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Abstract: West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major
arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries
around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a
major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile
state to severe neurological damage and death. WNV is transmitted in a bird–mosquito–bird cycle,
and can occasionally infect humans and horses, both highly susceptible to the virus but considered
dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence,
mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in
horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting
the need for greater understanding of the molecular determinants of virulence and antigenicity
in different hosts. Owing to technical and economic considerations, WNV virulence factors have
essentially been studied in rodent models, and the results cannot always be transported to mosquito
vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence,
according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and
discussed. This overview will highlight the differences and similarities found between WNV hosts
and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and
its risk of global spread.
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1. Introduction

Since its first isolation in 1937 in the province of Uganda [1], West Nile virus (WNV) has been a
leading cause of neuroinvasive diseases in humans [2]. Its spread across the world, and notably its
outbreak in New York City in 1999 and subsequent rapid diffusion across the American continent,
identified WNV as a major public health problem [3]. Indeed, this event is the most representative
example of WNV emergence and pathogenicity. A highly virulent strain of WNV lineage 1a was first
isolated in New York City during the summer of 1999. From 1999 to 2016, 7 million infections were
reported, leading to 24,000 neuroinvasive cases and 2300 deaths [4]. The virus then spread rapidly
across North, Central, and South America [5], causing severe neurological disorders and death in
humans and horses and affecting wild bird populations, in particular those belonging to the order
Passeriformes, like the American crow (Corvus brachyrhynchos), mainly in the USA and Canada [6–8].
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WNV is endemic in Africa, Europe, the Middle East, west and central Asia, Oceania (subtype
Kunjin), and, most recently, North America, and is spreading into Central and South America [9,10].
WNV is a member of the Flaviviridae family. Its genome, a positive single-stranded RNA (+ssRNA) of
11 kb, encodes three structural proteins (C for capsid, (pr)M for (pre)membrane, and E for envelope)
and seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), which are
generated from a single polyprotein cleaved by several viral and host proteases [11]. The three structural
proteins play a role in virion entry and egress [12] while the NS proteins play a role in intracellular
multiplication, virion assembly, and escape from host immunity [13].

Based on phylogenetic analysis, WNV is classified into eight lineages [14]. WNV lineages 1 and
2 are the most widely distributed [15]. WNV lineage 1 strains have been reported in many areas,
including America, Africa, Europe, India, the Middle-East, Russia, and Australia, and are responsible
for major human and equine outbreaks, particularly in Europe and North America [6,16,17]. Several
autochthonous cases of encephalitis after WNV lineage 1 infection were reported in Africa, the Middle
East, and Europe during the last decades [6,18,19]. WNV lineage 1 can be divided into three sublineages.
Lineage 1a includes isolates from Africa, the Middle East, America, and Europe. Lineage 1b includes
the Kunjin virus (KUN), which is a subtype of the West Nile virus present in Australasia, a part of
Oceania. Finally, lineage 1c corresponds to isolates present in India [20]. WNV lineage 2 viruses
were originally isolated from sub-Saharan Africa and Madagascar, causing mainly mild fevers with
no impairment of the central nervous system in humans. However, in 2009–2010, neuroinvasive
disorders were observed, especially in Greece, Hungary, and South Africa [21,22]. Unprecedented
WNV transmission seasons and outbreaks reported in Europe in 2010, 2012, 2013, and 2015 were
associated with the introduction and spread of WNV lineage 2 strains [10]. These were first detected in
Hungary in 2004 [23] and subsequently spread to the eastern part of Austria in 2008 [24,25], to the
south of Italy in 2011 [26], and to the Balkan peninsula, including Greece in 2010 [27] and Serbia,
Croatia, and Bulgaria in 2012 [28], and more recently reached Spain in 2017 [29] and Germany in
2018 [30,31]. Another WNV lineage 2 strain, first detected in 2004 in Rostov Oblast in Southern
Russia [32], has also been occasionally reported in Europe, such as in Romania in 2010 and in Greece in
2018 [28,33,34]. The majority of neuroinvasive disorders in humans from 2010 onwards were associated
with infection by WNV lineage 2 strains. Concomitantly, neuroinvasive diseases were diagnosed in
horses and in humans in South Africa. These were also associated with infection by lineage 2 strains
of the WNV [35]. Before that, less virulent lineage 2 strains had already circulated in South Africa,
but without neuroinvasive cases.

