), leading to protein kinase C (PKC) activation and increased
cytoplasmic levels of Ca2+ (due to increased ion influx from the extracellular environment and release
from intracellular stores), respectively. Interestingly, different PKC isoforms were shown to be involved
in these intracellular mechanisms. Activation of these PKC triggers their downstream signaling
pathway involving proteins belonging to the MAPK (mitogen-activated protein kinase) cascade.
In addition, elevated intracellular Ca2+ levels were also shown to be involved in the MAPK cascade
activation [7,11,12,14–21]. In particular, Naor and coworkers recently reported that the PKC isoforms
PKCα, PKCβII, PKCδ, PKCε, PKCθ and atypical PKC-ι/λ play differential roles in the ERK1/2,
JNK1/2 and p38MAPK phosphorylation in a ligand and cell context-dependent manner. According to
these authors, this may be related to “the persistent vs. transient redistribution of the different
PKCs into the cell or the redistribution of a specific PKC from the perinuclear zone vs. the plasma
membrane” [22,23]. GnRH-R-activated MAPKs then trigger the expression of gonadotropins as well
as of GnRH-R genes.

This molecular cascade of events triggered by pituitary GnRH-R activation mediates the key
regulatory role of GnRH in the control of the pituitary-gonadal axis functions.

It is now accepted that, in addition to the classical hypothalamic GnRH, other forms of the peptide
are present in most vertebrates. In particular, the GnRH-II isoform is a decapeptide conserving the amino
acids of GnRH in both the N-terminal (Glp-His-Trp-Ser) and the C-terminal (Pro-Gly-NH2) domains,
suggesting that it might bind and activate the classical form of GnRH-R. On the other hand, the GnRH-II
amino acid sequence differs from that of GnRH in positions 5, 7 and 8 (His5, Trp7, Tyr8), known to be
involved in the biological functions of GnRH [4,12,24–26]. These observations stimulated the search
for a specific receptor for GnRH-II (GnRH-II-R). However, so far, a full-length GnRH-II-R has been
cloned in nonhuman primates [27,28]. In humans, Neill et al. proposed that the GnRH-II-R might be a
five transmembrane domain receptor, lacking the transmembrane regions 1 and 2 [29]. Morgan and
coworkers suggested the presence, in human tissues, of a nonfunctional form of this receptor, located on
chromosome 1q12 and composed of three exons and two introns, as a consequence of a frameshift in
exon 1 and a stop codon in exon 2 [30] (Table 1). Another splice variant of GnRH-II-R was reported in
human sperm and suggested to have a functional role in male gametogenesis [31]. Thus, the existence
of a functional seven transmembrane domain GnRH-II-R in human tissues is still a matter of debate.

A GnRH-III decapeptide was found in sea lamprey (Petromyzon marinus) with an amino acid
sequence that differs from that of GnRH in positions 5–8 (His5, Asp6, Trp7, Lys8) [32]. This peptide
was reported to be endowed with a very low LH and FSH-stimulating activity in rats [33].

It is now well established that GnRH-R are also expressed in extrapituitary tissues and in
several tumor tissues, both related (prostate, breast, ovarian, endometrial tumors) and unrelated
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(melanoma, glioblastoma, pancreatic, colon, lung, adrenocortical head and neck tumors) to the
reproductive system. In cancer cells, this receptor is associated with antiproliferative/proapoptotic
effects [4,34–46].

Interestingly, the GnRH decapeptide was also shown to be expressed in these tumors,
demonstrating the existence of an autocrine GnRH/GnRH receptor loop endowed with antitumor
activity and supporting the role of this loop as an effective molecular target for anticancer strategies.

2. Prostate Cancer

Prostate cancer (PCa) still represents a major health burden, being the most aggressive tumor
and the second most frequent cause of tumor-related deaths among men in western countries [47–49].
In the early stages, most PCas are dependent on androgens for their growth and, therefore, patients are
treated with androgen-deprivation therapy (ADT, i.e., chemical castration). This therapeutic approach
is mainly based on GnRH agonists, either alone or in combination with a drug targeting the androgen
receptor signaling (antiandrogens, inhibitors of androgen synthesis).

GnRH agonists (goserelin, leuprorelin, triptorelin) were synthesized based on the observation that
native GnRH is endowed with a short half-life, being enzymatically cleaved in the blood at the level
of Gly6. Thus, this amino acid is replaced by a D-amino acid in order to obtain analogs resistant to
the peptidase degradation. In these analogs, the first amino acids of GnRH are conserved to maintain
the biological activity of the native peptide, while the last amino acid (Gly10-amide) is substituted
with the residues Pro-NHEt or Pro-Azgly-NH2 to increase the binding affinity to the GnRH-R [50–55].
These compounds act by binding to the pituitary GnRH-R and, after the induction of an initial
gonadotropin surge, they induce its desensitization, thus suppressing LH and testosterone secretion [56].
To avoid the risk of the initial flare event, together with metabolic dysfunction and increased
risk of cardiovascular pathologies, GnRH antagonists were later synthesized (cetrorelix, abarelix,
degarelix, ganirelix, ozarelix). They competitively bind to the GnRH-R immediately suppressing
gonadotropin secretion. Moreover, they were shown to suppress FSH (follicle stimulating hormone)
more rapidly, to lower levels and to a longer period than GnRH agonists [57,58]. These peptides present
the Ac-D-Nal-D-Cpa-D-Pal sequence in their N-terminal domain, different D-amino acid derivatives
in position 6 and D-Ala at their C-terminal domain [43,59–61]. Very recent data from clinical trials
and meta-analyses support an improved progression-free survival, overall survival and side effects
(cardiovascular diseases) with GnRH antagonists compared with GnRH agonists [55].

