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Abstract: The Aβ4−42 peptide is a major beta-amyloid species in the human brain, forming
toxic aggregates related to Alzheimer’s Disease. It also strongly chelates Cu(II) at the N-terminal
Phe-Arg-His ATCUN motif, as demonstrated in Aβ4−16 and Aβ4−9 model peptides. The resulting
complex resists ROS generation and exchange processes and may help protect synapses from
copper-related oxidative damage. Structural characterization of Cu(II)Aβ4−x complexes by NMR
would help elucidate their biological function, but is precluded by Cu(II) paramagneticism.
Instead we used an isostructural diamagnetic Pd(II)-Aβ4−16 complex as a model. To avoid a kinetic
trapping of Pd(II) in an inappropriate transient structure, we designed an appropriate pH-dependent
synthetic procedure for ATCUN Pd(II)Aβ4−16, controlled by CD, fluorescence and ESI-MS. Its
assignments and structure at pH 6.5 were obtained by TOCSY, NOESY, ROESY, 1H-13C HSQC
and 1H-15N HSQC NMR experiments, for natural abundance 13C and 15N isotopes, aided by
corresponding experiments for Pd(II)-Phe-Arg-His. The square-planar Pd(II)-ATCUN coordination
was confirmed, with the rest of the peptide mostly unstructured. The diffusion rates of Aβ4−16,
Pd(II)-Aβ4−16 and their mixture determined using PGSE-NMR experiment suggested that the Pd(II)
complex forms a supramolecular assembly with the apopeptide. These results confirm that Pd(II)
substitution enables NMR studies of structural aspects of Cu(II)-Aβ complexes.

Keywords: Alzheimer’s disease; Aβ peptide; NMR spectroscopy; 13C relaxation; Palladium(II);
ATCUN motif

1. Introduction

The Aβ4−42 peptide is a major beta-amyloid species in the human brain. It was first co-discovered
in 1985 as a major component of amyloid plaques of Alzheimer’s Disease (AD) brains, and was
found to be more abundant than the commonly studied Aβ1−42 and Aβ1−40 peptides [1,2]. However,
this discovery was soon disregarded, and the research was focused on the latter two peptides as
forming neurotoxic aggregates. Aβ4−42 was ignored for more than two decades, until new analytical
methods based on immunochemistry coupled with mass spectrometry revealed Aβ4−42 as the major
Aβ species in various structures of healthy and AD brains [3,4]. Aβ4−42 has been recently recognized
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as one of the fastest aggregating Aβ peptides and, consequently, proposed to be a key source of toxic
amyloid deposits [5–10].

Aβ peptides possess a number of metal-binding amino acid residues, but they are concentrated
in the N-terminal part of their sequence, including Asp1, Asp7, Glu3, Glu11, His6, His13 and His14.
On the basis of chemical and biological studies, Cu(II) ions in particular have been implicated in
the neurotoxicity of Aβ peptides. The logK for Cu(II) binding to Aβ1−16 and Aβ1−40 peptides at a
physiological pH of 7.4 was determined as 10.0 and 10.1, respectively [11].

A large volume of work was devoted to the effects of Cu(II) on the Aβ aggregation and production
of deleterious reactive oxygen species (ROS) via the Cu(II)/Cu(I) catalytic redox couple [12–14].
The bulk of this work was, consequently, devoted to Aβ1−42 and Aβ1−40 peptides, and their
C-terminally truncated models spanning the Cu(II) coordination site, Aβ1−28 and in particular Aβ1−16

peptides. The relevance of ROS production by the Cu(II)/Cu(I) redox process enabled by Aβ1−x
peptides was questioned, however, by the demonstration of a reverse relationship between the extent
of Aβ1−x aggregation and toxicity and their ability to generate ROS via Cu(II) complexes [15].

On the other hand, Cu(II) complexes of Aβ4−x peptides are practically redox silent, as
demonstrated in a ROS generation assay for Aβ4−42 and its non-aggregating model Aβ4−16 [16].
Moreover, the ascorbate activation ability of Cu(II)Aβ4−16 is marginal compared to that of
Cu(II)-Aβ1−16 [17]. Furthermore, Cu(II)Aβ4−x form high-affinity Cu(II) complexes (log K = 13.5 and
14.2 at pH 7.4, for x = 16 and 9, respectively [16,18]). Aβ4−16 was also able to withdraw Cu(II) ions from
Aβ1−16 immediately and quantitatively [16], but, in contrast with Aβ1−x peptides, strongly resisted
copper transfer to metallothionein-3, except for under highly reducing conditions [19,20]. These
properties prompted the concept that Aβ4−42 may serve a physiological purpose in the maintenance
of synaptic transmission as a Cu(II) scavenger, as reviewed recently [21]. Furthermore, its hydrolytic
product, Aβ4−9 is so inert to reduction by GSH that it may help shuttle Cu(II) ions across the
blood–brain barrier [22].

