Supporting information

Residue	1 H α / 13 C α	${}^{1}\mathbf{H}eta/{}^{13}\mathbf{C}eta$	Others
Phe4	4.02 / 57.7	3.04 / 41.0	¹ Hδ 7.16 / ¹³ Cδ 132.1 ¹ Hε 7.30 / ¹³ Cδ 131.7 ¹ Hζ 7.30 / ¹³ Cζ 130.3
Arg5	4.27 / 55.9	(1.70, 1.63) / 31.0	¹ Ηγ 1.46 / ¹³ Cγ 26.9 ¹ Ηδ 3.13 / ¹³ Cδ 43.3
His6		$(3.11, 3.06) / 31.0 \qquad {}^{1}H\delta 2 7.06 / {}^{13}C\delta 2 \\ {}^{1}H\epsilon 1 7.86 / {}^{13}C\epsilon 1$	

Table S1. ¹H, and ¹³C chemical shifts assigned for the *apo* $A\beta_{4-6}$ peptide at 298 K on Varian Inova 500 NMR spectrometer

Table S2. ¹H, and ¹³C chemical shifts assigned for the $Pd(A\beta_{4-6})$ complex at 298 K on Varian Inova 500 NMR spectrometer

Residue	1 H α / 13 C α	$^{1}\mathbf{H}eta/^{13}\mathbf{C}eta$	Others
Phe4	3.99 / 64.8	(3.15, 3.08) / 41.8	¹ Hδ 7.35 / ¹³ Cδ 132.3 ¹ Hε 7.41 / ¹³ Cδ 131.7 ¹ Hζ 7.36 / ¹³ Cζ 130.1
Arg5	4.24 / 64.8	(2.00, 1.73) / 31.1	¹ Ηγ (1.60, 1.46) / ¹³ Cγ 25.0 ¹ Hδ 3.16 / ¹³ Cδ 44.0
His6	4.33 / 56.1	(3.23, 2.70) / 33.8	¹ Hδ2 7.00 / ¹³ Cδ2 117.8 ¹ Hε1 7.56 / ¹³ Cε1 139.2

Table S3. The ¹³C R_1 and R_2 relaxation rates extracted for the aromatic carbons in the FRH peptide acquired on natural abundance of ¹³C isotope. The NMR experiment performed at 298 K on Varian Inova 500 NMR spectrometer

Residue and Resonance	R_1 (s ⁻¹)		R_2 (s ⁻¹)	
	аро	Pd(II) complex	аро	Pd(II) complex
Phe4 ${}^{13}C^{\delta}$	1.448 ± 0.006	1.495 ± 0.012	1.075 ± 0.039	1.092 ± 0.031
Phe4 ${}^{13}C^{\epsilon}$	1.485 ± 0.046	1.282 ± 0.024	1.126 ± 0.026	1.343 ± 0.042
His6 $^{13}C^{\delta 2}$	1.292 ± 0.030	2.635 ± 0.026	19.992 ± 3.299	4.640 ± 0.148
His6 ${}^{13}C^{\epsilon 1}$	1.437 ± 0.060	2.893 ± 0.162	3.041 ± 0.125	1.891 ± 0.049

Residue	¹ H / ¹⁵ N	1 H α / 13 C α	1 H β / 13 C β	Others
	[ppm]	[ppm]	[ppm]	[ppm]
Phe4		4.17 / 57.3	(3.14, 3.08) / 40.2	¹ Hδ 7.20 / ¹³ Cδ 132.1 ¹ Hε 7.32 / ¹³ Cδ 131.7 ¹ Hζ 7.32 / ¹³ Cζ 130.5
Arg5		4.29 / 56.0	(1.74, 1.68) / 31.2	¹ Ηγ (1.52, 1.49) / ¹³ Cγ 27.0 ¹ Ηδ (3.15, 3.13) / ¹³ Cδ 43.3
His6		4.61 /	(3.16, 3.09) / 30.2	¹ Hδ2 7.11 / ¹³ Cδ2 120.1 ¹ Hε1 8.09 / ¹³ Cε1 137.7
Asp7	8.40 / 122.0	4.64 /	2.67 / 41.3	
Ser8	8.45 / 116.5	4.39 / 59.0	(3.91, 3.87) / 63.8	
Gly9	8.55 /	(3.95, 3.87) / 45.4		
Tyr10	7.98 / 120.1	4.50 / 58.3	(3.02, 2.94) / 38.9	¹ Hδ 7.06 / ¹³ Cδ 133.2 ¹ Hε 6.77 / ¹³ Cε 118.2
Glu11	8.37 / 122.6	4.20 / 56.6	(1.86, 1.92) / 30.4	¹ Ηγ (2.20, 2.15) / ¹³ Cγ 36.2
Val12	8.06 / 121.2	3.93 / 62.7	1.93 / 32.6	1 H γ 1 0.86 / 13 C γ 1 20.8 1 H γ 2 0.76 / 13 C γ 2 20.8
His13	8.36 / 122.0	4.64 /	(3.11, 3.04) / 30.1	¹ Hδ2 7.08 / ¹³ Cδ2 119.8 ¹ Hε1 8.13 / ¹³ Cε1 137.6
His14				111 (136 227
Gln15	8.50 / 122.0	4.31 / 55.9	(2.10, 1.98) / 29.5	$^{1}\text{H}\gamma$ / $^{13}\text{C}\gamma$ 33.7 $^{1}\text{H}\delta2$ (6.90, 7.57) / $^{15}\text{N}\delta2$ 112.6
Lys16	8.49 / 123.6	4.26 / 56.4	(1.85, 1.77) / 33.1	¹ Hγ (1.48, 1.43) / ¹³ Cγ 24.9 ¹ Hδ 1.69 / ¹³ Cδ 29.1 ¹ Hε 3.00 / ¹³ Cε 42.1