Given the key role of the androgen receptor (AR) signaling in PCa growth and progression,
several agents targeting this molecular pathway were developed: (i) antiandrogens directly targeting the
AR receptor such as bicalutamide, flutamide and nilutamide (first and second generation antiandrogens),
and enzalutamide, apalutamide and darolutamide (third generation antiandrogens); (ii) inhibitors of
intratumoral androgen synthesis such as finasteride, orteronel and abiraterone [43,62–69].

Unfortunately, the tumor often progresses towards the castration-resistant stage
(castration-resistant prostate cancer, CRPC) characterized by uncontrolled progression in the absence of
circulating androgens. Chemotherapy (docetaxel), either alone or in combination with antiandrogens
(enzalutamide, apalutamide), or with inhibitors of androgen synthesis (abiraterone), represents the
standard therapy for CRPC patients [68,70–75]. However, undesired side effects and development of
drug resistance occur very frequently in these patients.

More recently, immunotherapies (immune checkpoint inhibitors or chimeric antigen receptor
T cell therapies - CAR-T) were introduced as a novel therapeutic approach, and they are
currently under investigation [76,77]. In particular, in the last two decades, several types of
monoclonal antibodies (mAbs) against immune checkpoints were developed and approved by
the FDA for the treatment of PCa. These include anti-CTLA-4 (cytotoxic T-lymphocyte-associated
protein-4) (ipilimumab, tremelimumab) and anti-PD-1 (programmed death protein-1) (nivolumab,
pembrolizumab, lambrolizumab, avelumab, durvalumab) mAbs. Clinical trials have been already
performed in PCa patients treated with checkpoint inhibitors, either alone or in combination with
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antiandrogens [77–88]. Unfortunately, despite the initial success in clinical use of these compounds,
the efficacy of treatments was reported to be low and the majority of PCa patients showed resistance to
these therapies [87,89–91].

Studies leading to a better understanding of the molecular mechanisms and signaling pathways
involved in PCa development and progression are needed to improve the chemopreventive/treatment
strategies for this pathology.

3. GnRH Receptors in Prostate Cancer

3.1. Molecular Structure

The expression of the GnRH-R in human pituitary, as well as its nucleic acid sequence, was first
reported by Kakar and coworkers in 1992 [92]. In the same years, it was becoming increasingly clear
that the GnRH-R was expressed not only at the pituitary level but also in extrapituitary sites and in
cancer tissues, including prostate cancer [34,37,39,44,93,94]. These receptors were first analyzed in
terms of binding affinity for GnRH synthetic analogs, leading to contradictory results. In our laboratory,
we demonstrated that one single class of low-affinity GnRH binding sites was present in PCa cells,
either androgen-dependent or castration-resistant [95,96]. On the other hand, two classes of GnRH
binding sites (one low affinity and one high affinity) were demonstrated in human PCa cells as well as
in the Dunning R3327 rat model of PCa [97,98], while a single class of high affinity binding sites was
observed in Dunning R3327 rats by Pinski and coworkers [99].

Based on these contrasting observations, further studies were performed to characterize this
receptor at the molecular level. We could demonstrate the expression of a GnRH receptor, sharing the
same mRNA and protein size with the pituitary receptor, in PCa cells [37,100–102]. Similar observations
were later reported by Bank et al. in PCa cells [103], in the rat R3327 prostate adenocarcinoma and
in human prostate biopsies [104–108]. Interestingly, a lower expression of GnRH-R was reported in
normal prostate specimens when compared to PCa biopsies [109].

As reported for different types of tumors, the decapeptide GnRH is also expressed in PCa cells,
further supporting the existence of a GnRH/GnRH-R autocrine loop involved in the local control of
tumor growth and progression [96,100,101,110].