These differences between the Aβ1−x and Aβ4−x peptides result from the different coordination
modes they provide. The Aβ1−x peptides bind the Cu(II) ion in a heterogeneous fashion, using the
N-terminal amine of Asp1, and various combinations of His6, His13 and His14 imidazole nitrogens,
and donor atoms of the Asp1-Ala2 peptide bond [23]. In contrast, the Aβ4−x peptides take advantage
of the truncation of the first three residues, which yields the so-called ATCUN/NTS motif, generated
by Xaa-Yaa-His sequences, where the Cu(II) ion is coordinated to the N-terminal amine, the His
imidazole and two intervening peptide nitrogens [24–26]. Although the Jahn-Teller effect in the d9

electronic structure of the Cu(II) ion stipulates a tetragonal symmetry with axial ligand(s), these
are usually weakly bonded when strong nitrogen ligands occupy equatorial positions. As a result,
such axial sites are often unoccupied or occupied by solvent (water) molecules, as seen in relevant X-ray
structures [27,28]. This situation has also been reproduced in the square planar coordination geometry
of the Cu(II) complex of the Phe4-Arg5-His6 ATCUN/NTS motif obtained from DFT calculations [16].

Taking into account the abundance of the Aβ4−42 peptide in the brain and its possible physiological
role as a Cu(II) binding molecule, we considered that it would be very interesting to obtain a
three-dimensional structure of the Aβ4−16 model peptide in the Cu(II)-complexed form. Unfortunately,
Cu(II) is a paramagnetic metal ion, and despite significant progress in NMR techniques, it is not
possible to obtain detailed structural data for such a small complex [29,30].

The ATCUN/NTS motif yields practically isostructural complexes for Cu(II) and all other
metal ions capable of displacing peptide nitrogens, including Ni(II) [31,32], Pd(II) and Au(III) [33].
These three metal ions have d8 electronic configuration and their ATCUN/NTS complexes are
square-planar and diamagnetic. Therefore, one of these metal ions can be used to substitute for
Cu(II) in the Aβ4−16 complex in order to perform an NMR structural study. Pd(II) is our best choice,
for its ability to form very stable peptide complexes by displacing hydrogen atoms from the side chains
as well as main-chain nitrogens even under acidic conditions [33,34]. As a consequence of the very
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high complex stability, they are also substantially more inert than the Cu(II) complexes, assuring the
slow exchange condition in NMR experiments [34].

This paper describes structural and dynamic properties of the Pd(II) complex of the
Aβ4−16 peptide, investigated by NMR and additional techniques, including mass spectrometry,
circular dichroism, and spectrofluorimetry. We demonstrate the usefulness of Pd(II) substitution
for studies of the structure and reactivity of Cu(II) complexes of Aβ4−x peptides.

2. Results

2.1. Validation of the Pd(II) Complex as a Model for the Cu(II) Complex

Pd(II) is one of the most strongly hydrolysable cations, forming mononuclear Pd(OH)2 species
at pH ∼ 1 and polynuclear forms at pH > 2 [35]. In order to avoid the kinetic entrapment of Pd(II)
in such hydroxides en route to the desired Cu(II)-Aβ4−16 mimic, we used K2PdCl4 as the Pd(II)
source, which can resist hydrolysis and polymerization up to pH 5.5 at appropriate temperatures
and concentrations [36–38]. In control experiments, we observed precipitation of a red-brownish
condensate after 8–10 h for samples containing 1 mM K2PdCl4 at pH 4.5. We, therefore, adopted a
two-step preparation method of Pd(II)Aβ4−16.

In the first step, the peptide was incubated at room temperature with substoichiometric
(0.85 mol eq.) K2PdCl4 at pH 4.0, where the formation process of Pd(OH)2 and its polymerization
to [Pd(OH)2-xClx]n [39] was slower than the anchoring of Pd(II) to the peptide. The reaction was
monitored using CD spectroscopy (Figure 1).

Figure 1. The formation of the 1:1 Pd(II) complex of Aβ4−16 monitored by CD. (A) The 40 h evolution
of CD spectra of the sample containing 0.3 mM Aβ4−16 and 0.255 mM K2PdCl4 at pH 4.0 and room
temperature. (B) The six-hour evolution of CD spectra of the same sample after the change of pH to 6.5.
(C) The time dependence of ellipticity at 360 and 321 nm.

As shown in Figure 1, the initial anchoring of the Pd(II) ion to the peptide occurred promptly,
as seen by an immediate appearance of chiral d − d bands in the spectra at the first time point of
5 min. This initial spectrum containing at least three bands is gradually superseded by a simpler one,
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containing two distinct d-d bands. The kinetics of formation of the latter has not been completed
after 40 h. However, when NaOH was added to pH 6.5, the formation of a final reaction product was
completed within about an hour and no hydroxide precipitation was observed. Therefore, we adopted
a procedure in which the samples were incubated for 24 h at pH 4.0, followed by increasing the pH
to 6.5, which was the standard value for most further experiments.