Table S4. ¹H, ¹³C, and ¹⁵N chemical shifts assigned for apo $A\beta_{4-16}$ peptide at 298 K on Agilent DDR2 800 NMR spectrometer

Residue	1 H/ 15 N	1 H α / 13 C α	${}^{1}\mathbf{H}eta/{}^{13}\mathbf{C}eta$	Others
	[ppm]	[ppm]	[ppm]	[ppm]
Phe4		4.15 / 57.3	(3.12, 3.07) / 40.3	¹ Hδ 7.19 / ¹³ Cδ 132.1 ¹ Hε 7.31 / ¹³ Cδ 131.7 ¹ Hζ 7.32 / ¹³ Cζ 130.5
Arg5		4.29 / 64.9	(1.75, 1.68) / 31.2	¹ Ηγ (1.53, 1.47) / ¹³ Cγ 25.0 ¹ Ηδ (3.15, 3.12) / ¹³ Cδ 44.0
His6		4.41 / 56.5	(3.22, 2.73) / 34.3	1 H δ 2 / 13 C δ 2 1 H ϵ 1 / 13 C ϵ 1
Asp7	8.23 / 122.3	4.43 / 52.7	(2.57, 1.84) / 40.9	
Ser8	8.13 / 115.5	4.34 / 59.1	(3.86, 3.83) / 63.7	
Gly9	8.52 / 110.6	3.88 / 45.5		
Tyr10	7.93 / 119.9	4.50 / 58.3	(3.04, 2.93) / 38.8	¹ Hδ 7.08 / ¹³ Cδ 133.2 ¹ Hε 6.80 / ¹³ Cε 118.2
Glu11	8.39 / 122.6	4.20 / 56.7	(1.86, 1.93) / 30.3	$^{1}{ m H}\gamma$ (2.20, 2.16) / $^{13}{ m C}\gamma$ 36.2
Val12	8.07 / 121.1	3.94 / 62.8	1.94 / 32.6	¹ Ηγ1 0.86 / ¹³ Cγ1 20.7 ¹ Ηγ2 0.77 / ¹³ Cγ2 20.9
His13	8.34 / 122.0		(3.11, 3.04) / 30.1	¹ Hδ2 7.08 / ¹³ Cδ2 119.8 ¹ Hε1 8.12 / ¹³ Cε1 137.6
His14			(3.14, 3.03) / 30.3	¹ Hδ2 7.05 / ¹³ Cδ2 119.8 ¹ Hε1 8.12 / ¹³ Cε1 137.6
Gln15	8.49 / 122.0	4.31 / 56.0	(2.10, 1.98) / 29.4	¹ Ηγ / ¹³ Cγ 33.7 ¹ Ηδ2 (6.90, 7.57) / ¹⁵ Nδ2 112.6
Lys16	8.49 / 123.6	4.26 / 56.4	(1.85, 1.77) / 33.1	¹ Hγ (1.48, 1.43) / ¹³ Cγ 24.9 ¹ Hδ 1.69 / ¹³ Cδ 29.1 ¹ Hε 3.00 / ¹³ Cε 42.1

Table S5. ¹H, ¹³C, and ¹⁵N chemical shifts assigned for Pd(A β_{4-16}) complex at 298 K on Agilent DDR2 800 NMR spectrometer