Since its emergence in New York in 1999, intensive work has been performed on the critical
viral proteins and host factors implicated in WNV virulence and immunopathogenesis [11,36–38].
WNV infection results in an intricate balance between viral pathogenesis and immune-system mediated
control [39,40]. However, the immunopathogenesis of WNV remains poorly understood. Neuronal
injury may be directly caused by viral infection as well as through leucocytes infiltration and host
inflammatory responses. Innate, humoral, and T-cell mediated host defenses orchestrate the control of
WNV infection. Type I interferons are essential for restricting WNV replication and neuroinvasion into
the CNS, while humoral immunity is involved in peripheral viral clearance [41,42]. However, the in vivo
dynamics of innate and adaptive immune responses that are associated with differential outcomes
of WNV infection in humans remains largely unknown. WNV shaped several countermeasures to
evade host defenses (with NS1, NS2A, NS4B, and NS5 contributing to WNV evasion from the innate
immune system). Moreover, WNV proteins like NS3 may also directly contribute to virus-mediated
cytotoxicity, for example, by triggering apoptosis of infected cells [43]. However, a differential impact
of the WNV strains on tissue pathogenesis is not necessarily linked to their virulence in a given host.
In our previous study conducted by Donadieu et al., differential lesions of WNV Is98 and Kunjin
strains after intracerebral inoculation of mice bore no relationship to virulence [41]. Indeed, the more
virulent strain (WNV Is98) appeared to induce the lowest level of apoptosis. This strongly suggested
that neuronal death in different areas of the brain was not directly linked to WNV virulence. Neuronal
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dysfunction alone might possibly have determined the clinical outcome of the disease. The observed
differences are presumed to be of genetic origin. Mutations in genes implicated in viral adsorption,
such as the E gene, or in viral replication have been shown to modify the organ tropism [13] and
attraction of inflammatory cells implicated in the immune response [44].

Approximately 80% of human WNV infections are asymptomatic. In most symptomatic cases
(20%), patients display mild febrile illness, associated with myalgia, arthralgia, headache, fatigue,
intestinal complications, maculopapular rash, or lymphadenopathy. Less than 1% of these develop
severe neurologic complications, manifested by different pathologies such as acute flaccid paralysis,
meningitis, encephalitis, or eye disorders [45]. Encephalitis is the most severe neurological form,
which occasionally can be fatal, particularly in the elderly and immunocompromised persons [11,46].

WNV is an arbovirus that is amplified in a bird–mosquito–bird enzootic transmission cycle,
with wild birds as the primary hosts [47]. Humans and other mammals are considered to be accidental
or dead-end hosts (Figure 1).
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Figure 1. West Nile virus (WNV) transmission cycle. In nature, WNV transmission occurs through
an enzootic cycle between birds and mosquitoes, the latter mainly of the genus Culex. Humans and
mammals can be infected but are considered to be dead-end hosts.

WNV has been detected in 65 different mosquito species and more than 326 species of birds.
Transmission to mammals and especially to humans is mainly carried out by Culex spp. (Cx spp.)
mosquitoes. In birds, WNV produces an acute infection typically lasting up to a week. The viremia is
typically short (a few days); however, the level of viremia can substantially differ among species (high
in some bird species while lower in mammalians). Nevertheless, the virus has been shown to persist for
several weeks in some wild birds. Avian species vary in susceptibility to infection and severity of the
disease (from asymptomatic to severe neurological signs and sudden death), with mortality ranging
from 0% to 100%. Symptoms vary from weight loss, lethargy, loss of vision, to neurological signs,
including loss of coordination, tilting of the head, tremors, weakness, and lethargy [48,49]. In birds,
WNV invades the CNS and other organs such as the heart, liver, spleen, and kidney. Passerines are
the most affected, with the highest viremia and mortality rates, whereas gallinaceous birds exhibit no
mortality and morbidity and a very low viremia.

Depending on the geographic location, vector species vary. Of note, for a given vector
species, behavior and susceptibility to arbovirus infection can vary between geographically separated
populations. In Africa and the Middle East, the main vector is Cx. univittatus, but other species—such
as Cx. poicilipes, Cx. neavei, Cx. perexiguus, Cx. decens, Aedes albocephalus, or Mimomyia spp.—are
also present. In Europe, the main vectors seem to be Cx. pipiens, Cx. modestus, Cx. perexiguus,
and Coquillettidia richiardii [50]. Aedes albopictus is known to be a vector of other flaviviruses, including
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Dengue virus (DENV) [51]. A recent study performed by Akiner and colleagues (2019) in Turkey,
found WNV by PCR in Ae. albopictus collected in the field [52]. However, WNV has not as yet
been isolated from Ae. albopictus in Europe [53]. The vector competence of Ae. albopictus for WNV
has been demonstrated in laboratory experiments [54], while Ae. aegypti, another mosquito species
implicated in flavivirus transmission, is not competent for WNV [55]. In Asia, Cx. quinquefasciatus,
Cx. tritaeniorhynchus, and Cx. vishnui predominate [47,56,57]. Finally, in the United States, it appears
that the species involved in WNV transmission are Cx. pipiens, Cx. quinquefasciatus, and Cx. tarsalis [48].
In Australia, Cx. annulirostris is considered the most important vector of WNV KUN [58]. WNV KUN
has been isolated from other Australian species, including Ae. tremulus, Cx. australicus, Cx. squamosus,
Ae. alternans, Ae. normanensis, Ae. vigilax, Anopheles amictus, and Cx. quinquefasciatus, but the role of
most of these species is likely to be secondary [59].