The samples prepared in this way were controlled by HPLC and major fractions were investigated
by ESI-MS. Figure 2 presents an example of such data. Two major peaks contained uncoordinated
Aβ4−16 (at 27.2 min) and a monomeric Pd(Aβ4−16) complex (at 37.7 min). Several minor peaks
also contained the complex of the same stoichiometry. Both the peptide and the complex exhibited
three charge species, 2+, 3+ and 4+ in electrospray ionisation mass spectrometry (ESI-MS) spectra,
with roughly similar proportions of peak intensities. Figure 2 also presents the ion-mobility
spectrometry–mass spectrometry (IMS-MS) spectra of 2+ and 3+ charge species of Aβ4−16 and
Pd(A4−16), showing very little difference in drift times between the peptide and its Pd(II) complex.

Figure 2. HPLC/MS characterization of products of the two-step procedure of obtaining the Pd(Aβ4−16)
samples. (A) HPLC chromatogram of the sample containing initially 0.5 mM Aβ4−16 and 0.425 mM
K2PdCl4. (B) ESI-MS spectra of the respective HPLC peaks. (C) IMS characterization of Aβ4−16 and
Pd(Aβ4−16) species at pH 6.5.

The next experiment compared the effect of Pd(II) and Cu(II) ions on Tyr10 fluorescence, a common
tool in studying metal binding to Aβ peptide [11,16]. In order to maintain a coherence between the
Pd(II) and Cu(II) complexes, the samples were prepared in a different way. The required aliquots of
stock solutions of Cu(II) salt were added directly to individual 25 µM Aβ4−16 samples dissolved in
20 mM MES buffer at pH 6.5, or 20 mM HEPES at pH 7.4. The Pd(II) samples were prepared using
a two-step procedure: initially, appropriate Pd(II) solutions with Aβ4−16 peptide were prepared in
water, at pH 4, and incubated for 48 h. Next, the appropriate buffer was added to achieve a final
solution with 20 mM MES, pH 6.5, or 20 mM HEPES, pH 7.4. The resulting titration curves, either
for pH 6.5 (Figure 3) and 7.4 (Figure S1) indicate that both metal ions quench Tyr10 fluorescence in a
similar stepwise manner. The straight lines in Figure 3 and Figure S1 are linear fits to the titration curve
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segments corresponding to the binding of the metal ions at the 1st and 2nd binding sites, demonstrated
for Cu(II) ions [16], and presumably equally valid for Pd(II).

Figure 3. Aβ4−16 Tyr10 fluorescence (λex = 280 nm, λem = 303 nm) quenching by Cu(II) (red dots) and
Pd(II) (blue circles). Regions corresponding to the binding of the first and second metal ion equivalents
are marked by dashed lines. [Aβ] = 25 µM, [MES] = 20 mM, pH 6.5.

The results of the above experiments, taken together, strongly supported the assumption that
Pd(II) may be an isostructural substitute for Cu(II) in the ATCUN/NTS motif of Aβ4−16 for structural
studies, forming a mononuclear 1:1 species at pH 6.5 and 7.4. Therefore, we performed a series of
NMR experiments aimed at elucidating the solution structure of this complex.

2.2. Structural Analysis of the Aβ4−6 Peptide as a Simple Model of the ATCUN/NTS Site in Aβ4−16

The short Phe-Arg-His-amide (FRH) peptide represents the N-terminal residues forming the
Pd(II) binding ATCUN/NTS motif. For structural and dynamic aspects of Pd(II) binding, two FRH
samples—without the metal (apo) and saturated with Pd(II)—were used to perform homo- and
heteronuclear NMR experiments. The acquired experimental data enabled the assignment of all 1H
and 13C resonances in both (apo and Pd(II) saturated) forms (Tables S1 and S2). The 1H-13C HSQC
spectra recorded for the apo Aβ4−6 and Pd(Aβ4−6) are presented in Figure 4. The amide 1HN signals
of Arg5 and His6 were not detected due to fast exchange with water in the apo form, and coordination
of the Pd(II) binding in the complex. In the 1H-15N HSQC spectrum, only the signals from the NH2

group at the Phe4 N-terminus were detected (Figure S3). Large downfield chemical shifts along the
13C axis were observed for 13Cα signals for Phe4 and Arg5, together with and 1H shift for 13Cα–1Hα in
His6 (Figure 4A) confirmed that backbone amide groups facilitate the coordination sites for Pd(II) ion.
The fourth site was determined from the analysis of the aromatic part of the 1H-13C HSQC spectrum
(Figure 4B) and selected as 1Hε1 proton in His6. The geometric parameters of the FRH complex
with Pd(II) were extracted from the high-quality 3D structure of GGH tripeptide with Pd(II) ion [33].
Finally, the high-resolution 3D structure of FRH–Pd(II) complex (Figure 5) was solved by refined initial
structure in water box with the YASARA software [40].
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Figure 4. Overlay of the 2D heteronuclear 1H-13C HSQC NMR spectra recorded for (A) aliphatic and
(B) aromatic regions for Aβ4−6 peptide in apo (red) and Pd(II) saturated (blue) forms. The assignments
and changes in the position of the resonances are shown. The experiments were performed on Varian
Inova 500 NMR spectrometer.
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Figure 5. The 3D structure of Phe-Arg-His-amide (FRH) peptide represented the N-terminal
ATCUN/NTS motif saturated with Pd(II) ion based on collected NMR constraints and crystallographic
data available for GGH tripeptide [33].