3.2. Antiproliferative/Proapoptotic Activity

The antitumor activity of GnRH-R in PCa cells is now well established. In our, as well as in
others laboratories, activation of GnRH-R by means of GnRH agonists was shown to significantly inhibit
the proliferation of human androgen-dependent (LNCaP) and CRPC (DU145, PC3) cells, expressing high
levels of the GnRH-R, both in vitro [93,95,96,111,112] and in vivo, when subcutaneously inoculated
in nude mice [113–115]. In line with these observations, GnRH analogs were also reported to inhibit
the growth of the rat androgen-independent Dunning R-3327-AT-1 prostate cancer [99] as well as of
primary cell cultures from human prostate carcinomas [116]. Moreover, GnRH agonist-based therapy
was reported to be associated with longer survival in hormone-refractory PCa patients expressing
the GnRH-R [111]. Interestingly, we demonstrated that the classical form of GnRH-R mediates the
anticancer activity of CRPC cells, further supporting that a functional GnRH-II-R is not present in
humans and that GnRH-II may act through the classical GnRH-R [117].

The antitumor effects of GnRH-R activation have been suggested to be associated not only
with a slowdown of the cell cycle progression (mainly at the G2/M checkpoint) but also with
induction of apoptosis. Specifically, GnRH agonists were shown to induce apoptosis in CRPC cells by
interfering with the activity of both the PI3K pathway, leading to the stimulation of the downstream
JNK kinase, and the p38 MAPK signaling cascade [118,119]. The extrinsic apoptotic pathway involving
caspase 8 and 3 and p53 phosphorylation, was also reported to be induced by GnRH agonists in
primary cultures of human PCas [116,119–122]. Interestingly, we could demonstrate that GnRH
agonists sensitize, and resensitize, to chemotherapy (i.e., docetaxel) in a p53-dependent manner [123].
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However, the involvement of the apoptotic pathways in the antitumor activity of GnRH-R in PCa is
still a matter of debate [114,124].

Growth factors (EGF, IGF-I) and their receptors play a pivotal role in the growth and progression
of tumors, including PCa [101,125–131]. To elucidate the molecular mechanisms underlying the
anticancer effects of GnRH-R, the possible interference of GnRH analogs with the protumoral activity
of growth factors has been investigated in different experimental models of PCa.

In our laboratory, it was demonstrated that activation of GnRH-R, in both androgen-dependent
and CRPC cells in vitro and in vivo, interferes with the mitogenic activity of the locally expressed
EGF stimulatory loop by decreasing the expression of EGF-R and of its downstream signaling
molecules (i.e., the transcription factor c-fos) [113,114,128,132]. Similar observations were reported
by Iacopino et al., showing that the GnRH agonist leuprolide significantly counteracts EGF-induced
ERK1/2 phosphorylation (i.e., activation) in PCa cells [133]. The GnRH-R/EGF receptor interaction in
PCa cells was further confirmed by Wells and coworkers [134]. The phosphorylation of the EGF-R at
threonine 654 by the endogenous growth factor plays a central role in the receptor activation. To confirm
the interference of GnRH-R activation with the EGF mitogenic activity, these authors overexpressed
a mutant form of the EGF-R (threonine 654 to alanine) in DU145 CRPC cells. They demonstrated
that the GnRH agonist goserelin counteracts the mitogenic activity of EGF in wild type DU145 cells
(as expected), but not in cells overexpressing the mutant (i.e., inactive) form of the receptor [134].

The insulin-like growth factor (IGF) system is also known to be deeply involved in PCa growth
and progression. This system is composed of two ligands (IGF-I and IGF-II), two receptors
(IGFR-IR and IGFR-IIR) and different binding proteins (IGFBP-1 to -6). Mita and coworkers
demonstrated that, in human PCa tissues, the expression of IGF-II and IGFBP-2 significantly correlates
with pathologic stage lymph node metastasis, histologic differentiation and serum prostate-specific
antigen (PSA) levels after hormone therapy [130]. On the other hand, a recent paper reported a
significant correlation between IGF-IR expression in human PCa biopsies and tumor stage, suggesting
that it may play a role in PCa progression towards an aggressive phenotype [135]. In our laboratory,
we demonstrated that, in DU145 cells, activation of the GnRH-R with the agonist goserelin counteracts
the mitogenic action of IGF-I in a dose-dependent manner, prevents the growth factor-induced tyrosine
phosphorylation of the IGF-IR and decreases the expression of IGF-IR without affecting its binding
affinity for the growth factor [37,136].

GnRH antagonists were first developed for the treatment of hormone-dependent PCa, based
on their ability to compete with the binding of endogenous GnRH to its pituitary receptors, with
the aim to suppress the activity of the pituitary gonadal axis without triggering the initial undesired
gonadotropin surge. It was then expected that these compounds might also suppress the activity of
the GnRH-R expressed in tumor tissues. Surprisingly, it was found that, in cancer cells expressing
the receptor, these compounds exert a significant antiproliferative activity, supporting that they act as
agonists on these cells [36,38,39,45,59,137,138]. Specifically, activation of GnRH-R by GnRH antagonists
was also reported to suppress the proliferation, and to trigger apoptosis, by interfering with the growth
factor receptor intracellular pathways in PCa cells [37,39,41–43,93,99,116,139–143]. More recently,
Cucchiara and coworkers demonstrated that the GnRH antagonist degarelix significantly reduces the
proliferation of C4-2-MDVR (castration- and enzalutamide-resistant) PCa cells expressing the androgen
receptor variant AR-V7. Interestingly, degarelix also decreases the expression of the androgen receptor
as well as of androgen steroidogenesis pathways in tumor tissues from PCa cell xenografts grown in
severe combined immunodeficient (SCID) mice [144].