WNV needs to cross many barriers in vertebrate and invertebrate hosts during its transmission
cycle. After being ingested with infected blood, the WNV must first infect the midgut of the mosquito.
The virus then crosses the midgut barrier and diffuses in the hemolymph to other organs, including the
salivary glands, whose infection is a prerequisite for WNV transmission to new susceptible vertebrate
hosts (Figure 2). In vertebrates, WNV first replicates in the keratinocytes in the epidermis. Thanks to
the expression of numerous Pathogen Recognition Receptors (PRRs), keratinocytes are involved in the
sensing of Pathogen-Associated Molecular Patterns (PAMPs). WNV infection leads to inflammatory
responses in the keratinocytes that are characterized by the induction of type I or type III IFNs or
the secretion of cytokines like TNFα (tumor necrosis factor) or IL-6 [60]. At later stages, WNV is
internalized by skin dendritic cells (DCs) or Langerhans cells. Then, infected DCs migrate to the
lymph nodes, and WNV disseminates to other lymphoid organs, such as the spleen. Most virulent
WNV strains are inherently neuroinvasive and neurovirulent. To reach the brain, the virus needs to
cross the blood–brain barrier (BBB), which can occur by two main routes. The first involves axonal
retrograde transport along the spinal cord, and the second blood vessel transport. In the second
case, the virus can use three methods to enter the brain: (I) the “Trojan horse”, in which the virus is
internalized into lymphocytes that are able to cross the BBB; (II) permeabilization of the BBB by matrix
metalloproteinases (MMPs) after MIF (macrophage migration inhibitory factor) and TNF-α secretion
by leukocytes [61–64]; and (III) transcellular passage through the BBB, probably influenced by protein
E glycosylation [11,65]. CNS entry of the WNV is a multistep process involving different mechanisms,
whose importance would need to be better characterized. Infection of brain microvascular endothelial
cells (BMECs) are thought to occur first. BMEC infection leads to increased expression of adhesion
proteins and production of chemokines, responsible for leukocyte recruitments at the BBB. MMP9 can
also play a role in the infiltration of WNV-infected leukocytes though the BBB [66]. Both mechanisms
can contribute to WNV crossing the BBB by the “Trojan horse” mechanism [67] (Figure 3).
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Figure 2. Dissemination steps of WNV in the invertebrate vector. (1) Mosquito feeds on virus-infected
blood. (2) WNV infects mosquito midgut: (A)—Virus binds to epithelial cells by a protein receptor.
(B)—Viral replication in midgut cells. (C1)—Direct passage from basal lamina to hemolymph (1st way).
(C2)—Direct paracellular passage through midgut cells (2nd way). (3) Dissemination of WNV to other
organs like salivary glands: (a)—Infection of epithelial cells by direct passage from hemolymph to
cells. (b)—Viral replication in epithelial cells. (c)—Release of virus from cells to salivary gland lumen,
with or without apoptosis of epithelial cells (inspired by [68,69]).
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Figure 3. Dissemination steps of WNV in vertebrate hosts such as humans. At the early phase of
infection, WNV disseminates in the human skin after a WNV-infected mosquito bite. First, replication
begins in the keratinocytes and dendritic cells (DCs) and is followed by a migration of the WNV into the
dermis. After that, DCs containing the WNV migrate to the lymph nodes where the WNV is amplified.
Systemic viremia gives rise to infection of peripheral organ infection, such as the spleen. More severe
infections lead to neuroinvasion by two possible routes. The first (1) consists of an axonal retrograde
transport along the spinal cord [70]. The second (2) involves blood vessel transport and crossing over
the blood–brain barrier (BBB). Three steps are required to mediate the neurovirulence in the brain by
the blood route: (A)—Crossing the BBB. (B)—The virus interacts with the brain cells. (C)—Infection of
neurons. To cross the BBB, three methods are possible. (I)—The first is a “Trojan horse” mechanism,
in which the WNV is internalized into lymphocytes that are able to cross the BBB. (II)—The second
method is permeabilization of the BBB in response to TNF-α and MIF secretion. After MIF secretion
by leucocytes, the MMPs are produced and increase the BBB permeability [51–54]. (III)—The third
is enhancement of virus attachment, probably dependent on E protein glycosylation, which permits
transcellular passage (inspired by [11,65]).
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Some genetic changes are favorable to WNV transmissibility, thereby facilitating expansion of the
WNV [71,72]. It is well documented that natural WNV infections are derived from a genetically diverse
population of viral genomes. Within an individual host, WNV exists as a genetically heterogeneous
mixture of variants that differ from a consensus nucleotide sequence; this population structure is
referred to as a viral quasispecies [72,73]. WNV populations within field mosquitoes are more genetically
diverse than those found in naturally infected birds. This results from several bottlenecks that shape the
virus divergence during the progress of infection in birds, including the host defenses, varying cellular
environments in different tissues, and anatomic barriers, such as the BBB. These multiple selective
pressures determine tissue tropism and virus pathogenesis. Moreover, Jerzak and colleagues serially
passaged a genetically homogenous population of WNVs in either mosquitoes or birds, and observed
greater intra-host genetic diversity in mosquitoes than does chickens [74] (Figure 4). It is noteworthy,
however, that most avian studies have involved fowl in which the replication of WNV is poor.
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This predisposition for high genetic variability explains why, despite the small size of the viral
genome (about 11 kb), wide genetic variation within the WNV lineages is observed across the
world. The relationship between genetic heterogeneity and viral pathogenicity is variable. Indeed,
viral heterogeneity was associated with enhanced pathogenicity for the mumps (ourlien) virus and
poliovirus, but with weaker pathogenicity for the hepatitis C virus. Of note, WNV virulence in mice
was negatively correlated with WNV genetic diversity [75]. WNV studies have shown that molecular
determinants of virulence identified in mammals were not systematically shared by avian hosts or
mosquito vectors, highlighting the importance of studying the molecular determinants of virulence
across a broad host range [76].

