

Figure S1: Knockdown of ITGB1 in W1 and W1CR cells. Shown is a representative Western blot of ITGB1 knockdown in W1 and W1CR cells, confirming the almost complete deletion of ITGB1 in the knockdown cells compared to scrambled control.

Figure S2: The impact of PI3K and PTEN pathway on the resistance of W1 and W1CR cells. Western blot data of PI3K (a) and phosphorylated fraction of PI3K (b). EC50 levels under PI3K inhibition with LY294002 ($0.1 \mu \mathrm{M}$) (c). Protein levels of PTEN (d) and p-PTEN (e). Data are means of at least $\mathrm{n}=3$ $\left(\pm\right.$ SEM), asterisks indicate statistical significance: ${ }^{*} \mathrm{p}<0.05$; ${ }^{* *} \mathrm{p}<0.01$; "** $\mathrm{p}<0.001$; ${ }^{* * * *} \mathrm{p}<0.0001$.

Figure S3: Western blot data of the wnt signaling related p-GSK3 α (a) and p-GSK3 β (b) proteins in W1 and W1CR cells and their deregulation by cisplatin and/or collagen treatment.

Figure S4: The influence on MAPK pathway in W1 and W1CR cells. Deregulation of gene expression (fold change) of MEK (a) in W1 and W1CR cells upon the indicated treatment. Expression of p-MEK (b) at protein level and inhibition of p-MEK by U0126 at $0.5 \mu \mathrm{M}$ (c). (d) Protein expression of ERK given as the p -ERK/ERK ratio as an indicator of ERK signaling activity. Protein data are means of at least $\mathrm{n}=3$ (\pm SEM), asterisks indicate statistical significance: ${ }^{*} \mathrm{p}<0.05$; ${ }^{*} \mathrm{p}<0.01$.

Figure S5: The role of CREB, a MAPK pathway related downstream component in W1 and W1CR cells to regulate the sensitivity to cisplatin. Western blot data of CREB (a) and p-CREB (b) in W1 and W1CR cells upon the indicated treatments. (c) Impact of the CREB inhibitor 666-15 (0.1 $\mu \mathrm{M})$ to affect the cisplatin sensitivity in both cell lines. Data are means of at least $\mathrm{n}=3$ (\pm SEM), asterisks indicate statistical significance: ${ }^{*} \mathrm{p}<0.05 ;{ }^{* *} \mathrm{p}<0.01$; ${ }^{* * *} \mathrm{p}<0.001$; ${ }^{* * * *} \mathrm{p}<0.0001$.

