Supplementary Material

Supplementary Table S1. Sequences of primers used for RTPCR and gene expression_

Additional details are in reference.

Function	Gene	Description	Sequence (L and R)
	VDR	Vitamin D ₃ receptor	CTTACCTGCCCCTGCTC
			AGGGTCAGGCAGGGAAGT
		Retinoic acid-	
The biological	RORA	related orphan	GTCAGCAGCTTCTACCTGGAC
actions of nuclear receptors		receptor-α	GTGTTGTTCTGAGAGTGAAAGGCACG
		Retinoic acid-	
	RORC	related orphan	CAGCGCTCCAACATCTTCT
		receptor-γ	CCACATCTCCCACATGGACT
	TLR4	Toll-like receptor 4	CAG GTG GAA TTG TAT CGC CT
			CGA GGC TTT TCC ATC CAA TA
	COX2	Cyclooxygenase-2	GAATGGGGTGATGAGCAGTT
			CAGAAGGGCAGGATACAGC
	ICAM	Intracellular adhesion	CCTTCCTCACCGTGTACTGG
Inflammation		molecule	AGCGTAGGGTAAGGTTCTTGC
	IL6	Interleukin 6	GAAGCTCTATCTCGCCTCCA
			AGCAGGCAACACCAGGAG
	IL8	Interleukin 8	AGACAGCAGAGCACAAGC
			ATGGTTCCTTCCGGTGGT
	IL17	Interleukin 17	TGGGAAGACCTCATTGGTGT

Function	Gene	Description	Sequence (L and R)
			GGATTTCGTGGGATTGTGAT
	IL33	Interleukin 33	TGTCAACAGCAGTCTACTGTGGAGTGCT
			GCAAAAGTAATGGATTGATCATTGTA
	IL1A	Interleukin 1 alpha	GGTTGAGTTTAAGCCAATCCA
			TGCTGACCTAGGCTTGATGA
	IL1B	Interleukin 1 beta	CRGTCCTGCGTGTTGAAAGA
			TTGGGTAATTTTTGGGATCTACA
	IL10	Interleukin 10	TGGGGGAGAACCTGAAGAC
			CCTTGCTCTTGTTTTCACAGG
	CD14	Cluster of differentiation 14	GTTCGGAAGACTTATCGACCAT
			ACAAGGTTCTGGCGTGGT
	NFkB	nuclear factor kappa B p50	ACCCTGACCTTGCCTATTTG
	(NFKB)		AGCTCTTTTTCCCGATCTCC
	NFkB	nuclear factor kappa	CGGGATGGCTTCTATGAGG
	POS (RELA)	B p65 (RELA)	CTCCAGGTCCCGCTTCTT
	IkBa	α Inhibitory-kappa B- BA) alpha	GTCAAGGAGCTGCAGGAGAT
	(IKBA)		GATGGCCAAGTGCAGGAA
	BCL2	B-cell lymphoma 2	AGTACCTGAACCGGCACCT
			GGCCGTACAGTTCCACAAA
	BNIP	BCL2 adenovirus	CCGGGATGCAGGAGAGAG
		E1B interacting	TTATAAATAGAAACCGAGGCTGGAAC

Function	Gene	Description	Sequence (L and R)	
	IVL	Involucrin	TGCCTCAGCCTTACTGTGAGT	
			TCATTTGCTCCTGATGGGTA	
	LOR	Loricrin	GTGGGAGCGTCAAGTACTCC	
			AGAGTAGCCGCAGACAGAGC	
	FLG	Filaggrin	GGCACTCATCATGCAGAGAA	
			ATGGTGTCCTGACCCTCTTG	
Differentiation	TGM1	Transglutaminase	TCTGTGGGTCCTGTCCCATCCATCCTGACC	
			CCCCAACGGCCCACATCGGAACGTGGCCCATCCATCATGC	
	KRT1	Cytokeratin 1	GTTCCAGCGTGAGGTTTGTT TAAGGCTGGGACAAATCGAC	
	KRT10	Cytokeratin 10	GGCTCTGGAAGAATCAAACTATGAGC	
			GGATGTTGGCATTATCAGTTGTTAGG	
	KRT14	Cytokeratin 14	CTGTCTCCCGCACCAGCTTCACCTCC	
			CTCCACAAGCACCCGCAAGGCTGACC	
	FGF23	Fibroblast growth	CAGCATGAGCGTCCTCAGAG GCCAGCATCCTCTGATCTGA	
	ACTB	β-actin	CCAACCGCGAGAAGATGA	
House-keeping genes			CCAGAGGCGTACAGGGATAG	
	СҮСВ	cyclophilin B	TGTGGTGTTTGGCAAAGTTC	
			GTTTATCCCGGCTGTCTGTC	
	<i></i>	Glyceraldehyde-3-	AGCCACATCGCTCAGACAC	
	GAPDH	Dehydrogenase	GCCCAATACGACCAAATCCC	