Understanding the impact of WNV genetic variations on virulence is key for evaluation and
anticipation of pathogenicity, for development of prophylactics, and for prediction and timely response
to new epizootics. Identification of critical genetic determinants may be carried out through reverse
genetic approaches, site-directed mutagenesis, and sequencing. It has been known for years that the
genome of positive-strand RNA viruses, like flaviviruses, can be infectious when introduced into
susceptible cells by transfection [77]. On this basis, reverse genetic technology permits manipulation
of viral genomes and analysis of consequent changes in viral pathogenesis, as well as virulence, cell
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entry, or viral replication. Development of new molecular tools like PCR or RT-PCR at the end of
the 1980s [78] greatly facilitated reverse genetic approaches. However, the absence of commercial
reverse genetics kits led scientists to develop their own protocols [79]. The earliest procedures required
bacterial or yeast cultures. In the former case, an isolated viral RNA extract is first reverse transcribed
into cDNA and then typically inserted into a plasmid vector containing a promoter recognized by a
DNA-dependent RNA polymerase (e.g., T7 or SP6) and the HDR/SV40pA sequences. Bacterial cultures
are then transformed with the vector containing the viral sequence for amplification. Bacteria are
collected and the vector containing the viral sequence, called the infectious clone (IC), is purified.
Depending on the promoter choice, further steps may be needed before transfection of permissive cells
with the IC to generate infectious viruses. However, toxicity of the full-length flavivirus genome for
bacterial hosts has often been noticed. Moreover, this technology is particularly laborious. For this
reason, new bacteria-free reverse genetic approaches for RNA viruses, and for flaviviruses in particular,
have been developed since 1995, such as long PCR [80], circular polymerase extension cloning (CPEC),
Gibson assembly [81,82], or the infectious subgenomic amplicons (ISA) [83] method. The ISA method’s
main advantage is its rapidity. However, despite the use of a high-fidelity polymerase for PCR reactions,
genomic heterogeneity was evidenced in the generated clones. In order to reduce the viral genomic
heterogeneity, PCR fragments were cloned into plasmids in the subgenomic plasmids recombination
method (SuPReME) (2019) [84] (Figure 5). These new protocols allow rapid generation of infectious
clones and will support further investigation of the pathobiology of flaviviruses.
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Figure 5. Overview of the main reverse genetic methods. (a) First generic method for reverse genetics
developed in 1989 for YFV. cDNA was produced from viral single-stranded RNA, and then inserted into
a plasmid upstream of a pCMV promoter and downstream of the hepatitis delta ribozyme, followed
by the simian virus 40 polyadenylation signal (HDR/SV40(pA)) sequence. After amplification and
purification, the construction was introduced into permissive cells by transfection, and infectious clones
were obtained. (b) Bacteria-free method used for TBEV in 1995. Two long PCR products were synthetized
and joined by using restriction enzymes or fusion PCR. After in vitro transcription, infectious clones
were generated after intracerebral inoculation of mice with the long PCR fragment. (c) Bacteria-free
method using the CPEC (KUN) or Gibson reaction (DENV), 2013. Multiple PCR amplicons were inserted
into a plasmid containing pCMV and HDR/Sv40(pA) sequences and joined by CPEC or Gibson reaction.
Infectious clones were obtained after transfection of permissive cells. (d) New bacteria-free method for
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reverse genetics in flaviviruses. (A)—In the infectious subgenomic amplicons (ISA) method the genetic
material consists of viral RNA, infectious clones, or de novo synthesis. PCR products that cover the
entire genome are used for direct transfection of permissive cells. (B)—The new ISA-based reverse
genetic method, called the subgenomic plasmids recombination method (SuPReMe), resembles the ISA
method, but the genome fragments are cloned into plasmids at the restriction sites. After restriction
enzyme digestion, genomic fragments are used for transfection of permissive cells, and infectious
clones are produced (according to [79]).