To obtain information on molecular dynamic processes upon Pd(II) binding, the 13C relaxation
rates (R1 and R2) were measured for the 13C resonances in Phe4 and His6 aromatic side-chains
(Figure S4). The 13Cδ and 13Cε resonances in the Phe4 side-chain did not reveal differences between
the apo and Pd(II) cases, suggesting that they were not affected by Pd(II) binding. In contrast, the 13C
resonances in the His6 side-chain demonstrated substantial differences between both states, confirming
the formation of the coordination bond in the His6 imidazole ring. The R2 relaxation rate for 13Cδ2 was
significantly decreased by Pd(II). At the same time, the Pd(II) binding stimulated the increase of R1

relaxation rate for both His6 resonances–13Cε1 and 13Cδ2 (Figure S4, Table S3). Taking into account that
the R2 relaxation rate reflects the intensity of the dynamic processes in the low-frequency time frame
(ms–µs), we can conclude that Pd(II) binding resulted in shifting the molecular dynamics processes
from the ms–µs to the µs–ns regime (Figure S4A,B).

2.3. Solution Structure of the Pd(II) Complex with the Aβ4−16 Peptide

The Aβ4−16 peptide together with the Pd(Aβ4−16) complex were subjected to structural analysis
in solution based on NMR data. The combination of homonuclear and heteronuclear NMR spectra
yielded the assignments of more than 95% of 1H, 13C and 15N resonances in both forms (See Supporting
Materials, Tables S4 and S5). In fact, in the apo Aβ4−16 peptide, only amide protons in the three
N-terminal residues were not observed, due to fast exchange with water protons. The resonances of
His14 were not assigned due to degeneration of signals from His13 (Table S4). For the Pd(Aβ4−16)
complex, the analysis of NMR data enabled us to assign practically all resonances, except for the amide
protons of Phe4, Arg5 and His6, together with the Hδ1 proton in His6, which were displaced upon
Pd(II) binding (Table S5).

Neither the Aβ4−16 peptide nor the Pd(Aβ4−16) complex yielded a substantial amount of
nontrivial long- and medium-distance constraints in homonuclear NOESY or/and ROESY experiments.
Therefore, the 3D structure of apo Aβ4−16 in solution was evaluated with the Xplor-NIH (version 2.39)
software mostly on the basis of backbone φ and ψ torsion angles, deduced from chemical shifts with
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the TALOS-N program [41]. The ensemble of 20 low-energy structures after additional refinement
with the explicit solvent model demonstrated the existence of some structuring only in the His6–Tyr10
region (Figure S6).

The 3D structure of the complex Aβ4−16 with an equimolar amount of Pd(II) reveals metal
coordination according the ATCUN/NTS motif (Figure 6). Performed structural analysis suggest
that Pd(II) bind to Aβ4−16 in the same manner as to the Pd(Aβ4−6). In comparison to the apo form,
the equimolar complex of Pd(II) resulted in the small chemical shift perturbations (csp) detected
for amide 1HN protons for the residues in 7DSGYEVHHQK16 fragment of the Aβ4−16 peptide.
There are two sets signals observed for Tyr10 (Figure S5B), which suggests this residue exists in
two conformations.

Figure 6. The 3D structure of Pd(Aβ4−16) complex included the N-terminal ATCUN/NTS motif
binding the Pd(II) ion.

2.4. Translational Mobility of Aβ4−16 and Pd(Aβ4−16) in Solution

The translational mobilities of the Pd(Aβ4−16) complexes in solution were studied by diffusion
measurements obtained at 11.7 T. The experimental data were analyzed on the basis of the
Stejskal-Tanner equation [42]:

I = I0 exp(−D(Gγδ)2(∆ − δ/3))

where γH is the 1H gyromagnetic ratio, δ is the gradient duration, ∆ is the diffusion time and G is the
gradient strength. The coefficient of translational diffusion (Dtr) in solution was obtained for Aβ4−16

peptide in apo form and for two concentrations of Pd(II) ions (Figure 7). The Dtr value obtained for
the apo-peptide is 1.64 ± 0.01 × 10−10 (m2/s), for the equimolar ratio in the Pd(Aβ4−16) complex,
the measured Dtr was 1.65 ± 0.02 × 10−10 m2/s which corresponds to an effective hydrodynamic
volume 7.42 (nm3). The Pd(Aβ4−16) complex 1:1.4 characterized Dtr equal to 1.34 ± 0.02 × 10−10 m2/s,
corresponding to the effective hydrodynamic volume 15.98 (nm3), which is more than two times
higher compared to apo-Aβ4−16. The apparent hydrodynamic volume was calculated according to
the Stokes–Einstein equation using a spherical approximation. Although the morphology of the
diffusing species is not spherical, the proposal approximation is widely used to control the aggregation
phenomena [43,44].
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Figure 7. Integral attenuation vs. gradient amplitude in PGSE NMR experiment for Aβ4−16 and
Pd(Aβ4−16) complex in solution. The apo Aβ4−16 peptide (filled circles), equimolar Pd(Aβ4−16)
complex 1:1 (open circles) and 1:1.4 (open squares). The experiments were performed on a Varian Inova
500 NMR spectrometer.

