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Abstract: Bacterial biofilm plays a pivotal role in chronic Staphylococcus aureus (S. aureus) infection and
its inhibition may represent an important strategy to develop novel therapeutic agents. The scientific
community is continuously searching for natural and “green alternatives” to chemotherapeutic drugs,
including essential oils (EOs), assuming the latter not able to select resistant strains, likely due to their
multicomponent nature and, hence, multitarget action. Here it is reported the biofilm production
modulation exerted by 61 EOs, also investigated for their antibacterial activity on S. aureus strains,
including reference and cystic fibrosis patients’ isolated strains. The EOs biofilm modulation was
assessed by Christensen method on five S. aureus strains. Chemical composition, investigated by
GC/MS analysis, of the tested EOs allowed a correlation between biofilm modulation potency and
putative active components by means of machine learning algorithms application. Some EOs inhibited
biofilm growth at 1.00% concentration, although lower concentrations revealed different biological
profile. Experimental data led to select antibiofilm EOs based on their ability to inhibit S. aureus
biofilm growth, which were characterized for their ability to alter the biofilm organization by means
of SEM studies.

Keywords: essential oil; GC-MS analysis; machine learning; classification algorithms; scanning electron
microscopy; cystic fibrosis; antibacterial; antibiofilm; Staphylococcus aureus

1. Introduction

Cystic fibrosis (CF) is a hereditary disease that affects the normal function of epithelial cells,
especially in the lungs and digestive system, causing incremental disability. Recurrent and chronic
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respiratory tract infections in CF patients result in progressive lung damage representing the primary
cause of morbidity and mortality. Staphylococcus aureus (S. aureus) is one of the earliest bacteria
detected in infants and children affected by CF [1]. S. aureus is the prevalent microorganism in CF
children with a maximum prevalence occurring in ages of 11–15 years [2]. The increasing diffusion of
methicillin resistant S. aureus (MRSA) strains in the last 10 years has gained the attention of the scientific
community [3]. Statistical studies revealed that CF patients infected by MRSA in the respiratory tract
show worse clinical outcomes [4,5]. For this reason, from a young age, CF patients are treated with
antimicrobial drugs to control lung infections.

S. aureus possesses a variety of virulence factors including the ability to form biofilm, which plays
a pivotal role in chronic infections. Indeed, chronic S. aureus infection in CF patients’ lung, sustained in
the biofilm phenotype, is associated with in vitro antibiotic resistance [6]. Biofilm mode of growth does
occur in MSSA and MRSA regardless of genetic background [7]. The highest prevalence of methicillin
resistant S. aureus (MRSA) arises in individuals from 10 to 30 years old, while MSSA are prevalent in
patients younger than 10 (Cystic Fibrosis Foundation, 2017).

Despite the growing evidence that lung infections in CF patients are sustained by biofilm,
antibiotics effectiveness is mostly evaluated in planktonic cell assays. This produces misleading results,
as a bacterial strain can be sensitive to an antibiotic in vitro and assume resistance in vivo due to
biofilm formation in CF lung airways.

A negative modulation or a complete inhibition of biofilm formation may represent an important
strategy for infection control and might be considered as a major target for the development of
novel therapeutic agents [8]. Hence, there is a need to develop innovative approaches that lower
or block biofilm formation without affecting bacterial vitality, avoiding the appearance of escape
mutants [9,10]. The use of anti-biofilm compounds could enhance the effectiveness of conventional
therapies [11,12], particularly in chronic infections; this could represent a suitable approach to treat CF
patients’ infections. A complex challenge, therefore, remains to prevent biofilm formation and to try to
disrupt the existing biofilm.

During the past decade, the scientific community has oriented itself towards “green alternatives”
such as natural compounds, including essential oils (EOs) and their main chemical components [13].
Many bioactive compounds extracted from plants are known to exert antimicrobial properties as
evinced by a large use in traditional medicine [14]. EOs are complex mixtures composed of different
classes of compounds and have been empirically used for centuries to treat upper respiratory tract
infections such as pharyngitis, sinusitis and bronchitis [15]. Bacteria hardly develop resistance to
multi-component treatments as EOs, likely due to their multitarget actions [16].

Recently, a series of 90 EOs were investigated for their abilities to modulate the bacterial biofilm
production in cultures of different S. aureus, S. epidermidis and Pseudomonas aeruginosa strains [17,18].
Interestingly some EOs were able to strongly inhibit biofilm production at not antimicrobial concentrations,
whereas some other EOs showed to strongly stimulate biofilm production. To shed light on the
possible role of EOs’ chemical components, machine learning (ML) algorithms were applied to develop
classification models. Analysis of the ML models indicated the chemical components mainly responsible
for bacterial biofilm production inhibition or stimulation. In a later report, ML-based clustering was
used to develop a convergent microbiological protocol in which 61 EOs were evaluated on 40 clinical
isolated S. aureus and P. aeruginosa strains [19]. In that study, three essential oils showed to be able to
impair bacteria vitality in all tested strains. Based on these results, it is herein reported the modulation of
bacterial biofilm production of S. aureus strains isolated from CF patients of previously characterized
EOs. The effect of the most promising EOs on biofilm formation is also observed by SEM analysis on
selected S. aureus reference and clinical strains. Furthermore, continuing the investigation on EOs [20],
in a multidisciplinary approach [21,22] and in agreement with the recent reports [23–25], ML is used to
shed light on the EOs chemical components likely responsible to positively or negatively modulate the
bacteria biofilm formation.
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2. Results

2.1. Biofilm Production Modulation by EOs at Selected Fixed Concentrations

The EOs’ ability to modulate biofilm production by S. aureus strains was evaluated at two different
concentrations. In particular, the concentration of 1.00% v/v was chosen on the basis of a previous
report [19]. At this concentration, the antimicrobial activity of the 61 EOs listed in Table SM4 was
evaluated, and inactive EOs were investigated for their ability in modulating the biofilm production
(Table SM5). A second sub-antimicrobial concentration of 0.05% v/v, selected in agreement with
previous studies [17,18], was also used to evaluate the EOs biofilm modulation at low concentration.
At both tested concentrations (1.00% v/v and 0.05% v/v) the biofilm production was compared to that of
untreated bacteria (Tables SM6 and SM7).