The observation that, in tumors cells, GnRH-R can be activated not only by GnRH agonists
(as expected) but also by GnRH antagonists, pointed out that these receptors might be characterized by
specific structural properties according to the cell context in which they are expressed. In particular,
Millar et al. proposed the ligand-induced selective signaling concept. This concept foresees that,
in different tissues (i.e., pituitary vs. cancer cells), the GnRH-R may adopt different structural
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conformations associated with selective binding of GnRH analogs and specific intracellular signaling
pathways [137,145].

As mentioned above, in addition to the classical GnRH, a structural isoform of the peptide
(i.e., GnRH-II) has been discovered in most vertebrates. In particular, GnRH-II is known to be expressed
in different human tissues, normal and malignant, including PCa [37,39,146]. This peptide was shown
to exert a significant antiproliferative and proapoptotic effect on PCa cells, both androgen-dependent
and castration-resistant [117,119,120,146]. It is now generally accepted that the classical form of the
GnRH-R mediates the antitumor activity of this peptide, confirming the notion that a functional GnRH-II
receptor is lacking in human tissues, although this issue still remains a matter of debate [45,120,147].

More recently, based on docking experiments, a novel ligand and activator of the GnRH-R, GV1001,
structurally unrelated to the GnRH decapeptide, has been identified. This peptide is a 16-amino
acid fragment of hTERT, the human telomerase reverse transcriptase catalytic subunit. GV1001 was
reported to bind and activate GnRH-R, thus triggering an antiproliferative and proapoptotic effect in
PCa cells, both in vitro and in vivo, when inoculated in nude mice [148].

Taken together, these observations strongly support that locally expressed GnRH-R mediate
the antitumor activity of GnRH decapeptide isoforms, as well as of novel peptides endowed with
anticancer effects, in PCa cells.

3.3. Antimetastatic Activity

Locally expressed GnRH-R are also involved in the control of the metastatic behavior of PCa cells.
In our laboratory, we demonstrated that GnRH agonists significantly reduce the migratory behavior of
CRPC cells towards the extracellular matrix protein vitronectin (by haptotactic assays) as well as their
ability to invade a reconstituted basement membrane [149]. We also found that, in these cells,
GnRH agonists interfere with the expression and activation (i.e., tyrosine-phosphorylation) of
the IGF-IR; counteract the IGF-I-induced phosphorylation of AKT (a kinase known to be involved in
the prometastatic activity of the growth factor); abrogate the migratory and invasive behavior triggered
by IGF-I; interfere with the effects of the growth factor on actin cytoskeleton organization, expression
and cellular localization of integrins (i.e., αvβ3), and cell morphology [149].

In line with these observations, GnRH-R activation was reported to block the invasive behavior
of CRPC cells induced by the fibroblast growth factor (FGF) [111]. This antimetastatic activity was
suggested to be mediated by the inhibition of the plasminogen activator system by decreasing the
enzymatic activity and the secretion of uPA (urokinase-type plasminogen activator) while increasing
the expression levels of the protein PAI-1 (plasminogen activator inhibitor type-1) [150]. Enomoto and
coworkers showed that both GnRH-I and GnRH-II peptides induce actin cytoskeleton remodeling,
and decrease cell migration, through the activation of the classical form of the GnRH receptor [151].
Moreover, the effects of a GnRH agonist (leuprorelin) were also investigated on the expression levels
of molecules involved in migration, invasion and cell-cell adhesion in both androgen-dependent
(LNCaP) and castration-resistant (PC3) PCa cells. It was found that, in LNCaP cells, the GnRH agonists
upregulate the expression of E-cadherin, β- and γ-catenin. On the other hand, the expression of these
molecules was not affected in PC3 cells [152].

Interestingly, in addition to their antimetastatic/antiinvasive activity, GnRH-R were shown to be
also endowed with antiangiogenic properties. Actually, we could demonstrate that GnRH receptors are
also expressed on human umbilical vein endothelial cells (HUVECs), and that GnRH agonists reduce
their proliferation and ability to form capillary-like tubes when stimulated by vascular endothelial
growth factor (VEGF). These findings suggest that activation of GnRH-R triggers an antiangiogenic
effect by counteracting the proangiogenic activity of the growth factor directly at the level of endothelial
cells [153].