This review will present an overview of the known molecular determinants involved in WNV
virulence and pathogenicity according to the host. The aim is to highlight the determinants that are
specific to a given host, as well as those that the host have in common, in order to provide a better
understanding of WNV virulence and to provide a foundation on which measures to control WNV
spread and outbreaks can be proposed.

2. Mammalian Model

WNV infection has been extensively studied in mouse models. These studies have provided
an understanding of viral pathology in humans and other susceptible mammalian hosts, and have
shed light on the molecular pathways implicated in the innate control of infection in mammals and
on molecular determinants of virulence. Researchers have mainly used C57BL/6 and C3H mouse
models to decipher WNV infection and immunity [85,86]. In these inbred mice, inter-individual
variation in the outcome of WNV infection is limited, thus facilitating interpretation and the inference
of statistical significance. Outbred mice (NIH Swiss, CD-1 mouse model) have also been used, since
they are more robust and provide a somewhat more physiological model, owing to their genetic
heterogeneity. To enrich WNV studies and capture more phenotypic characteristics of West Nile disease,
other strains of mice may be used, such as the Collaborative Cross (CC) strains. These include five
inbred strains (C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/H1LuJ) and three wild-type-derived
strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) [87]. In conclusion, the mouse background strain should
be carefully selected according to the objectives of the study in question. Of note, all regions of the
WNV genome have been studied in mouse models. With the exception of the C and NS2B sequence
regions, molecular determinants for mammalians have been identified in all parts of the WNV genome
(Figure 6). These findings are detailed and discussed in the next sections.
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phenotype. Red: mutations involved in the more virulent viral phenotype (adapted from [88]).
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2.1. The 5′UTR Non-Coding Region

The WNV polyprotein sequence is flanked by 5′ and 3′ untranslated regions (UTRs). The WNV
5′UTR region is 96 nt long and is highly conserved compared to other members of the flavivirus
family. It contains two stem-loops (SLA and SLB). This region plays a role in viral cyclization and
replication [89,90].

Audsley and colleagues [91] created chimeric viruses between an IC derived from the North
American isolate WNV NY99 4132, isolated in 1999 in New York City, and the KUN virus, and more
particularly between their 5′UTR and 3′UTR non-coding regions. They placed the non-coding regions
of the IC NY99 into the KUN backbone, either the 3′UTR alone, the 5′UTR alone, or both of the
non-coding regions of IC NY99. In vitro plaque assays performed on mammalian Vero and A549 cells
and on mosquito C6/36 cells yielded similar results for the different mutants. Growth curve analysis
identified minor differences between the mutant and the parental KUN strain. The main difference
was obtained in vivo, upon intraperitoneal inoculation of mice with 10 PFU of the wild-type (wt) or
mutant viruses. According to the results, the KUN virus with the 5′UTR of WNV NY99 (KUN-NY99
5′UTR) was significantly more virulent than the KUN wt. To understand which nucleotides of the
NY99 5′UTR region were responsible for the increased virulence, the sequences of the 5′UTR region
of KUN and NY99 were aligned. Only three nucleotide differences were found between the two
strains. Indeed, while TTG is found at position 50–52 of the KUN virus, AAC is found in WNV NY99.
Further alignment of multiple WNV strains showed that most WNVs have the sequence AAC. These
nucleotides located in the 5′UTR region could partly explain the difference observed in virulence.
However, when both non-coding regions of the KUN virus are replaced by those of NY99, the increased
virulence is abolished. Thus, some component of the 3′UTR appeared to counterbalance the effect of
the 5′UTR. In addition, replacement of the 5′UTR of NY99 by the KUN analogue failed to mitigate the
virulence of NY99. Rather, this interchange resulted in only a marginal impact on virulence, probably
because virulence depends upon multiple genetic determinants, as suggested by the +/− interplay
between the 3′ and 5′UTR regions. However, taken together, these results suggest that the 5′UTR
non-coding region of the WNV contributes to WNV virulence in mice.

2.2. Structural Proteins

2.2.1. prM Protein

The glycoprotein precursor of the M protein, prM (26 kDa), is translocated into the ER by the
C-terminal hydrophobic domain of the C protein [13]. The N-terminal region of the WNV prM contains
one N-linked glycosylation site at amino acids 15–17, which plays a role in virus infectivity and particle
release [92], and six conserved cysteine residues [93]. The prM protein promotes the correct folding of
the E protein. Its major role is to allow the structural rearrangement of the E protein during transit
through the secretory pathway, after prM cleavage by furin, to yield mature M proteins [94,95].

Hanna et al. [92] investigated the impact of prM and E glycosylation on WNV assembly and
infectivity. Glycosylation of prM was ablated by a prM-N15Q mutation. The authors performed
infection of HEK-293 cells with the wt virus and the prM-N15Q mutant WNV. They demonstrated that
the viral RNA content decreased when the cells were infected with the mutant virus, influencing later
stages of the virus life cycle in infected cells. We hypothesize that such a mutation would affect virus
replication and dissemination in vivo.