2.2. Quantitative Analysis of Biofilm Production by S. aureus Strains Treated with Selected EOs

EO45 and EO58 were selected as they showed to strongly reduce biofilm formation more than 60%
in all tested strains (Table SM6) at concentration of 1.00% v/v. EO45 and EO58 were further analyzed
to search for a possible dose-dependent effect in the 5 tested S. aureus clinical and reference strains
(Figures 1 and 2). The dose-dependent effect of EO45 was evaluated starting from a concentration of
1.00% v/v to 0.004% v/v. The inhibition by EO45 was confirmed up to a dilution of 0.125% v/v with
some exceptions (except for strain 19S at 0.50% v/v and strain 6538P at 0.25% v/v); despite different
phenotypic features of the strains, the inhibition of biofilm formation did not show a dose-dependent
response (Figure 1), as already observed on P. aeruginosa [17]. On the contrary, at lower concentrations
the EO45 showed no modulation or could even suggest a tendency to stimulate biofilm production.

Differently from EO45, for EO58 an initial dose-dependent negative modulation of biofilm
production was observed against 6538P, 25293, 4S and 19S strains in a concentration range between
1.00% and 0.06% v/v, while it did not induce biofilm formation at lower concentrations, in absence of
any recognizable pattern (Figure 2). In the case of 5S strain, EO58 performed prevalently as a biofilm
production enhancer.
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Figure 1. Dose-dependent effect of EO45 on different clinical and reference strains starting from a
concentration of 1% to 0.004% v/v. In the ordinate axis is reported the percentage of bacterial biofilm
production. Data are expressed as percentage of residual biofilm after the treatment in comparison
with untreated one. Each data point is composed of four independent experiments each performed at
least in three replicates.
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Figure 2. Dose-dependent effect of EO58 on different clinical and reference strains starting from
a concentration of 1% v/v to 0.004% v/v biofilm. In the ordinate axis is reported the percentage of
bacterial biofilm production. Data are expressed as percentage of residual biofilm after the treatment
in comparison with untreated one. Each data point is composed of 4 independent experiments each
performed at least in 3-replicates.

2.3. SEM Observation of Eos Action on Biofilm Formation

Biofilm effects of EO45 and EO58 were also investigated by SEM analysis. Based on dose-dependent
analysis results (Figures 1 and 2), EO45 was explored on S. aureus 5S (biofilm inhibition higher than
40% at all tested concentrations) while EO58 on S. aureus 4S. Both EOs were also separately tested
on reference strain S. aureus 25923 (Figure 3). Imaging of the untreated biofilm from S. aureus 25923
provided the expected morphology with compact and smooth surfaces, and an inner spongy structure
(panels A and B) even at very high magnification (panel C). S. aureus 25923 biofilm treated with EO45,
revealed the compact part to be broken down and modifications recalling the spongy part. At high
magnifications was recognized formation of bush-like floccular aggregates (panel E). At increased
magnification, EPS disintegration in fine filaments was visible (panel F). Treatment with EO58 induced
very similar effects, breakup of compact areas (panel G), erosion of trabeculae in spongy areas and EPS
flaking and disintegration (panel I).

SEM analysis was also performed on untreated 4S (Figure 4). The S. aureus 4S strain secreted
a dense biofilm, in which macrochannels (Figure 4 panel A) 35–40 µm in diameter were developed.
Biofilm showed compact and spongy areas (Figure 4 panels A–C), in which a network of microchannels
were established displaying comparable sizes. Some bacterial cells were visible and partially embedded
in the extracellular polymeric substance (EPS) (Figure 4 panel C). EO58 exerted on S. aureus 4S
biofilm a disruptive action. The smooth surface of the denser areas acquired an irregularly wrinkled
aspect (Figure 4 panels D–E). The trabeculae, which formed the microchannel system, thinned out or
disappeared. EO action melted the largest and superficial trabeculae, while the innermost and smallest
were preserved (Figure 4 panel E). A decrease in biofilm compactness was evident, due to merging of
microchannels into large spaces (caves, c). Trabeculae stumps retracted and their thickened extremities
were visible (Figure 4 panels E–F).
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Figure 3. SEM analysis on S. aureus ATCC 25923. Untreated S. aureus 25923: (A) SEM, 1000×.
Compact biofilm surface. (B) SEM, 5000×. Spongy structure beneath the compact area, on the surface
bacterial cells were visible (arrow). (C) SEM, 10,000×. At very high magnification, the smooth
aspect of compact area is shown. S. aureus 25923 after exposure to EO45 1.00% v/v: (D) SEM, 1000×.
Skeletonized aspect of dissolved compact areas. (E) SEM, 5000×. Bush-like floccular aggregates on
compact area surface. (F) SEM, 10,000×. EPS is melted in very fine filaments. S. aureus 25923 after
exposure to EO58 1.00% v/v: (G) SEM, 1000×. Compact areas appeared skeletonized by oil action,
trabeculae were thinned. (H) SEM, 5000×. At high magnification, erosion of trabeculae in spongy areas
was evident; (I) SEM, 10000×. At very high magnification, trabeculae flaking and disintegration in fine
filaments were visible. t: trabecula; f: filaments; s: sponge.
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Figure 4. SEM analysis on S. aureus 4S. Untreated S. aureus 4S: (A) SEM, 1000×. At this magnification
a macro channel is visible (asterisk), its walls were made of smooth, compact and dense biofilm,
in the right part of the picture spongy biofilm is present. (B) SEM, 5000×. Higher magnification of
microchannel system (asterisk), it appeared as a three-dimensional network with irregular meshes.
(C) SEM, 10,000×. Very high magnification showed bacterial cells partially embedded in EPS (arrow).
S. aureus 4S after exposure to EO58 1.00% v/v: (D) SEM, 1000×. Smooth surface of compact biofilm
areas has become rough. (E) SEM, 5000×. Largest and superficial trabeculae were melted by oil action,
the innermost and smallest were still present (asterisk). (F) SEM, 10,000×. Trabeculae breakdown
caused stumps retraction and matrix thickening (asterisk), microchannels merging resulted in large
caves that opened up. c: caves.
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SEM analysis on S. aureus 5S (Figure 5) revealed that untreated bacteria biofilm appeared pierced
by numerous macrochannels of 10–15 µm in diameter, whose surface was compact and grossly rough
for the presence of large globular masses of EPS. The inner aspect was spongy and was formed
by an intricate three-dimensional network of short EPS trabeculae, among which a microchannel
system developed. In some inner areas, instead of a trabecular system, a denser EPS arrangement
was observed. Treatment with EO45 had a remarkable effect on S. aureus 5S biofilm as the compact
surface appeared deconstructed, displaying inner spongy areas. Increasing magnification allowed
detailed observation of EPS melting revealing on compact areas surface, bush-like floccular aggregates.
Higher magnifications revealed the dispersion of EPS components in bush-like floccular aggregates,
which appear dispersed in a cloud of very fine filaments. Fraying of spongy EPS trabeculae was evident.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 21 
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8 p-cymene 1290 1287 1.1 - 
9 δ-elemene 1466 1465 2.7 - 