A potent antimetastatic activity was also reported by treating PCa cells with GnRH antagonists,
further supporting the notion that these compounds behave as agonists at the level of the GnRH-R
expressed in cancer cells. Treatment of CRPC cells with the GnRH-R antagonist cetrorelix reduces the
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invasiveness of DU145 cells overexpressing the full-length EGF-R, while increasing the expression levels
of cell-cell adhesion molecules such as E-cadherin, α- and β-catenin and p120 [154]. In CRPC cells,
Dondi et al. reported that GnRH antagonists are endowed with antimetastatic activities that are similar
to those exerted by agonists in CRPC cells [150]. The expression of proteins involved in the cell-cell
adhesion and angiogenic processes was also found to be affected by the GnRH antagonist degarelix in
BPH (benign prostatic hyperplasia)-1 cells [143].

3.4. Intracellular Signaling Pathways

GnRH analog activities at the pituitary level (activation of the pituitary-gonadal axis)
significantly differ from those at the cancer cell level (inhibition of cancer cell growth and
metastatic behavior) suggesting that, according to the cell context, GnRH-R can be coupled to
different G proteins and, therefore, to specific intracellular signaling pathways and molecular
transducers [14–16,20,37,42,44,45,137,140,155,156].

As discussed above, GnRH-R activation in pituitary gonadotrope cells stimulates gonadotropin
synthesis and release through the Gαq/11/PLC/PKC/MAPK signaling pathway. On the other hand,
in cancer cells, and specifically in PCa cells, the GnRH-R has been found to be mainly coupled to a
Gαi protein. Activation of this G protein counteracts cAMP accumulation thus triggering antitumor
effects [16,20,37,45,102,157,158].

In our laboratory, we demonstrated that in both androgen-dependent (LNCaP) and
castration-resistant (DU145) PCa cell lines, pertussis toxin completely abrogates the antiproliferative
action of GnRH agonists. These compounds substantially antagonize the pertussis toxin-catalyzed
ADP-ribosylation of a Gαi protein. GnRH analogs significantly counteract the forskolin-induced
increase of intracellular cAMP levels [102].

Through the activation of the Gαi/cAMP pathway, GnRH analogs were reported to trigger the
activity of a phosphotyrosine phosphatase, thus resulting in a decreased phosphorylation of the EGF-R
(i.e., inactivation) [159]. In line with this observation, we could show that GnRH agonists significantly
counteract the EGF and IGF-I-induced tyrosine phosphorylation of the EGF-R and IGF-I-R respectively,
thus interfering with the mitogenic activity of the growth factors in PCa cells [132,149,160].

The GnRH-R-linked Gαi/cAMP pathway was also reported to mediate the effects of GnRH analogs
on the MAPK (p38MAPK, ERK, JNK) signaling cascades known to play a pivotal role in cell growth,
proliferation and apoptosis [161,162]. Specifically, the p38MAPK pathway was found to mediate the
proapoptotic activity of GnRH analogs in BPH-1 cells while the ERK kinase was shown to be activated
by GnRH agonists in immortalized human prostate cells engineered to overexpress the GnRH-R. JNK
activation was also demonstrated to be involved in the proapoptotic effects of GnRH analogs in CRPC
cells [38,42,44,118,119,122,158]. The activation of JNK was suggested to be mediated by inhibition of
mixed-lineage kinase 3 (MLK3), the upstream activator of JNK [44,118].

Finally, GnRH analogs were shown to interfere with the activity of the PI3K/AKT intracellular
pathway to suppress the proliferative and metastatic features of CRPC [149].

In addition to the Gαi/cAMP pathway, the Gαq/11/PLC/PKC signaling cascade also seems to be
involved in the antitumor activity of the GnRH-R in PCa cells [14,118]. Sviridonov and coworkers
reported that the PKCα, PKCβII and PKCε kinases are activated by GnRH in PCa cells in a more
prolonged way than in gonadotrope cells. This is followed by ERK1/2, p38MAPK and JNK activation
(mediated by reduced AKT phosphorylation) and redistribution from the cytosol and Golgi to the
plasma membrane. These authors suggest that both a more sustained vs. transient expression, and a
different distribution of PKCs in PCa cells vs. gonadotropes, are responsible for the different biological
effects elicited by GnRH in these cell types [20,163].

Thus, although the Gαi/cAMP pathway remains the main intracellular signaling cascade coupled
to the GnRH-R, additional pathways (i.e., Gαq/11/PLC/PKC) are now accepted to be involved in the
antitumor activity of this receptor in PCa cells.
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The main signaling pathways activated in GnRH agonist/antagonist-treated PCa cells are
summarized in Figure 1.
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Figure 1. Molecular mechanisms underlying the antiproliferative/proapoptotic and antimetastatic 
activity of gonadotropin-releasing hormone receptors (GnRH) agonists and antagonists in prostate 
cancer (PCa) cells. GnRH agonists and antagonists bind to the GnRH receptor in PCa cells, leading to 
the activation of Gαi/cAMP. This is followed by the induction of several 
antiproliferative/proapoptotic and antimetastatic pathways. 
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proposed that discontinuation of ADT in CRPC patients could result in a worse outcome of tumor 
progression. Combination therapies based on ADT treatments together with chemotherapy, 
enzalutamide (antiandrogen) or abiraterone (inhibitor of androgen synthesis), are highly 
recommended [55]. Different clinical trials confirm this hypothesis. 
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expression of GnRH-R was associated with a better disease-specific survival [111]. A retrospective 
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Teply and coworkers performed a clinical trial in which PCa patients progressing after an 
antiandrogen (enzalutamide) treatment were challenged with the bipolar androgen therapy (BAT, 
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Figure 1. Molecular mechanisms underlying the antiproliferative/proapoptotic and antimetastatic
activity of gonadotropin-releasing hormone receptors (GnRH) agonists and antagonists in prostate
cancer (PCa) cells. GnRH agonists and antagonists bind to the GnRH receptor in PCa cells, leading to
the activation of Gαi/cAMP. This is followed by the induction of several antiproliferative/proapoptotic
and antimetastatic pathways.