Some studies have shown that mutations in the protein M could produce attenuated flaviviruses,
such as JEV [96]. A recent study of Basset et al. [97] investigated the effect of protein M mutation in
WNV. The authors generated WNV mutants by PCR from an IC of WNV Israel 98 (IS98) [3], which is
genetically closely related to the NY99 strain. The first attenuated mutant (M-I36F) proved unstable.
Introduction of a second mutation, A43G, created the stable mutant M-I36F/A43G. Smaller plaques
were obtained on Vero cells for the M-I36F WNV, suggesting an attenuated phenotype, while normal
plaques were seen for the M-I36F/A43G strain. Viral titers of both mutants (M-I36F and M-I36F/A43G),
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however, were considerably lower than those of IC IS98 or M-A43G. In vivo experiments performed
on BALB/c mice showed that inoculation of wt or M-A43G WNV generated high mortality, whereas all
mice infected by the M-I36F/A43G mutant survived. It is known that the M-36 residue is located in
the pro-apoptotic domain of the M protein (« apoptoM ») and plays a role in the virulence of other
flaviviruses, such as DENV [98,99]. The results obtained for WNV support this observation and show
that M-36 mutants could be useful for vaccine development against WNV and other flaviviruses.

2.2.2. E Protein

E protein is composed of 500 amino acid (aa) residues. Its final molecular weight depends on the
glycosylation state of the protein, and ranges from 53 to 60 kDa. Its main role lies in the recognition
of mammalian cell receptors as well as membrane fusion with the membrane of endocytic vesicles.
It constitutes three domains, DI to DIII [100]. DI forms an eight-stranded β-barrel; DII is a long
finger-like domain that contains at its tip the putative fusion peptide, which triggers fusion with the
target cell membrane; and DIII assumes an immunoglobulin-like domain and is involved in receptor
binding [101]. Several studies report the importance of protein E in WNV virulence, and in particular,
its N-glycosylation site located at residues 154 to 156 [102,103].

Genetic comparison of all flaviviruses shows that there is a great diversity in the sequence of the
gene encoding protein E. In 1995, a study focused on the amino acids NYS (positions 154–156) and their
role in the glycosylation and antigenicity of protein E of the Kunjin virus, WNV lineage 1b [104]. In 1997,
construction of a phylogenetic tree of WNV strains based on the sequence encoding the E protein
evidenced differences in amino acids 154 to 157 for many strains of WNV [105]. Many subsequent
studies have built upon these findings.

Beasley and colleagues investigated the difference in the E protein of the highly virulent WNV
lineage 1 NY99 strain and the less virulent Old World ETH76a strain, the objective being to understand
why the WNV NY99 strain was more virulent. Sequence alignment revealed that the differences
included five amino acids of the E protein, which might affect protein glycosylation. Site-directed
mutagenesis and construction of chimeric viruses showed that the Asp residue at position 154 in NY99
results in a glycosylated E protein, whereas a Ser154 residue in ETH76a leads to a non-glycosylated E
protein [102,103]. This may partly explain why virulence differs between these two strains.

Many studies concerning residues 154 to 156 have further confirmed the role of the glycosylated E
protein of the WNV [102,106–108] in neurovirulence and neuroinvasion. Alsaleh et al. investigated
the determinants of virulence for European-Mediterranean WNV strains. Chimeras were generated
between the highly virulent IS98 strain and the non-pathogenic Malaysian Kunjin virus (KJMP-502)
and evaluated in BALB/c mice. In contrast to WNV strain IS98, the KJMP-502 strain and all of the
chimeras thereof possessing the KJMP-502 structural proteins were not neuroinvasive. Because the E
protein is involved in receptor binding and cell entry, the authors generated the following chimeric
viruses involving swaps of the E protein: IS98/E-KJMP and the reciprocal KJMP/E-IS98. The fatality
rate was high (60%) 16 days after inoculation of mice with KJMP/E-IS98, while all mice challenged
with IS98 died before the 10th day of infection and all mice challenged with IS98/E-KJMP remained
healthy and survived for at least 18 days. This result suggests that even if the E protein plays a
major role in the virulence of IS98, other factors may account for the residual difference in virulence
between IS98 and KJMP/E-IS98. Other analyses showed that IS98 possesses the N-glycosylation site
NYS at positions 154–156, whereas KJMP-502 has a proline residue at position 156, thus abrogating the
N-glycosylation site. To understand whether the N-glycosylation site in the E protein is implicated in
the neuroinvasiveness of IS98, the same authors employed site-directed mutagenesis to generate the
IS98-E-S156P (−glyE) and its reciprocal mutant KJMP-E-P156S (+glyE). In vivo experiments showed
that 70% of mice inoculated with IS98-E-S156P survived whereas all mice inoculated with IS98 died.
Thirty percent of mice inoculated with KJMP-E-P156S died several days after inoculation whereas
all mice inoculated with the parental KJMP-502 survived. These results suggested that although
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E-glycosylation is important for WNV pathogenicity, additional motifs in the E protein are probably
involved in neuroinvasiveness and neurovirulence.