10 α-cubebene 1482 1481 - 0.5 
11 α-copaene 1485 1487 5.4 - 
12 α-gurjunene 1530 1527 - 0.4 
13 linalool 1533 1536 0.6 - 
14 β-cubebene 1546 1541 0.7 - 
15 α-bergamotene 1568 1566 0.1 - 
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17 cyclohexanone, 2-(1-methylethylidene)- 1611 * - 1.0 
18 terpinen-4-ol 1628 1630 0.4 0.7 

Figure 5. SEM analysis on S. aureus 5S. Untreated S. aureus 5S: (A) SEM, 1000×. Biofilm showed
microchannels (asterisk). Biofilm surface was compact and rough; (B) SEM, 5000×. Inner areas with
spongy structure. (C) SEM, 10,000×. Sometimes, inner dense areas with compact arrangement were
observed. S. aureus 5S after exposure to EO45 1.00% v/v: (D) SEM, 1000×. Compact areas flakes off,
allowing inner spongy structure to appear. (E) SEM, 5000×. High magnification showed signs of EPS
disintegration in the way of a bush-like floccular aggregate (asterisk). (F) SEM, 10,000×. Very high
magnification shows trabeculae flaking in fine filaments. f: filaments; s: sponge; c: caves.

2.4. Essential Oil Chemical Composition

GC/MS analyses were carried out on the 61 EOs (Table SM4), revealing a total of 239 chemical
components differently distributed among EOs (Tables SM8 and SM19). Herein, are report the
composition of the above selected EO45 and EO58, revealing two different chemical profiles (Table 1).
Details on other EOs are available upon request.

2.5. Machine Learning Binary Classification

2.5.1. Datasets

Considering the antimicrobial activity (Table SM5), the biofilm production investigations
(Tables SM6 and SM7) and the five S. aureus strains, a total of 15 different initial datasets were
loaded into a Pandas dataframe. Each dataset was composed by a data matrix of 61 rows (essential oil
samples) and 240 columns (one bioactivity and 239 chemical components). Due to antimicrobial activity
of some EOs, a different number of rows was used for biofilm data at 1.00% v/v (Tables SM5 and SM6).
A further biofilm dataset (Table SM9, column C) was compiled by filling biofilm modulation data
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at 1.00% v/v with the correspondig values from data obtained at 0.05% v/v (Biofilm 1.00% v/v Corr).
To evaluate the under developing ML model ability in discriminating either biofilm inhibiting or
biofilm stimulating EOs, the biological data were binarized (partition into two classes) using different
percentages of biofilm production threshold values (Table SM9). For all the used strains, threshold values
of 40% (strong biofilm inhibition), 80% (moderate biofilm inhibition) and 120% (biofilm stimulation)
were used. Trials to use 100% or median values of the biofilm production were also performed
(Tables SM6 and SM7). The antimicrobial dataset was straightforwardly divided into active and
inactive classes (Table SM10).

Table 1. Chemical composition (%) of EO45 and EO58 obtained by GC-MS.

N◦ Chemical Component 1 LRI 2 LRI 3
Peak Area (%)

EO45 EO58

1 α-pinene 1031 1035 6.9 1.0
2 β-pinene 1100 1105 6.3 3.8
3 sabinene 1103 1107 7.2 0.6
4 3-carene 1142 1146 5.9 -
5 limonene 1211 1210 11.1 8.8
6 β-ocimene 1242 1239 - 0.1
7 γ-terpinene 1251 1248 - 0.1
8 p-cymene 1290 1287 1.1 -
9 δ-elemene 1466 1465 2.7 -

10 α-cubebene 1482 1481 - 0.5
11 α-copaene 1485 1487 5.4 -
12 α-gurjunene 1530 1527 - 0.4
13 linalool 1533 1536 0.6 -
14 β-cubebene 1546 1541 0.7 -
15 α-bergamotene 1568 1566 0.1 -
16 β-elemene 1600 1598 0.7 -

17 cyclohexanone,
2-(1-methylethylidene)- 1611 * - 1.0

18 terpinen-4-ol 1628 1630 0.4 0.7
19 myrtenal 1634 1632 - 0.3
20 β-caryophyllene 1638 1634 33.6 7.3
21 pulegone 1670 1665 - 59.8
22 γ-muurolene 1674 1676 0.2 -
23 α-muurolene 1692 1690 0.4 0.2
24 humulene 1694 1693 2.4 1.1
25 germacrene D 1728 1726 - 5.2
26 β-bisabolene 1733 1733 1.9 -
27 β-eudesmene 1748 1750 0.5 -
28 γ-cadinene 1751 1753 - 0.2
29 δ-cadinene 1760 1758 0.9 -
30 calamenene 1832 1827 0.3 0.7
31 jasmone 1952 1947 - 0.6
32 caryophyllene oxide 1963 1960 9.7 0.2
33 humulene epoxide 2 2038 2040 0.5 -
34 cubenol 2070 2074 - 0.2
35 spathulenol 2133 2136 0.4 -
36 τ-muurolol 2172 2178 - 0.1
37 thymol 2184 2189 - 1.2
38 cinerolon 2190 * - 4.6
39 α-cadinol 2220 2218 - 0.2
40 epi-bicyclosesquiphellandrene 2230 * - 0.9