4. Emerging Prospective Aspects for New Therapeutic Interventions

4.1. GnRH Agonists and Antagonists

The expression of GnRH-R in PCa cells, specifically CRPC cells, together with their antitumor
activity, sustained the hypothesis that they might represent an additional and direct molecular
target of GnRH analogs (both agonists and antagonists) in CRPC [43]. Based on this notion,
it has been proposed that discontinuation of ADT in CRPC patients could result in a worse
outcome of tumor progression. Combination therapies based on ADT treatments together with
chemotherapy, enzalutamide (antiandrogen) or abiraterone (inhibitor of androgen synthesis), are highly
recommended [55]. Different clinical trials confirm this hypothesis.

It was reported that in CRPC patients receiving a GnRH agonist-based treatment, a high expression
of GnRH-R was associated with a better disease-specific survival [111]. A retrospective study by
Lawrentschuk et al. reviewed the records of PCa patients who were treated with a GnRH agonist
(leuprorelin or goserelin) but underwent disease progression and were then rechallenged with the other
GnRH agonist (goserelin or leuprorelin). These authors reported a significant decrease of PSA levels in
patients undergoing this GnRH agonist-based switching therapy [164]. Interestingly, Teply and
coworkers performed a clinical trial in which PCa patients progressing after an antiandrogen
(enzalutamide) treatment were challenged with the bipolar androgen therapy (BAT, low testosterone
levels together with a GnRH agonist). The results obtained showed positive clinical responses
(as evaluated in terms of PSA levels and radiographic progression-free survival) and a subsequent
resensitization to the antiandrogen [165]. In chemotherapy-naive patients with metastatic CRPC,
the combined use of a GnRH agonist with docetaxel was shown to improve the median radiographic
progression-free survival with respect to the chemotherapeutic drug given alone (nine vs. six months,
respectively) [166]. In line with these data, patients who develop CRPC very often continue on a GnRH
agonist-based androgen deprivation therapy when starting treatment with chemotherapy [167–169].

However, it should be underlined that contrasting results were reported by other clinical trials.
For instance, in a large clinical trial (ICELAND), patients with locally advanced or relapsing PCa
were treated with a GnRH agonist (leuprorelin), either alone or in combination with the antiandrogen
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bicalutamide. It was reported that in these patients, continuous androgen deprivation did not improve
PSA progression [170].

As discussed in this review, GnRH antagonists bind to locally expressed GnRH-R in CRPC
cells triggering the same antitumor effects elicited by GnRH agonists. Moreover, they induce a
faster suppression of testosterone levels and are devoid of the undesirable initial testosterone surge.
Interestingly, these compounds also induce a more significant and long-lasting reduction of FSH
levels when compared with GnRH agonists and were suggested to interfere with the binding of the
gonadotropin to its receptors in prostate cancer cells [171]. To this purpose, it must be underlined that
both FSH and FSH receptors are expressed in PCa cells and tissues, suggesting their involvement in PCa
development [172,173]. Moreover, hifh serum levels of FSU were reported to correlate with metabolic,
cardiovascular, skeletal and cognitive effects [174]. Interestingly, in PCa patients, GnRH antagonists
were recently reported to induce more significant suppressions of both FSH and PSA levels than those
induced by GnRH agonists [175].

In a very recent paper, Abufaraj and coworkers reported that in PCa patients, GnRH antagonist
treatments are associated with lower mortality rates and cardiovascular events as compared with
GnRH agonists, while there are no differences in musculoskeletal events and fatigue. On the other hand,
adverse reactions at the injection site are characteristic features of GnRH antagonists [176]. A lower
toxicity of GnRH antagonists vs. agonists has been in additional articles [55,177–180].

Taken together, these observations paved the way for clinical studies addressing the anticancer
potential of GnRH antagonists (i.e., degarelix, at present considered the most efficient antagonist for
PCa due to its low histamine-releasing activity) in CRPC patients [181].