Residue	ψ	φ	Χ1
Phe 4			
Arg 5	-70.5 ± 20.0	143.3 ± 20.5	
His 6	$\textbf{-85.3} \pm \textbf{68.9}$	170.0 ± 46.8	
Asp 7	$\textbf{-65.3} \pm 20.0$	-20.7 ±64.9	-60.0 ± 30.0
Ser 8	-88.4 ± 20.0	-5.1 ± 69.7	60.0 ± 30.0
Gly 9	$\textbf{-87.1} \pm \textbf{70.0}$	4.6 ± 24.1	
Tyr 10	$\textbf{-81.5}\pm20.6$	143.9 ± 23.2	-60.0 ± 30.0
Glu 11	$\textbf{-65.2}\pm20.0$	139.4 ± 21.2	
Val 12	$\textbf{-84.6} \pm \textbf{42.4}$	135.2 ± 29.8	180.0 ± 30.0
His 13			
His 14			
Gln15			
Lys 16			

Table S6. The restrains for ψ and ϕ backbone and χ_1 side-chain torsion angles evaluated by TALOS-N program for apo A β_{4-16} peptide on base ¹H, ¹³C, and ¹⁵N chemical shifts.

	-		
Residue	ψ	φ	χ_1
Phe 4			
Arg 5			
His 6			
Asp 7	-76.0 ± 20.0	137.1 ± 26.8	
Ser 8	-71.1 ± 20.0	138.8 ± 28.9	$\textbf{-60.0} \pm 40.0$
Gly 9			
Tyr 10			-60.0 ± 30.0
Glu 11	-69.2 ± 30.0	144.1 ± 45.2	$\textbf{-60.0} \pm 40.0$
Val 12	-65.8 ± 20.0	140.8 ± 20.0	180.0 ± 40.0
His 13			
His 14			
Gln15			
Lys 16			

Table S7. The restrains for ψ and ϕ backbone and χ_1 side-chain torsion angles evaluated by TALOS-N program for Pd(A β_{4-16}) peptide on base ¹H, ¹³C, and ¹⁵N chemical shifts.

Figure S1. A β_{4-16} Tyr10 fluorescence ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 303$ nm) quenching by Cu(II) (red dots) and Pd(II) (blue circles). Regions corresponding to the binding of the first and second metal ion equivalent are marked by dashed lines. [A β] = 25 μ M, [HEPES] = 20 mM, pH 7.4

Figure S2. $A\beta_{4,16}$ Tyr10 fluorescence ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 290-400$ nm) quenching by Cu(II) (**A** and **C**) and Pd(II) (**B** and **D**). The changes were observed at pH 6.5 (20 mM MES, **A** and **B**) and 7.4 (20 mM HEPES, **C** and **D**). Shown are the spectra of the peptide with increasing concentrations of Cu(II) or Pd(II) ions. The concentration of $A\beta_{4,16}$ was constant (25 μ M), and the concentrations of metal ions were as follows: 0, 4, 8, 12, 16, 18, 20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 52, 60, 80, and 100 μ M.

Figure S3. The ¹H-¹⁵N HSQC spectrum acquired for $Pd(A\beta_{4-6})$ complex at 298 K. The experiments were performed on natural abundance of the ¹⁵N isotope Varian Inova 500 NMR spectrometer.

Figure S4. The values of **A)** longitudinal (R_1) and **B)** transverse (R_2) ¹³C relaxation rates measured for aromatic carbons in Phe4 and His6 in the A β_{4-6} peptide for *apo* (red) and Pd(II) (blue) forms. The examples of fit relaxation data for His6 ¹³C^{δ^2} in A β_{4-6} in complex with Pd(II) presented on panels **C)** and **D)** for ¹³C R_1 and R_2 relaxation rates, respectively. The measurements were performed on the natural abundance of ¹³C isotope utilizing on Varian Inova 500 NMR spectrometer.

Figure S5. The amide-aliphatic part of homonuclear 2D ¹H-¹H TOCSY spectra for the $A\beta_{4-16}$ peptide acquired with a 80 ms mixing time for *apo* (**A**) and Pd($A\beta_{4-16}$) saturated (**B**) forms on an Agilent DDR2 800 NMR spectrometer at 293 K. The assignments in both forms are presented as one-letter code and sequence number. In the case of the Pd($A\beta_{4-16}$) saturated form, signals (Asp7, Ser8, Gly9, Tyr10) representing the *apo* $A\beta_{4-16}$ peptide are clearly visible. The whole assignments yielded by the analysis of NMR data are presented in Tables S4 and Table S5 for the *apo* and Pd($A\beta_{4-16}$) form, respectively.

Figure S6. Ensemble of 20 low-energy structures of $A\beta_{4-16}$ peptide in *apo* form evaluated on the base NMR data. The structures are fitted on central ⁶HSGY¹⁰ motif. Orientation side-chains of the His6, Asp7, Ser8 and Tyr10 are shown in green.

© 2020 by the authors. Submitted to *Int. J. Mol. Sci.* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).