Total (%) 99.9 99.8

N◦: The compound identification number; 1 the components are reported according their elution order on column;
2 linear retention indices measured on polar column; 3 linear retention indices from literature; * LRI not available for
polar column; dash (-): traces < 0.1%.
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2.5.2. Classification Models

To avoid too much unbalanced datasets, the modeling was restricted to binarized data showing
at maximum a ratio of 10%:90% (or 90%:10%) data distribution. Therefore, considering the data
reported as listed in Tables SM9 and SM10, among the 80 possible combinations (five strains by five
thresholds [#: 1–25] by two biofilm data [A, B and C ] plus five antimicrobial [D]), seven of them were
not considered, as the number of actives or inactives was not sufficient. Classification modeling was
carried out with six different ML algorithms (RF, GB, SV, LR, DT and KNN) using the introduced
datasets (Tables SM9 and SM10). Classification models were built with a number of latent variables
corresponding to 85% of the whole chemical components variance extracted by PCA. Hyperparameter
optimization was carried out with a wide range of settings (Table SM11), leading from hundreds of
thousands to billions of combinations. Therefore, to speedup the optimization, the random search was
used. Random search hyperparamenters’ optimization was proved, having a probability of 95% of
finding a combination of parameters within the 5% optima with only 60 iterations, while reducing the
probability to bog down in local optima [26]. Accordingly, herein 3000 random combination were used
at four different nlevels (see Material and Methods) and, as a last step, the models from random search
were refined by a grid search inspecting numerical hyperparameters in a range of ± 10. Thus, the initial
random search hyperparameters’ tuning of 73 combinations led to 1752 (73 by six ML algorithms by
four nlevels) classification models that were pruned on the basis of MCC and AUC cutoff values set to
0.4 and 0.5 [27–30], respectively (Tables SM12–SM18). As a result, the six ML algorithms led to define
104 statistically acceptable models (not shown). As different ML algorithms led to comparable models
on the same dataset, and to avoid any redundancy, only those characterized by MCC higher than 0.5
were analyzed (models ML1–ML27 listed in Table 2). To this, FIs were inspected to investigate the most
important chemical components likely responsible for biofilm modulation and antimicrobial activity.
Moreover, PDs were finally investigated to seek for the statistical responsibility for each model’s most
important chemical components.

Table 2. List of machine learning (ML) models selected by MCC and ROC AUC values. Random search
selected best hyperparameters are also listed.

ML Id a Comb b Strain c ML Alg d Nlevel e MCC f AUC g Hyperparameters h

ML1 1A 6538P svm 4 0.94 0.98 P i: True; k j: rbf;
Cw k: {0: 1.0; 1: 3.0}; C l: 1

ML2 2A 25923 gb 1 1 1 ne l: 188; msl m: 18; md n: 33

ML3 2B 25923 dt 4 0.54 0.69
S v: best; mss w: 6; msl: 6;

Mf x: None; md: 1; cr y: gini;
cw: {0: 1.4; 1: 1.0}

ML4 1C 6538P dt 1 0.52 0.74
cw: {0: 1.0; 1: 1.4}; cr: gini;
md: 9; mf: None; msl: 5;

mss: 4; s: best

ML5 2C 25923 dt 2 0.66 0.8
s: best; mss: 11; msl: 6;

mf: None; md: 16; cr: entropy;
cw: {0: 1.2; 1: 1.0}

ML6 6A 6538P svm 1 0.82 0.9 p: True; k: rbf;
cw: {0: 1.0; 1: 1.3}; C: 41

ML7 7A 25923 dt 3 0.61 0.78
s: best; mss: 15; msl: 3;

mf: None; md: 20; cr: gini;
cw: {0: 2.5; 1: 1.0}

ML8 6B 6538P lr 1 0.73 0.84
Sl z: newton-cg; pen aa:

l2; mibb: 10000;
cw: {0: 1.4; 1: 1.0}; C: 11

ML9 7B 25923 dt 3 0.52 0.77
s: best; mss: 6; msl: 1;

mf: None; md: 6; cr: gini;
cw: {0: 2.5; 1: 1.0}
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Table 2. Cont.

ML Id a Comb b Strain c ML Alg d Nlevel e MCC f AUC g Hyperparameters h

ML10 6C 6538P dt 2 0.58 0.77
s: best; mss: 11; msl: 11;

mf: None; md: 11;
cr: entropy; cw: 0: 1.5; 1: 1.0

ML11 7C 25923 dt 4 0.56 0.65
s: best; mss: 11; msl: 11;

mf: None; md: 11;
cr: entropy; cw: 0: 1.5; 1: 1.0

ML12 11A 6538P svm 1 0.64 0.76 p: True; k: rbf;
cw: 0: 1.0; 1: 2.0; C: 4

ML13 14A 5S dt 4 0.68 0.74
cw: 0: 1.3; 1: 1.0; cr: gini;

md: 14; mf: None;
msl: 4; mss: 19; s: best

ML14 11B 6538P gb 1 0.57 0.68 ne: 151; msl: 11; md: 61

ML15 15B 19S dt 1 0.61 0.8
s: best; mss: 11; msl: 1;

mf: None; md: 16;
cr: entropy; cw: 0: 1.0; 1: 1.5

ML16 16A 6538P knn 1 0.59 0.76
w: distance; p: 2; nn: 4;

mp: None; m: manhattan;
ls: 3; a: kd_tree

ML17 16B 6538P dt 1 0.74 0.83
s: best; mss: 6; msl: 3;

mf: None; md: 6; cr: entropy;
cw: 0: 3.0; 1: 1.0

ML18 16C 6538P gb 1 0.56 0.76 ne: 181; msl: 1; md: 31

ML19 20C 19S lr 1 0.74 0.87 sl: saga; pen: l1; mi: 10000;
cw: 0: 3.0; 1: 1.0; C: 51