In a previous paper, the effects of degarelix were evaluated on PSA levels in patients experiencing
a progression towards the CRPC stage after treatment with a GnRH agonist. Unfortunately, only a
small number of cases was found to respond to this treatment [182]. On the other hand, a more recent
paper reported that in a CRPC case, switching from a GnRH agonist to the antagonist degarelix
is associated with a longer control of tumor progression [183]. Similar observations were reported
by Atchia and coworkers in a systematic review and meta-analysis. By analyzing the data from
thirteen clinical studies, these authors concluded that treatment with degarelix after failure of a GnRH
agonist in patients progressing towards the CRPC stage, resulted in decreased or stable PSA levels
in patients [184]. Thus, treatment with GnRH antagonists might be considered for patients with
disease progression after GnRH agonist therapy. Interestingly, according to Uemura and coworkers,
GnRH agonist/antagonist combination treatments represent the mainstay therapeutic approach in
CRPC patients in Japan [185].

Clinical trials investigating the efficacy of GnRH analogs, either alone or in combination with
standard strategies, in CRPC patients are at present ongoing (see https://www.clinicaltrials.gov/).

4.2. Cytotoxic GnRH-Based Bioconjugates

GnRH receptors expressed in cancer cells, and associated with antitumor activity, are now
considered as an interesting molecular target for a new targeted therapeutic approach based on
cytotoxic GnRH bioconjugates, compounds in which a GnRH derivative peptide is covalently linked to
a cytotoxic drug. The rationale of this targeted therapeutic approach is that the GnRH peptide acts as a
targeting moiety to specifically deliver the cytotoxic drug to cancer cells while sparing normal cells
that do not express the GnRH receptor. Thus, GnRH binds to its receptor on tumor cell membranes,
the bioconjugate is internalized by endocytosis and the cytotoxic drug is then released to enter the
nucleus to exert its anticancer activity.

The bioconjugate AEZS-108 (also known as AN-152) consists of doxorubicin (Dox) coupled to
the GnRH derivative via an ester bond. It was widely reported to exert a significant antitumor
(antiproliferative, antimetastatic and antiangiogenic) activity in different types of cancer [60,186–189].
Specifically, this bioconjugate was shown to significantly decrease the proliferation and to
induce apoptosis in both androgen-sensitive and CRPC cells in vitro and in vivo [187,190–192].

https://www.clinicaltrials.gov/
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After internalization mediated by endocytosis, the ester bond of this compound is cleaved by
carboxyilesterases releasing the free drug that, in turn, can accumulate in the nucleus to exert its
cytotoxic activity [193]. In line with these observations, in phase I and II clinical trials, Liu and
coworkers reported that AEZS-108, associated with acceptable safety properties, decreases PSA levels
in CRPC patients facing disease progression after chemotherapy [194,195].

Similar results were obtained with the bioconjugate AN-207 consisting of 2-pyrrolino-doxorubicin
coupled to [D-Lys6]-GnRH [187,188].

Novel GnRH-based bioconjugates were developed by coupling [D-Lys6]-GnRH to different
anticancer compounds. Karampelas and coworkers developed a GnRH-based bioconjugate in
which the decapeptide is linked to a molecule of gemcitabine, a drug with antitumor activity but
with a fast metabolic inactivation. They reported that the conjugate exerts a significant antitumor
activity in CRPC cells, in vitro and in vivo, associated with a relevant metabolic and pharmacokinetic
advantage [196]. Argyros et al. analyzed the effects of a conjugate consisting of [D-Lys6]-GnRH and
an analog of the antiangiogenic compound sunitinib (SAN1). These authors found that in mouse
xenograft models of CRPC, this compound induces a significant delay in tumor progression when
compared with equimolar sunitinib or SAN1 alone. Importantly, no cardiovascular side effects were
observed during the treatment [197].

As stated above, the GnRH-III isoform found in sea lamprey is a decapeptide that differs from the
classical form of GnRH in amino acids 5–8, with a lysine in position 8 (instead of arginine as in GnRH).
GnRH-III binds to mammal GnRH-R at the pituitary level where it is endowed with a very poor
gonadotropin releasing activity in mammals. On the other hand, it was shown to bind to GnRH-R
expressed in cancer cells to trigger its antitumor effects [33,198].

Based on these observations, different anthracycline-GnRH-III bioconjugates were developed
and characterized in terms of chemical and enzymatic stability, as well as in terms of their
cytostatic effects. In first-generation bioconjugates, a molecule of daunorubicin (Dau) or Dox was
linked to the ε-amino group present in 6Lys of the decapeptide by means of different chemical linkages
(ester, oxime, amide bond). For instance, the oxime bond-linked Dau-GnRH-III bioconjugate was
shown to possess a high chemical and enzymatic stability (in human serum as well as in the presence
of rat liver lysosomal homogenates) as well as significant antitumor effects in several cancer cells, both
in vitro and in vivo [199–202].