3. Discussion

The CD and fluorescence spectroscopic and MS data strongly suggested that the Pd(II) ion
accommodated the same ATCUN/NTS coordination structure in Aβ4−16 as Cu(II). The evidence was
indirect, however. For CD (Figure 1), it was based on the characteristic alternate pattern of Pd(II)
d − d bands, blueshifted, compared to the Cu(II) case, but retaining their symmetry [16]. For Tyr10
fluorescence, the same quenching pattern was seen for both metal ions (Figure 3), with the quenching
just slightly more effective for the first Pd(II) equivalent. The correct stoichiometry indicating the
replacement of four hydrogens by Pd(II) coordination was provided by ESI-MS (Figure 2A). In addition,
the overlapping of the IMS drift peaks for the apo peptide and the complex is consistent with this
view, because the lack of drift time difference indicates that the Pd(II) ion did not produce the
long-range structuring in the molecule, and hence it had to be coordinated locally at one end of the
molecule (Figure 2B).

These observations prompted the NMR study of the structure and dynamics of the Pd(Aβ4−16)
complex. However, while the observations presented above strongly suggested that the Pd(II) ion
was bound selectively at the ATCUN/NTS Phe4-Arg5-His6 sequence, some binding at His13 and/or
His14 residues could not be excluded a priori. Therefore, structural experiments were also performed
using the Phe-Arg-His-amide tripeptide. This peptide has essentially one possible Pd(II) binding
mode at weakly acidic pH, namely the ATCUN/NTS four-nitrogen complex, as evidenced by the
X-ray study of its analogue Gly-Gly-His [33]. It could, therefore, serve as a positive control for the
Aβ4−16 experiments. The analysis of NMR spectra of the tripeptide complex, presented in Figures 4
and S3 confirmed the expected coordination mode. Very interestingly, the Pd(II) complexation did not
affect the dynamics of the Phe4 side chain, but significantly elevated the longitudinal and decreased
the transverse 13C relaxation rates for the His imidazole ring. This observation is in line with the
formation of the six-membered chelate ring formed by simultaneous coordination of His amide and
His N1 nitrogens.

The experiments performed for the equimolar Pd(Aβ4−16) sample confirmed the Pd(II)
coordination in the 4N mode to the Phe-Arg-His sequence, and the lack of longer distance structuring
in the coordinated peptide, as shown in Figure 6. In particular, there was no interaction between Tyr10
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and the Pd(II) coordination site, which was previously detected for a generally similar Ni(II) complex
with the N-terminal peptide of HP2 protamine [45]. In the structure of the Pd(II) binding site in the
tripeptide Phe-Arg-His (Aβ4−6) presented in Figure 5, no interactions between the Phe, Arg and His
side chains are present. These side chains are located away from each other. In particular, there is no
axial interaction of Phe4 π charge with the axial electronic density of the Pd(II). Such interaction was
seen before in the NMR structures of di- and tripeptides containing a Tyr residue [46,47], but apparently
is not sufficiently effective for the less polarized Phe aromatic ring. The positively charged guanidinium
group of Arg5 appears to be fixed in its position by electrostatic interaction with the partial negative
charge located on Pd(II)-coordinated amide nitrogens [45]. The Phe4 and Arg5 positions are also similar
to those calculated previously for the Cu(II) complex with the Aβ4−7 fragment by DFT [16]. The same
structure was retained in Pd(Aβ4−16). The hydrogen bond between Phe4 and Asp7 postulated by
previous DFT calculations was not detected.