ML20 23A 4S gb 3 0.55 0.73 ne: 4; msl: 13; md: 72

ML21 22B 25923 dt 3 0.51 0.61
s: best; mss: 2; msl: 19;

mf: None; md: 1;
cr: gini; cw: 0: 1.0; 1: 1.2

ML22 22C 25923 dt 4 0.62 0.83
cw: 0: 1.0; 1: 1.0; cr: gini;

md: 14; mf: None; msl: 10;
mss: 4; s: best

ML23 1D 6538P svm 3 0.69 0.85 p: True; k: rbf;
cw: 0: 1.0; 1: 3.0; C: 1

ML24 2D 25923 svm 2 0.72 0.86 p: True; k: rbf;
cw: 0: 1.1; 1: 1.0; C: 11

ML25 3D 4S svm 2 0.72 0.87 p: True; k: rbf;
cw: 0: 1.1; 1: 1.0; C: 11

ML26 4D 5S svm 2 0.95 0.99 p: True; k: linear;
cw: 0: 1.0; 1: 1.3; C: 1

ML27 5D 19S svm 2 0.81 0.93 p: True; k: linear;
cw: 0: 1.0; 1: 3.0; C: 1

a Machine learning model id; b dataset combination as from Tables SM12–SM18; c S aureus strain code;
d machine learning algorithm as defined in Material and Methods; e value to eliminate column with nlevel number
of non-zero variables; f Matthew correlation coefficient; g ROC AUC values; h machine learning hyperparameters
selected by random search optimization; i, probability; j, kernel; k,class-weight; l, C parameter; l, number of
estimators; m, min_samples_leaf; n, max_depth; o, weights; p, KNN p parameter; q, number of neighbours;
r, metric parameter; s, metric; t, leaf size; u, algorithm; v, splitter; w, min sample split; x, max features; y, criterion;
z, solver; aa, penalty; bb, max iters.

Chemical Components Importance and Partial Dependences

Chemical component importance was evaluated through FIs and PDs. Each FI indicates a sort of
absolute correlation coefficient for each of the chemical components, while the associated PD gives its
negative, positive or neutral influence. Therefore, PDs positive or negative trends were investigated
by means of a spearman correlation (SP) coefficient, which is known to range from −1 to 1. The SP
values were used to positively or negatively weight the corresponding FI values to obtain positive
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or negative weighted FIs (WFIs). WFIs were inspected by means of bar plots in a straightforward
interpretation. For sake of clarity and redundancy avoidance, the analysis was focused on the top 30 FI
values (Figures 6–9). To avoid any recurrence and to reduce text length, only the detailed results for
the 40%, 80% and 120% biofilm thresholds and for the antimicrobial data are reported. The overall
associated effects for the chemical components are summarized in Table 3.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 21 
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bars indicate components with potential antisynergistic effect on S. aureus spp.
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Table 3. Summary on the ML predicted essential oils’ (EO) single compounds influence on biofilm
modulation and antibacterial activity. Compounds with an absolute value of FWI higher than 5
are listed.

T a
Anti-biofilm or

Synergistic
Antimicrobial b

Spectrum c
Pro-biofilm or

Antisynergistic
Antimicrobial d

Spectrum

Biofilm
modulation 40 eugenol 6538P, 25923 eucalyptol 6538P

β-caryophyllene 6538P, 25923 β-pinene 6538P
β-pinene 25923 α-pinene 25923

p-cymen-8-ol 25923
terpinolene 25923
humulene 25923
β-elemene 25923

humulene epoxide 2 25923
α-cubebene 25923

limonene 25923, 6538P
linalool 6538P

α-terpineol 25923
borneol 25923

80
o-cymene 25923 eucalyptol 6538P, 25923
p-cymene 25923 eugenol 6538P
α-terpineol 6538P α-terpineol 25923
limonene 6538P o-cymene 25923

β-caryophyllene 6538P sabinene 6538P
humulene 25923

β-caryophyllene 25923
borneol 25923

120

β-caryophyllene 6538P, 19S eucalyptol 6538P
α-terpineol 6538P

linalool 6538P
p-cymen-8-ol 6538P

borneol 6538P, 19S
α-pinene 6538P
β-pinene 19S

eucalyptol 19S
humulene 19S

caryophyllene oxide 19S

Antibacterial
activity

Active
or

Inactive

eugenol 25923, 4S eucalyptol 6538P, 5S, 19S
carvacrol 25923, 4S limonene 6538P, 19S

β-caryophyllene 25923, 4S β-pinene
p-cymene 5S

1-octen-3-ol 5S
α-citral 5S

a Threshold value used to binarize the dataset response; b EOs’ components predicted mainly to act either to
negatively modulate biofilm production or increase antibacterial potency; c indicates whether the component is
important for all strains or a limited set; d,b EOs’ components predicted mainly to act either to positively modulate
biofilm production or decrease antibacterial potency.

Chemical Components Importance and Partial Dependences at 40% Biofilm Production
Threshold Value

At 40% biofilm production threshold value, acceptable MCC and AUC values were obtained for
6538P and 25293 S. aureus strains (ML1, ML2, ML3, ML4 and ML5, Table 2 and Figure 6). In general,
an overall similar trend was observed for all the compiled dataset. In particular, β-caryophyllene
(partially), eugenol and β-pinene (partially) components, at different tested concentrations, and listed
in the top 30 most frequent EOS’ components with percentage of presence of 64%, 11% and 49%,
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respectively (Figure 5 and Table SM8), had a positive influence on the EO strong biofilm inhibition
potency; among which eugenol showed the highest WFI value (about 14). On the contrary, eucalyptol,
α-pinene, p-cymen-8-ol, terpinolene, humulene, β-elemene, humulene epoxide 2, α-cubebene,
limonene, linalool, β-caryophyllene, α-terpineol, borneol and β-pinene (partially for 6538P), listed in
the top 60 most frequent compounds (Table SM8), showed to have a variable negative impact on biofilm
inhibition (Figure 6). Among the latter, eucalyptol, humulene epoxide 2 and α-cubebene displayed the
lowest FWI values.