In the early 2000s, the distribution of WNV expanded to a greater extent in America than ever
observed elsewhere, suggesting the possible emergence of a higher virulent phenotype. Davis et al. [109]
sequenced the prM and E proteins of 74 isolates and the complete genome of 25 isolates obtained
between 2001 and 2004. They found that genetic variants had arisen during the study period and were
grouped temporally and geographically, suggesting that a dominant variant had rapidly emerged in
North America. They also found that the E-V159A mutation (compared to initially introduced WNV
NY99) was conserved in many WNV isolates recovered after 2001, suggesting a link with the enhanced
WNV spread and pathology in America after the year 2000 [110].

A recent study by Kobayashi et al. [111] supports this scenario. WNV recombinants between the
highly virulent lineage 1 strain NY99 (V159) and the less virulent Eg101 (I159) strain were generated
but did not show any significant differences in in vitro cultures or in C57BL/6 mice inoculated
intraperitoneally. In contrast, following the intracranial inoculation of mice, viral replication in the
brain was higher for EgCME-E-I159V than for the parental strain EgCME. The mutation also increased
levels of CD3+ and CD8+ T cells in the brain, suggesting that residue 159 of the E protein modulates
WNV pathogenicity by influencing both viral replication and T-cell recruitment [111].

Zhang et al. [112] generated mutations in the E protein of the WNV that are known to mitigate
virulence in other flaviviruses. From an IC of NY99, they created mutants in three regions; namely, the
fusion loop (L107F), the receptor-binding domain III (A316V), and a stem helix (K440R). Neuroinvasion
and neurovirulence of WNV NY99 IC-derived viruses and engineered variants encoding E protein
substitutions were characterized in 3- to 4-week-old female NIH Swiss mice. The results showed that
only the L107F mutation could reduce neuroinvasiveness without affecting neurovirulence.

Similarly, Kaiser et al. [113] studied a mutation in the E protein implicated in attenuated JEV
phenotypes. JEV and WNV are closely related flaviviruses. Because the E-E138K mutation induced a
decrease in JEV virulence, Kaiser et al. tested this mutation for WNV. In vitro studies performed on
Vero and A549 cells showed that the multiplication kinetics of IC NY99 and the mutant E-E138K were
similar. In vivo experiments in mice confirmed these results; that is, that the mutation did not decrease
WNV virulence, whereas it did so for JEV. Indeed, the E-E138K mutation attenuated neither WNV
neuroinvasion nor neurovirulence. This result underscores that differences in molecular virulence
determinants exist between flaviviruses.

2.3. Non-Structural Proteins

2.3.1. NS1 Protein

The NS1 glycoprotein is highly conserved among flaviviruses, with a molecular weight
ranging from 46 to 55 kDa. NS1 has three N-glycosylation sites and exists as a monomer, a dimer
(membrane-bound protein, mNS1), and a hexamer (secreted protein, sNS1). Its mature form is a
homodimer [114], which is transported to the cell surface and acts as an immunomodulatory protein
by decreasing the activity of the complement system [115]. NS1 plays a role in the modulation of host
innate immunity and in viral replication. It is also a target for the generation of attenuated vaccines as
well as a biomarker for viral diagnosis [116,117].

Flaviviruses share highly conserved NS1 N-glycosylation sites (N-X-S/T). Instead of presenting
two glycosylation sites like other flaviviruses, WNV possesses three glycosylation sites on NS1 [116].
Whiteman et al. [116] wanted to develop an attenuated vaccine based on NS1 protein glycosylation
mutants and used site-directed mutagenesis to generate the mutants NS1-N130A, NS1-N175A,
and NS1-N207A. In parallel, a mutant lacking E and NS1 N-glycosylation sites was created
(E-154S/NS1-N130A/NS1-N175A/NS1-N207A), based on evidence that E protein glycosylation decreases
neurovirulence in mice [102]. The goal was to see whether the removal of glycosylation sites on
both proteins further decreased the virulence. To this end, the in vitro infection kinetics of the
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NS1-130A/175A/207A and E-154S/NS1-130A/175A/207A mutants were compared with those of E-154S
and the parental IC in Vero cells, P38801 mouse macrophages, and Neuro2A neuroblastoma cells.
A number of differences were evidenced between the mutants and the parental IC in the three cell lines.
Significant differences were observed between the IC and both E-154S and E-154S/NS1130A/175A/207A
in Vero cells at 48 h, 72 h, and 96 h pi and between E-154S and E-154S/NS1-130A/175A/207A in P38801
macrophages at 72 h and 96 h pi.