The mobility of Pd(Aβ4−16) was studied in comparison to the apo-peptide, and also in the presence
of the apo-peptide excess. Interesting observations were made in these experiments. In agreement
with the IMS data, the Pd(II) coordination did not affect the peptide’s hydrodynamic radius, thereby
confirming the purely local character of the complexation on the peptide structure. A significant
decrease in the complex mobility was observed, however, in the sample containing the complex
and a 40% excess of the peptide. The apparent hydrodynamic radius calculated for this sample was
about two-times larger than that for either the apo-peptide or the complex. This effect can be only
explained by the supramolecular assembly between the complex and the apo-peptide. The absence
of changes in chemical shifts of the Phe-Arg-His sequence upon apo-peptide addition indicates
that no coordinative bridging by Pd(II) occurred. Two possible mechanisms for this effect can be
considered. As the square-planar Pd(II) chelate structure is the only permanent and significant
difference between the complexed peptide and the apo-peptide, one possible interaction involves
its dipolar interaction with aromatic residues of the apo-peptide, similar to the interaction observed
between the isoelectronic Ni(II) complex of the Arg-Thr-His N-terminus and the Tyr phenol ring
in the HP2 pentadecapeptide [45]. In general, many types of stacking interactions that have been
observed in various Cu(II) and Pd(II) biomimetic complexes might occur in the investigated system [48].
Another may stem from electrostatics, as proposed recently in studies of Cu(II) effects on fibrillization
of Aβ1−40 and Aβ4−40 peptides [49]. The electrostatic charges of Aβ4−16 and Pd(Aβ4−16) at pH 6.5 can
be calculated from the data presented before for the Cu(II) complex, reasonably assuming that the
Cu(II)/Pd(II) replacement did not affect the acidities of the peptide’s residues. The average charges
of these two species are +1.1 and +0.5, respectively. If, however, we consider the +1 charge at the
C-terminal Lys residue in both molecules, then we see that there is a slight electrostatic incentive for
the attractive interaction specifically between the apo-peptide and the complex spread over the rest of
the molecule. Probably, both kinds of interactions occur, enabling the formation of the heterodimer or
even higher order assemblies, even despite the lack of defined structure in free and Pd(II)-complexed
Aβ4−16. These results confirm the suitability of Pd(II) substitution to study structural aspects of Cu(II)
complexes of Aβ peptides and suggest that the molecular pathway of their aggregation processes may
lead via interactions of their N-termini.

4. Materials and Methods

4.1. Materials

The Aβ4−16 (FRHDSGYEVHHQK-amide) and Aβ4−6 (FRH-amide) peptides were synthesized
according to Fmoc strategy as described previously [16]. K2PdCl4, NaOH, HCl and acetonitrile (HPLC
grade) were purchased from Sigma-Aldrich. D2O was purchased from Armar Chemicals.
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4.2. Sample Preparation

A portion of lyophilized Aβ4−16 peptide was diluted in MQ water. The concentration of this
stock solution was determined using ε275 = 1375 M−1cm−1 [16]. Pd(II) was added to the sample from
a 100 mM K2PdCl4 stock of to obtain a peptide-to-metal ratio of 1:0.85. The pH of the sample was
then increased by adding small amounts of concentrated NaOH up to pH 4, and then handled further,
as required by specific experimental methods.

4.3. Mass Spectrometry

The samples prepared as above, containing 0.5 mM Aβ4−16 and the peptide-to-Pd(II) ratio of
1:0.85 were incubated for a further 24 h at pH 4. Then, the pH was set to 6.5 using concentrated
NaOH. 100 µL samples were injected into the HPLC system (Empower, Waters), equipped with an
analytical C18 column (4.6 × 250 mm). The eluting solvent A was 0.1% (v/v) TFA in water, and solvent
B was 0.1% (v/v) TFA in 90% (v/v) acetonitrile. The chromatograms were obtained at 220 and 280 nm.
Individual peaks were collected and measured by ESI-MS on a ESI Q-ToF Premier mass spectrometer
(Waters). The samples were injected at a 40 mL/min flow rate and MS spectra were recorded in positive
ion mode during 5 min in the range m/z of 500–1800. Obtained mass spectrometry data were analyzed
and processed using MassLynx (Version 4.1, Waters Inc., Milford, MA, USA). Ion mobility (IMS-MS)
experiments were performed using a Synapt G2 HDMS instrument (Waters). Ions were generated
using nanoelectrospray ionization at 1.7 kV from PicoTip emitters 2 µm i.d. (QT10-70-2-CE-20 New
Objective). MS settings were adjusted to obtain an optimal ion transmission as follows: 30 V sampling
cone, 5 V extractor cone, 40 ◦C source temperature, 10 V trap collision energy, and 5 V transfer
collision energy, wave height and wave velocity were set as 40 V and 800 m/s, respectively. Drift times
were obtained by generating an extracted ion chromatogram (XIC) from the arrival time distribution
function in MassLynx v4.1 using the monoisotopic mass and a mass window of ±0.075 Da.

4.4. Circular Dichroism

CD experiments were carried out on the J-815 CD spectrometer (JASCO) over the spectral range
of 250–600 nm, using a 1 cm path length quartz cuvettes. Measurements were performed at 25 ◦C
for samples containing 0.3 mM Aβ4−16 and the peptide-to-Pd(II) ratio of 1:0.85. The spectra were
recorded in 40 min intervals, starting immediately after sample preparation, until the reaction neared
equilibrium after 40 h. Next, the pH was set to 6.5 using NaOH and spectral changes were recorded at
30 min intervals for another six hours.

4.5. Spectrofluorimetry

Fluorescence spectra of Aβ4−16 in the presence of Cu(II) and Pd(II) ions were recorded at 25 ◦C
using a FP-6500 spectrofluorometer (Jasco). The excitation wavelength was 280 nm; the emission
spectra were in the range of 290–400 nm. Solutions of metal ions and the peptide were combined in
varying metal/peptide ratios, with a constant Aβ4−16 concentration of 25 µM, in 20 mM MES buffer,
pH 6.5, or 20 mM HEPES buffer, pH 7.4. Cu(II) salt solution was added directly to the prepared
peptide solution in the respective buffer. Pd(II) was added to water solutions of the peptide at pH 4,
then incubated for 48 h. Next, to such solutions, appropriately concentrated buffer solutions were
added to obtain concentrations analogous to Cu(II) samples. Each sample was prepared in triplicate.