Chemical Components Importance and Partial Dependences at 80% Biofilm Production
Threshold Value

At 80% biofilm production threshold value, ML models were obtained for the 6538P and 23923
strains (ML6, ML7, ML8, ML9 and ML10, Table 2). For an overall moderate biofilm inhibition, the most
important constituent was indicated to be α-terpineol, present in 28 EOs (46%) with a WFI value of
about 8 (Table SM8 and Figure 7). Other biofilm negatively modulating compounds, as indicated by
the ML model, were o-cymene (partially), p-cymene, limonene and β-caryophyllene (partially).

On the contrary, eucalyptol, eugenol, α-terpineol, o-cymene (partially), sabinene, humulene,
β-caryophyllene (partially) and borneol all has a negative influence on biofilm inhibition potency;
eucalyptol being the most important in negatively influencing the anti-biofilm activity for both 6538P
and 25923 strains.

Chemical Components Importance and Partial Dependences at 120% Biofilm Production
Threshold Value

At threshold percentage of 120%, acceptable models (ML16, ML17, ML18 and ML19, Table 2)
gave some hints on the chemical components mainly responsible for increased biofilm formation for
6538P and 19S strains. In particular, eucalyptol (in 33 EOs, Table SM8) seems to positively correlate
with strong biofilm stimulation for both 6538P and 25923 reference strains (Figure 8 and Table 3).
On the other hand, and in agreement with the previous analysis at 40% and 80% biofilm production
threshold values, some compounds such as β-caryophyllene, α-terpineol, linalool, p-cymen-8-ol,
borneol, α-pinene, β-pinene, eucalyptol (19S clinical strain), humulene and β-caryophyllene oxides are
correlated with a non-stimulating biofilm producing effect. Furthermore, this model highly evidenced
some controversy in the role of eucalyptol, which is correlated with promoting biofilm production for
6538P and is shown as a biofilm reducer from model ML19, which was developed arbitrarily with
non-homogenous data.

Chemical Components Importance and Partial Dependences for Antimicrobial Activity

Differently from biofilm related datasets, ML models with very high statistical coefficients were
built for all strains (Table SM17). Inspection of the representative models (ML28, ML29, ML30,
ML31 and ML32, Table SM18) revealed the WFIs to share the same profile for almost all chemical
components. Specifically, positive WFIs were calculated for eugenol, carvacrol, β-caryophyllene,
p-cymene, 1-octen-3-ol and α-citral. Contrarily, strong negative WFIs were observed for eucalyptol,
limonene and β-pinene (Figure 9), along with less important components such as α-terpineol, α-pinene
and o-cymene.

3. Discussion

Bacterial growth in sessile phenotype (biofilm) plays a pivotal role in the chronicization of many
infections, including lung infections, as in CF patients; it represents a form of strong phenotypical
resistance to the host immune defenses and antibacterial drugs. The identification of new compounds
able to inhibit biofilm growth could lead to remove a primary cause of the persistence of infections.

Recently [19] the antibacterial activity exerted by some selected EOs was demonstrated, from a
list of 61, on the planktonic forms of S. aureus and P. aeruginosa strains isolated from CF patients.
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Here it is reported the investigation on the potential antibiofilm activity of the same EOs against a
selected group of clinical isolates and reference S. aureus strains.

The results above reported showed the capability of two out of the 61 tested EOs (EO45 and
EO58), at 1% concentration, to strongly reduce biofilm growth below 40% in all tested S. aureus strains,
while only one essential oil (EO47) was effective in reducing biofilm growth below 50%. All the other
EOs showed an extreme variability in biofilm modulation (positively and negatively) on the S. aureus
strains. A different scenario was observed at 0.05% concentration: Almost all EOs lost their antibiofilm
activity and some EOs stimulated biofilm growth. The equilibrium between formation and disruption
of biofilm is subtle, being driven by a wide array of intracellular and extracellular factors. Therefore,
it is not surprising that the same EO, a mixture of chemical compounds that may act synergistically
or anti-synergistically, may perform as a biofilm growth inhibitor or activator, depending on the
testing concentration.