Function	Protein type	Catalog Number	Description	Dilution	Protein size (kDa)
Nuclear receptor	VDR	sc-13133 (Santa Cruz Biotechnology, Dallas, TX, USA)	mouse monoclonal antibody	1:200	45
	RORa	PA1-812 (Invitrogen, Oregon, USA)	rabbit polyclonal antibody	1:200	56
	RORγ	AFKJS-9 (Invitrogen, Oregon, USA)	mouse monoclonal antibody	1:200	58
Inflammation	NFkB p65	sc-8008 (Santa Cruz Biotechnology, Dallas, TX, USA)	mouse monoclonal antibody	1:1000	70
	IkB-α	sc-371 (Santa Cruz Biotechnology, Dallas, TX, USA)	rabbit polyclonal antibody	1:1000	37
Cell differentiation	IVL	GTX-14504 (Genetex, Irvine, CA, USA)	mouse monoclonal antibody	1:1000	68

	Protein				Protein
Function		Catalog Number	Description	Dilution	size
	type				(kDa)
Loading control protein	β-actin-	A3854 (Sigma-aldrich, St. Louis,	The whole and	1:5000	40
		MO. USA)	cytosolic loading		
	P-0.2.		control protein		
	Lamin	sc6215 clone (N-18) (Santa Cruz	The nuclear	1:2000	75
	A/C	Biotechnology Dallas TX USA)	loading control		
			protein		
Secondary HRP antibody	Mouse	se A28177 (Thermo Fisher Scientific,	goat anti-mouse	1:3000	-
	HRP	Waltham, MA, USA)	IgG superclonal [™] -		
			HRP		
	Rabbit	ab6721 (Abcam, Cambridge, MA,	goat anti-rabbit	1:3000	-
	HRP	USA)	IgG-HRP		
Secondary	Alexa-	Alexa-Fluor 488 dye (Invitrogen	Green fluorescence dye	1:300	-
fluorescence	Fluor	Molecular Probes, Eugene,			
antibody	488	Oregon, USA)			

Fig. S1 Hydroxylumisterols display anti-inflammatory effects on UVB-irradiated keratinocytes by reducing nuclear NFκB p65 levels and increasing the levels of cytosolic-IκBα

Keratinocytes were treated with 100 nM hydroxylumisterols (shown as light orange bars in the chart) or ethanol (solvent control, shown as a white bar) for 24 h. Fluorescent microscopy of cells stained with (a) NF κ B p65 and (b) cytosolic-I κ B α antibodies was carried out using the CytationTM 5 cell imaging, n \geq 100 cells for each condition. Scale bar = 100 μ m. Data are presented as the immunofluorescent staining of nuclear levels for NF κ B p65 and the cytosolic-I κ B α (% of control, mean \pm S.D.). The statistical significance of differences was evaluated by the one-way ANOVA, ** P < 0.01 and *** P < 0.001, for all conditions relative to the untreated ethanol control.

Fig. S2 Some of the hydroxylumisterols inhibit the phosphorylation of NFkB p65 in nonirradiated cells

Keratinocytes were treated with 100 nM hydroxylumisterols (light orange bars in the chart) or ethanol (solvent control, shown as a white bar) for 24 h. The phosphorylation of NFkB p65 and the total levels of NFkB p65 were determined by ELISA. (A) The levels of phospho-NFkB p65 normalized to cell number and (B) the phospho-NFkB p65 levels normalized relative to the total level of NFkB p65. The statistical significance of differences was evaluated by the oneway ANOVA, * P < 0.05 and ** P < 0.01, for all conditions relative to the untreated ethanol control, n=3.

Fig. S3 Hydroxylumisterols promote keratinocyte differentiation in non-irradiated

keratinocytes, as shown by increased levels of involucrin

Keratinocytes were treated with 100 nM hydroxylumisterols (light orange bars in the chart) or ethanol (solvent control, shown as a white bar) for 24 h. Fluorescent microscopy of cells stained with IVL was carried out using the CytationTM 5 cell imaging, $n \ge 100$ cells for each condition. Scale bar = 100 µm. Data are presented as the % of control for IVL (mean ± S.D.). The statistical significance of differences was evaluated by the one-way ANOVA, *** P <

0.001, for all conditions relative to the untreated ethanol control.

Reference:

- Aoki, R.; Aoki-Yoshida, A.; Suzuki, C.; Takayama, Y. Protective Effect of Indole-3-Pyruvate against Ultraviolet B-Induced Damage to Cultured HaCaT Keratinocytes and the Skin of Hairless Mice. *PLoS ONE* 2014, 9, e96804, doi:10.1371/journal.pone.0096804.
- Janjetovic, Z.; Jarrett, S.G.; Lee, E.F.; Duprey, C.; Reiter, R.J.; Slominski, A.T. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. *Sci. Rep.* 2017, 7, 1–13, doi:10.1038/s41598-017-01305-2.
- Slominski, A.T.; Kim, T.-K.; Brożyna, A.; Janjetovic, Z.; Brooks, D.; Schwab, L.; Skobowiat, C.; Jóźwicki, W.; Seagroves, T. The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. *Arch. Biochem. Biophys.* 2014, *563*, 79–93, doi:10.1016/j.abb.2014.06.030.
- 4. Slominski, A.T.; Zmijewski, M.A.; Zbytek, B.; Brozyna, A.A.; Granese, J.; Pisarchik, A.; Szczesniewski, A.; Tobin, D.J. Regulated Proenkephalin Expression in Human Skin and Cultured Skin Cells. *J. Investig. Dermatol.* **2011**, *131*, 613–622, doi:10.1038/jid.2010.376.