4.6. NMR Spectroscopy

The Pd(II)-containing samples were prepared by incubation for 24 h at room temperature at
pH ≈ 4.0. Next, the samples were diluted with D2O to obtain a 10% (v/v) solution of the latter,
followed by adjustment of pH to 6.5 with a small amount of concentrated NaOH. The samples of the
apo Aβ4−6 and Aβ4−16 peptide was prepared directly in 90%/10% (v/v) H2O/D2O, at pH 6.5. The final
volumes of the samples were 300 µL, with final peptide concentrations between 1.0 and 2.5 mM.
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The measurements were conducted on Agilent DDR2 800 (1H frequency 799.903 MHz), Agilent
DDR2 600 (1H frequency 599.930 MHz), and Varian Inova 500 (1H frequency 500.606 MHz) NMR
spectrometers operated at magnetic fields of 18.8 T, 14.1 T, and 11.7 T, respectively. All spectrometers
were equipped with three channels, z-gradient unit and 1H/13C/15N probehead with inverse detection.
The homonuclear 2D NMR experiments included TOCSY acquired with mixing times of 15, 80,
and 90 ms, ROESY conducted with the mixing time of 300 ms, and NOESY with mixing times of
150 and 300 ms. Homonuclear experimental data sets were supplemented with heteronuclear 2D
1H-13C HSQC (tuned independently to aliphatic and aromatic regions) as well as 2D 1H-15N HSQC
NMR experiments acquired using the natural abundance of 13C and 15N isotopes. All NMR data
sets were referenced indirectly in respect to external sodium 2,2-dimethyl-2-silapentane-5-sulfonate
(DSS) with the Ξ coefficients equal to 0.251449530 and 0.101329118 for 13C and 15N dimensions,
respectively [50]. The acquired data sets were processed with the NMRPipe program [51] and analyzed
with the Sparky software [52].

4.7. Assignment of the 1H, 13C and 15N Resonances and 3D Structure Evaluation of Aβ4−16 Peptide and
Pd(Aβ4−16) Complex in Solution

The 1H, 13C and 15N resonance assignments were obtained using base standard procedure on
base analysis 2D homonuclear (NOESY, TOCSY) and heteronuclear (1H-13C and 1H-15N HSQC)
spectra. More than 90% of resonances were successfully assigned (Tables S4 and S5). Unfortunately,
the collected 2D NOESY and ROESY data sets did not provide nontrivial medium- or long-range
distance constraints. Nevertheless, the analysis of 1H, 13C and 15N chemical shifts performed with
the TALOS-N software [41] yielded 16 and 8 backbone φ and ψ torsion angles predicted for Aβ4−16

peptide in apo and Pd(II)-saturated forms, respectively. Additionally, the χ1 torsion angles of the side
chains were predicted in six and four residues in Aβ4−16 peptide and Pd(Aβ4−16) complex, respectively
(Tables S6 and S7). Both 3D structures were solved by the Xplor-NIH 2.37 program [53]. The slightly
modified standard protocol included in Xplor-NIH distribution (protG.inp) was used for 3D structure
evaluation. Briefly, the 200 randomly generated structures which were subjected to 12 ns cartesian
molecular dynamic simulation at 2000 K followed by 3000 steps of simulating annealing included slow
cooling to the temperature 100 K. The refined procedure in the explicit solvent were performed for
the 20 lowest-energy structures with the YASARA software utilizing AMBER14 force field during the
3000 steps of simulating annealing procedure in water solvent [40]. In the case of Pd(Aβ4−16) complex,
the parameters for Pd(II) ion (bond length and angles) were taken from the crystal structure of Pd(II)
complex with the GGH tripeptide [33]. The evaluated 3D structures were visualized and analyzed
with the MOLMOL [54] and Chimera [55] software.

4.8. 13C Relaxation Measurements

The 13C R1 and R2 relaxation data were acquired on Varian Inova 500 NMR spectrometer for
FRH peptide in both (apo and Pd(II) saturated) at natural abundance of 13C isotope. The experiments
were conducted utilizing the pulse sequence included in BioPack (Agilent Inc., PaloAlto, CA, USA).
The 32 scans were enabled to achieve a reasonable signal-to-noise ratio for collected points in R1 and
R2 measurements. The R1 relaxation data were obtained as 5 delays—10, 50, 110, 190, and 290 ms.
The R2 relaxation rates were recorded with 5 delays—10, 30, 50, 70, and 90 ms. The recycling delay
was set to 3 s.