The chemical analysis of the tested EOs coupled with ML modeling indicated that, among the
239 constituents, those related to strong biofilm growth inhibition below 40%, compared to untreated
samples, were mainly eugenol, β-caryophyllene and partially β-pinene, while eucalyptol, α-pinene,
p-cymen-8-ol, terpinolene, humulene, β-elemene, humulene epoxide 2, α-cubebene, limonene, linalool,
α-terpineol and borneol were related to a non-antibiofilm growth role. These finding are in agreement
with several recent reports. Purkait et al. [31] demonstrated the ability of eugenol and β-caryophyllene,
alone or in combination, to reduce biofilm of Listeria monocytogenes and Salmonella typhimurium.
Eugenol was demonstrated to show 17–86%, 24–69%, 30–91%, 9–94% and 4–89% reduction in biofilm
biomass of S. aureus ATCC 25923 and several MRSA strains (FSA3, FSA11, FSA13 and FSA32),
respectively [32]. Effect on biofilm of eugenol was studied in vitro using microtiter plate assay and
in vivo on an otitis media-rat model, respectively. Sub-inhibitory concentration of eugenol significantly
inhibited biofilms growth of MRSA and MSSA in vitro in a concentration-dependent manner;
it decreased the expression of biofilm- and enterotoxin-related genes. Eugenol showed a synergistic
effect with carvacrol on the eradication of pre-established biofilms [33]. Interestingly, β-caryophyllene
and eugenol were also indicated by ML among those mainly involved in the antibacterial activity on
the planktonic phenotype of the same bacterial strains [19]. Furthermore, ML designated the following
antibacterial components as important: carvacrol, 1-octen-3-ol, α-citral and p-cymene. Scientific articles
published in the last years have reported about either antibiofilm or antibacterial potencies of EO
components. In particular, the inhibition of bacterial growth and biofilm production byβ-caryophyllene
on Streptococcus mutans has been recently reported [34]. Herein, carvacrol was predicted to be important
for broad antibacterial activity on S. aureus 6538P; a report indeed indicated its experimental efficacy
in both inhibition of biofilm production and antibacterial activity against Salmonella enterica serotype
Typhimurium (ATCC 14028) [35]. A controversial profile was observed for limonene, predicted by
ML to have a pro-biofilm effect by models developed at 40% threshold, an anti-biofilm role at 80%
threshold and associated to an anti-synergistic effect on the antibacterial potency. Nevertheless,
this unusual behavior was already reported in an investigation on 90 EOs against four Staphylococcus
species (S. aureus 6538P, S. aureus 25923, S. epidermidis RP62A and S. epidermidis O-47) [18]. A behavior
similar to that of limonene was also predicted for o-cymene and β-pinene. Several literature reports
confirm the role of limonene in modulating biofilm production in other bacteria, thus highlighting its
EO’s localized importance. Limonene showed a concentration-dependent reduction in the biofilm
formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC)
of 400 µg mL−1. Limonene was found to possess about 75–95% antibiofilm activity against all the
tested pathogens (ATCC 6249) [36]. Regarding the other components indicated important for the
antimicrobial activity, such as 1-octen-3-ol and citral, reports clearly indicated some interesting activity
against a series of bacteria, including S. aureus [37]. On the other hand, although negative data are
difficult reported, herein was stressed by the ML model that eucalyptol (1,8-cineol) was indicated
to likely have a detrimental effect on both biofilm production inhibition and antibacterial potency
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(Table 3). From a survey it was found indeed that eucalyptol was effectively reported to have scarce
potency either on biofilm inhibition or as an antibacterial agent [38].

Planktonic bacteria continuously detach from a biofilm and spread out; as a consequence the
whole bacterial population generated by a biofilm includes both planktonic and sessile cells that display
different biological behaviors in metabolism, growth rate, resistance (both to host immune response
and to antibacterials), etc. [39]. An ideal anti-infective strategy should aim both at preventing/reducing
biofilm growth and at the killing of planktonic bacteria. Such a combination would likely restore
the full efficacy of the host immune response. In this regards, an EO including components exerting
both/either antibiofilm and/or antimicrobial activity could represent an effective tool to lower bacterial
virulence and enhance antibacterial drug’s efficacy [40]. It could be speculated that the antibiofilm
components might reduce bacterial aggregation, while antimicrobial ones would kill isolated bacteria.

In this report, the antibiofilm activity was assessed with the Christensen method and was
confirmed by SEM investigations. The modifications of biofilm structure observed at SEM after
treatment with EO45 and EO58 were similar. The chemical compositions of EO45 and EO58 were both
qualitatively and quantitatively different, thus suggesting that different compounds might interfere
with biofilm production. In this regard, and in agreement with ML suggestions, it could be therefore
guessed that EOs’ antibiofilm activity is likely due to multiple mechanisms of action, in agreement
with the multifactorial regulation of biofilm phenotype.

The reported data suggest that antibiofilm activity obtained at 1.00% concentration can be lost or
even overturned at lower concentrations. At first glance, and according to the obtained experimental
data, antibiofilm active EOs should be used only in modalities that do not reduce their concentration,
as in diluted form they could induce biofilm growth. Therefore, their use should be limited to sanitary
settings (as disinfectants of tools and surfaces) and for the topical treatment of human body surfaces.
On the other hand, ML-based analysis suggested that some EO components could be of interest to
reduce biofilm production and to increase antimicrobial potency. In this, mixtures of essential oils
might represent a workaround. As greatly supported by literature, ML investigation and further
experimental data could elucidate if combinations of carefully selected EOs could create synergies,
allowing concentration reduction for an effective biofilm inhibition.

4. Materials and Methods

4.1. Ethics Approval and Informed Consent

The approval for this research was granted by the Ethics Committee of Children’s Hospital
and Institute Research Bambino Gesù in Rome, Italy (No 1437_OPBG_2017 of July 2017), and it was
performed according to the principles of the Helsinki Declaration. Informed consent was obtained
from all individual participants and all parents/legal guardians of the patients included in the study.

4.2. S. aureus Clinical Isolates from CF Patients Used for the Biofilm Production Assays

In this investigation, 3 representative S. aureus strains isolated from CF patients were used,
selected from a list of 20 by means of unsupervised ML clusterization, as recently described [19]. Briefly,
patients were treated according to current standards of care [41], with at least four microbiological
controls per year. Informed consent was obtained from all subjects aged 18 years and older and
from parents for all underage. According to the approved guidelines, microbiological cultures were
performed using appropriate selective media and manual or automatic systems (API20NE, Vitek2,
MALDI-TOF mass spectrometry); isolates were identified by 16S rRNA sequencing. The S. aureus
strains were selected from a local collection containing about 10.000 CF bacterial isolates. The selected
strains have different phenotypic and biochemical characteristics, in order to represent the complexity
of the pulmonary microbial population of CF patients treated at the OPBG center. Additional data are
reported in Supplementary Materials (Tables and Figures labeled as SM#). The 3 selected S. aureus
strains were clustered on the basis of 13 qualitative descriptors (Table SM1). The phenotypic and
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genotypic characteristics of 3 representative S. aureus strains used in this work are summarized in
Table SM2. As often reported [42,43], S. aureus ATCC 6538P (6538P) and S. aureus ATCC 25923
(25923) were also included in the study, used as reference strains for either antimicrobial or biofilm
formation evaluation.