To increase the cytotoxic activity of these compounds, multifunctional anticancer drug-GnRH-III
bioconjugates were developed with the aim to increase the stability and the antitumor effects of
these compounds (i.e., chemical modifications of the targeting decapeptide and attachment of
more than one cytotoxic drug). Leurs and coworkers reported the synthesis and development
of a bifunctional [4Lys]-GnRH-III containing two lysine amino acids (in position 4 and 8) coupled
with two Dau molecules through their ε-amino groups. The same authors also synthesized and
characterized a bioconjugate in which the GnRH-III peptide was used as a scaffold and a second
molecule of Lys was attached to the amino group of 8Lys to provide the binding sites for two Dau
molecules [203,204]. Similarly, GnRH-III based multifunctional delivery systems obtained by linking
two different anticancer drugs (i.e., Dau and metotrexate) or composed by Dau-GnRH-III derivative
dimers were developed [205,206]. More recently, the development and the anticancer effects of
different oxime bond-linked Dau-GnRH-III bioconjugates containing different unnatural amino acids
were reported by Schuster and coworkers [207]. A high enzymatic stability, as well as a significant
cytotoxic activity in different types of cancer cells, both in vitro and in vivo, was reported for all these
compounds [203–207].

In our laboratory we investigated the anticancer activity of two GnRH-III bioconjugates on CRPC
cells (Dau-GnRH-III, in which Dau is bound to 8Lys of GnRH-III; Dau-[4Lys(Ac)]-GnRH-III, in which
4Ser of the Dau-GnRH-III conjugate is replaced by an acethylated lysine). We demonstrated that,
after a rapid internalization, both Dau-GnRH-III and Dau-[4Lys(Ac)]-GnRH-III exert a significant
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antiproliferative/proapoptotic activity, that is counteracted by the cotreatment with a GnRH-R antagonist
or by silencing of the classical form of the GnRH-R [208].

Although further studies (both in vitro and in vivo) are needed to confirm their lack of toxicity as
well as their anticancer effects, these observations support an important role of GnRH bioconjugates as
a novel delivery approach of cytotoxic drugs in targeted cancer therapy.

Current GnRH-R-targeted strategies for the management of both androgen responsive PCa and
CRPC are illustrated in Figure 2.
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Figure 2. GnRH-R-targeted therapies in PCa treatment. Androgen-responsive PCa is targeted
with GnRH antagonists (direct inhibition of the pituitary GnRH receptor) or GnRH agonists
(chronic stimulation inducing receptor desensitization), resulting in the suppression of the pituitary axis.
The inhibition of androgen production leads to tumor regression. However, PCa can become
castration-resistant, which means tumor progression occurs despite the suppression of the pituitary axis.
Given the expression of GnRH receptors on CRPC cells, the latter might be further specifically targeted
with GnRH agonists, GnRH antagonists or cytotoxic GnRH-based bioconjugates.

5. Conclusions

Pituitary GnRH-R mediate the pivotal role of the hypothalamic decapeptide GnRH in the
control of the pituitary-gonadal axis functions. It has been widely shown that GnRH-R, sharing
the same gene sequence, as well as mRNA and protein size, with the pituitary receptor, are also
expressed in different tumors, such as PCa. Several data from the literature, from in vitro and
in vivo studies, report that in PCa cells, and specifically in CRPC cells, GnRH agonists are
associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activities.
Interestingly, GnRH antagonists were demonstrated to trigger the same antitumor effects. Millar and
coworkers proposed that GnRH-R may adopt different structural conformations according to the
cell context in which they are expressed, thus being associated with selective binding of GnRH
analogs [137,145].

The opposite role of GnRH-R at the pituitary (stimulation of gonadotropin synthesis/secretion)
and at the cancer level (antiproliferative effects) is related to the different intracellular signaling
pathways associated with these receptors. In PCa cells these receptors are mainly associated with the
Gαi/cAMP pathway, triggering the activity of a tyrosine phosphatase, and subsequent inactivation of
tyrosine kinase receptors (i.e., EGF-R and IGF-I-R), and finally interfering with downstream different
molecular pathways, such as the MAPK and PI3K/AKT signaling cascades.
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Based on these molecular observations, GnRH agonists and antagonists, in combination
with docetaxel, are currently considered as an effective therapeutic approach for chemotherapy-naive
CRPC patients.

GnRH-based bioconjugates are now considered as a novel targeted therapeutic approach for CRPC.
These are drugs in which a cytotoxic compound is covalently linked to a GnRH derivative peptide.
It is believed that by binding to its receptors in cancer cells, the GnRH peptide can specifically deliver the
chemotherapeutic drug to cancer cells while sparing normal cells not expressing the GnRH receptors.
In this context, the most studied bioconjugate is AEZS-108 (AN-152), consisting of a molecule of
doxorubicin linked to [D-Lys6]-GnRH. This bioconjugate was demonstrated to exert a significant
antitumor activity in CRPC cells in vitro and in vivo. Results from phase I and II clinical studies support
these experimental observations. Bioconjugates based on different isoforms of the GnRH peptide,
such as GnRH-III, are also under investigation.

Further studies are needed to obtain novel compounds with a high specific efficacy and low
toxicity to improve the treatment options for CRPC patients.
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