4.9. Diffusion Measurements

Diffusion experiments were carried out on a Varian Inova 500 NMR spectrometer utilizing
a standard PGSE (Pulsed Gradient Spin Echo) pulse sequence [56] supplemented with Excitation
sculpting Solvent Suppression block [57] were applied as 25 gradients with an effective gradient
pulse duration (δ) as long as 3 ms. The diffusion measurements for Aβ4−16 saturated with Pd(II)
were performed using diffusion time (∆) of 100 and 150 ms in the case of Pd(II) concentrations 1
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and 1.4. The 128 accumulations were performed with a relaxation delay of 3 s in order to increase
the signal-to-noise ratio. The obtained experimental data were Fourier transformed with a 2 Hz line
broadening factor applied. For extraction of the translation diffusion coefficient (Dtr), the signals
observed between 0–3 ppm were integrated and then exported to the Origin software together with
gradient amplitudes. The Dtr values were extracted by fitting using the Stejskal–Tanner equation [42]
taking into account an additional correction for the ∆ delay during BPP pulse in sequence (delay
between gradient δ and π/2 pulse was equal to 0.5 ms).

5. Conclusions

Our study demonstrated that by Pd(II) substitution working models of Cu(II) complexes of
ATCUN/NTS peptides, including those of the Aβ4−x family, suitable for direct structural and
functional studies can be obtained. Already in this pioneering study, the diffusion coefficient
determination, essentially impossible for the paramagnetic Cu(II) complex empowered us to confirm
a supramolecular interaction contributing to the control of aggregation and fibrillization of the Aβ

peptides. This interaction is a prerequisite for a better understanding of the molecular events leading
to Alzheimer’s disease and thereby finding key markers of the disease.
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on Varian Inova 500 NMR spectrometer. Table S4: 1H, 13C, and 15N chemical shifts assigned for apo Aβ4−16
peptide at 298 K on Agilent DDR2 800 NMR spectrometer. Table S5: 1H, 13C, and 15N chemical shifts assigned
for Pd(Aβ4−16) complex at 298 K on Agilent DDR2 800 NMR spectrometer. Table S6: The restrains for ψ and
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quenching by Cu(II) (A,C) and Pd(II) (B,D). The changes were observed at pH 6.5 (20 mM MES, A,B) and 7.4
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isotope Varian Inova 500 NMR spectrometer. Figure S4: The values of (A) longitudinal (R1) and (B) transverse (R2)
13C relaxation rates measured for aromatic carbons in Phe4 and His6 in the Aβ4−6 peptide for apo (red) and Pd(II)
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abundance of 13C isotope utilizing on Varian Inova 500 NMR spectrometer. Figure S5: The amide-aliphatic part of
homonuclear 2D 1H-1H TOCSY spectra for the Aβ4−16 peptide acquired with a 80 ms mixing time for apo (A)
and Pd(Aβ4−16) saturated (B) forms on an Agilent DDR2 800 NMR spectrometer at 293 K. The assignments in
both forms are presented as one-letter code and sequence number. In the case of the Pd(Aβ4−16) saturated form,
signals (Asp7, Ser8, Gly9, Tyr10) representing the apo Aβ4−16 peptide are clearly visible. The whole assignments
yielded by the analysis of NMR data are presented in Tables S4 and Table S5 for the apo and Pd(Aβ4−16) form,
respectively. Figure S6: Ensemble of 20 low-energy structures of Aβ4−16 peptide in apo form evaluated on the
base NMR data. The structures are fitted on central 6HSGY10 motif. Orientation side-chains of the His6, Asp7,
Ser8 and Tyr10 are shown in green.

Author Contributions: Conceptualization, W.B. and T.F.; methodology, S.C.D., J.P., T.F., K.S., and I.Z.; software,
K.S., J.P., and I.Z.; validation, J.P., I.Z., T.F., and W.B.; investigation, M.M., K.S., P.S., J.P., I.Z., and T.F.; resources,
S.C.D., T.F., K.S., and W.B.; data curation, M.M., K.S., K.B.-A., P.S., T.F., I.Z.; writing–original draft preparation, T.F.,
I.Z. and W.B.; writing–review and editing, W.B.; visualization, J.P., I.Z., T.F.; supervision, W.B.; funding acquisition,
M.M., and W.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Polish National Science Centre grant Preludium number
2014/13/N/ST5/01553 tp M.M.

Acknowledgments: Authors thank to David Plonka for help with the synthesis of the Aβ4−16 and FRH peptides.

http://www.mdpi.com/1422-0067/21/23/9200/s1


Int. J. Mol. Sci. 2020, 21, 9200 14 of 17

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CD Circular dichroism
ESI-MS ElectroSpray Ionisation Mass Spectrometry
IMS-MS Ion-Mobility Spectrometry Mass Spectrometry
DSS sodium 2,2-dimethyl-2-silapentane-5-sulfonate
PGSE Pulsed Gradient Spin Echo
NOESY Nuclear Overhauser SpectroscopY
HSQC Heteronuclear Single Quantum Correlation spectroscopy
TOCSY TOtal Correlation SpectroscopY
ROS Reactive Oxygen Species
AD Alzheimer’s Disease
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