4.3. Biofilm Production Assay in Presence of EO

The quantification of in vitro biofilm production was based on microtiter plate biofilm assay
(MTP). The wells of a sterile 96-well polystyrene flat-base plate were filled with medium containing a
dilution of the bacterial culture in exponential growth phase in presence and absence of each EO as
previously reported [18]. Briefly, the wells of a sterile 96-well flat-bottomed polystyrene plate were
filled with 100 µL of the appropriate medium. 1/100 dilution of overnight bacterial cultures was added
into each well (about 0.5 OD 600 nm). As control, the first row contained the untreated bacterial cells
in Brain Hearth Infusion broth (BHI, Oxoid, Basingstoke, UK). In the second row the same culture
medium was added with the addition of each EO at an appropriate concentration. The plates were
aerobically incubated for 18 h at 37 ◦C. After the incubation, planktonic cells were gently removed;
each well was washed three times with double-distilled water and patted dry with a piece of paper
towel in an inverted position. For the quantification of biofilm formation, each well was stained with
0.1% crystal violet and incubated for 15 min at room temperature, rinsed twice with double-distilled
water, and thoroughly dried. The remaining dye attached to the adherent cells was solubilized with
20% (v/v) glacial acetic acid and 80% (v/v) ethanol. After 30 min of incubation at room temperature, the
total biomass of biofilm in each well was spectrophotometrically quantified at 590 nm. Each data point
is composed of 4 independent experiments, each performed at least in 3 replicates.

For SEM analysis bacteria were grown as reported below; briefly, 1/100 dilution of overnight
bacterial cultures was transferred in tubes containing SEM stubs (aluminum, 12.5 mm diameter, 6 mm
pin) and incubated for 18 h at 37 ◦C in static conditions to assess biofilm production, in BHI in presence
and in absence of EO. After the growth, SEM stubs were washed in 0.1 M phosphate buffer pH7.4 (PB)
and fixed in glutaraldehyde 2.5% in 0.1 M PB buffer.

4.4. SEM Protocols

Samples of S. aureus 4S, S. aureus 5S and S. aureus 25923 grown on aluminum disks were processed
as reported in Table SM3 with OsO4-RR-TA-IL protocol.

As previously reported [44], the OsO4-RR-TA-IL protocol avoids dehydration, drying and sputter
coating [45–47], allowing high-resolution and high-magnification imaging of biofilm three-dimensional
structure without artifacts formation. In addition, it is a fast procedure, with low sample loss. The use
of RR and TA, implemented by IL, lends the sample resistant under high vacuum and high voltages
(15–20 kV) conditions.

4.5. Statistical Analysis of Biological Evaluation

Data reported were statistically validated using Student’s t-test comparing mean absorbance of
treated and untreated samples. The significance of differences between mean absorbance values was
calculated using a two-tailed Student’s t-test. A p value of <0.05 was considered significant.

4.6. Essential Oil Chemical Composition Analysis

EOs listed in Table SM4 were purchased from Farmalabor srl (Assago, Italy) and analyzed
by gas chromatograph and mass spectrometer (GC-MS) to characterize their chemical composition.
A Turbomass Clarus 500 GC-MS/GC-FID from Perkin Elmer instruments (Waltham, MA, USA),
equipped with a Stabilwax fused-silica capillary column (Restek, Bellefonte, PA, USA) (60 m × 0.25 mm,
0.25 µm film thickness), was used to perform the chemical analyses. The operating conditions used
were as follows: GC oven temperature was set at 40 ◦C for 5 min and programmed to 220 ◦C at a rate
of 6 ◦C/min, and kept constant at 220 ◦C for 20 min. Helium was used as carrier gas (1.0 mL/min).



Int. J. Mol. Sci. 2020, 21, 9258 17 of 20

Mass range was from 40 to 450 m/z using electron-impact at 70 eV mode. A total of 1 µL of each
essential oil was diluted in 1 mL of methanol and 1 µL of the solution was injected into the GC injector
at the temperature of 280 ◦C. Relative percentages for quantification of the components were calculated
by electronic integration of the GC-FID peak areas. The identification of the constituents was achieved
by comparing the obtained mass spectra for each component with those reported in mass spectra Nist
02 and Wiley libraries. Linear retention indices (LRIs) of each compound were also calculated using a
mixture of aliphatic hydrocarbons (C8–C30, Ultrasci Bologna, Italy) injected directly into GC injector at
the same operative conditions reported above. All analyses were repeated twice.

4.7. Machine Learning Binary Classification

Similarly as reported [18], all calculations were performed using the Python programming
language (version 3.7, https://www.python.org/) by executing in-house code in the Jupyter Notebook
platform. The biological data and essential oil chemical composition were imported and loaded into a
Python Pandas dataframe and pre-processed to the final datasets to develop the classification models.
Machine learning algorithms used in this study were implemented using the Scikit-learn library
(sklearn) [48]. Unsupervised dimensionality reduction was performed with principal component
analysis (PCA) [49] to extract 85% of explained variance. Cross-validation (CV) was used to evaluate
the robustness of the final models as well as during the hyperparameters’ tuning. Different cut-off

values were used to obtain the optimized hyperparameters classification models for each strain. A first
hyperparameters selection was achieved through 3000 randomized runs from all possible considered
combinations [50]. Furthermore, variables which take only a few values (nlevels) and, in addition,
have ill distribution of the objects in these levels were pruned. Nlevel variables are dangerous as
they force the under training model to fit most of the variance of a few objects with a high leverage,
thus leading to spurious and misleading results. Column pruning was applied up to 4 unique levels.
A final optimization was completed through a systematic variation (grid search) of the numerical
random selected hyperparameters varying the values in a range of ± 10 (Table SM11). To develop the
models different linear and non-linear ML classification algorithms were used: random forest (RF),
gradient bosting (GB), support vector (SV), logistic regression (LR), decision tree (DT), and k nearest
neighbors (KNN) as implemented in sklearn. The binary classification models were numerically
and graphically evaluated by accuracy (ACC), F1 score, Matthews correlation coefficient (MCC),
receiver operating characteristic (ROC) area under the curve (AUC). The importance of EOs chemical
components was individually evaluated through the “feature importance” (FI) and partial dependence
(PD) [51] as implemented in the Skater python library [52,53]. Internal models’ validation was carried
out by leave-some-out CV using 5 groups using the stratified K-fold method while monitoring the
average value of MCC obtained from 50 random CV iterations [17,54]. Final models were selected
based on both MCC and ROC AUC values.
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