An in vivo study in NIH Swiss mice showed that, among the single glycosylation mutants,
only the NS1-175A was significantly less neuroinvasive than the NY99 parental strain. Two other
mutants, NS1-130A/207A and NS1-130A/175A/207A, were highly attenuated for neuroinvasion (with
lethal dose 50 (LD50) 3000–50,000 fold higher than the parental NY99). The addition of the E-154S
mutation (E-154S/NS1-130A/175A/207A) strongly decreased the neurovirulence and neuroinvasiveness.
This study demonstrated that NS1 mutations did not affect the in vitro phenotype of the virus
strains. In contrast, the higher the number of NS1 mutations, the greater was the impact on
neuroinvasiveness and neurovirulence in mice. The combination of multiple NS1 mutations and the
E-154S mutation (E-154S/NS1-130A/175A/207A) resulted in an attenuation for both neuroinvasiveness
and neurovirulence [116].

WNV lineage 2 virulence determinants have been less investigated as these viruses only induced
mild clinical signs in the past [118]. However, horses started developing encephalitis due to infection
by WNV lineage 2 in 2009 [35]. A study conducted in 2016 focused on mutations implicated in WNV
lineage 2 virulence, based on results obtained with the central European lineage 2 isolate 578/10 [119].
Indeed, the P250L mutation in 578/10 induced a modification in the structure of the polypeptide
that inhibited the formation of NS1 dimers, leading to a decrease in viral replication in vitro on Vero
cells [120] as well as neuroinvasiveness in vivo in C57BL/6 mice following intracerebral inoculation.

2.3.2. NS2 Protein

NS2A is a small, multi-functional, hydrophobic protein of 22 kDa involved in RNA replication.
NS2A binds to components of the replication complex, to the 3′UTR region of viral RNA, as well as to
proteins NS3 and NS5 [121]. NS2A has a role in modulating the host antiviral IFN type I (IFNα/β)
response [122–124]. NS2B protein (14 kDa) is a co-factor of the NS3 protease with the NS2B and NS3
proteins forming a complex in infected cells [125–127].

IFNα/β are essential components of the immune response following viral infection. Control of
IFNα/β induction and signaling is therefore essential for virus replication and transmission. Liu and
colleagues (2004) investigated the NS2A-A30P mutation in the Kunjin virus. The mutation abolished
the capacity of NS2A to inhibit the IFN-β promoter-driven transcription of ISGs (interferon-stimulated
genes) during WNV infection [122]. Other studies suggested that other mutations, such as NS2A-D73H
and NS2A-M108K [128], or the KUN/NY99 NS2A point mutations A112V, Y119H, M129I, C168R,
F212L, and V223I [91], could contribute to NS2A’s reduced capacity to counteract the antiviral response.
Further investigations are needed to identify the critical elements in the modulation of the IFN response.

2.3.3. NS3 Protein

NS3 is a multi-domain protein of 70 kDa, with an N-ter protease that constitutes the catalytic
domain of the NS2B-NS3 serine protease complex and is known to play a role in cleaving the
NS2A/NS2B, NS2B/NS3, NS3/NS4A, and NS4B/NS5 junctions. This N-ter region is also involved in the
generation of the C-ter region of the mature capsid and NS4A proteins. NS3 C-ter portion contains the
RNA triphosphatase and RNA helicase activities involved in genome capping and viral RNA synthesis
and viral replication, respectively [129,130].

Ebel et al. [131] investigated the viral determinants of pathogenesis in mice and viral fitness
in mosquitoes and birds, focusing on the RNA helicase domain of the NS3 protein. Because the
Asp483 residue is highly conserved among flaviviruses causing encephalitis, such as WNV, TBEV,
or JEV, but not in dengue or yellow fever viruses associated with hemorrhagic syndromes [132],
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it was considered as a possible determinant of neurovirulence and/or neuroinvasion. The mutation
of this amino acid was detected in a virus strain attenuated for mice after 20 passages in mosquitoes.
The authors reproduced this mutation by reverse genetics and showed that it strongly reduces fitness
in vertebrates (chickens), while having little effect on fitness in invertebrate (mosquito) hosts.

Brault et al. [133] have identified a proline within the helicase domain of NS3 at position 249 that
is a critical genetic determinant of WNV pathogenesis in American crows. Langevin’s group [134]
evaluated the impact of NS3-249 variants on avian and mammalian virulence. They generated viruses
presenting multiple amino acid substitutions and inoculated them into two bird species (American
crows and house sparrows) and in CD-1 mice. The WNV NS3-249P mutant induced a higher viremia
and mortality than the parental WNV NY99 only in the two avian species tested. No difference was
seen in mice. This could suggest that this genetic determinant of virulence is specific to avian species.

Moreover, Sotelo et al. [135] showed that NS3-249 is not the only molecular determinant of
virulence for WNV strains bearing glycosylated E. They inoculated different strains of WNV lineage
1 (Spain 2007 (GenBank n◦ FJ766331), Morocco 2003 (GenBank n◦AY701413), and NY99 (GenBank
n◦FJ151394) into CD-1 mice by the intraperitoneal route. These WNV strains bear either a proline (Spain
2007, NY99) or threonine (Morocco 2003) at position NS3-249. At the dose of 100 PFU, the authors
observed 100% mortality regardless of the strain inoculated. At 1 and 10 PFU, however, different
clinical outcomes were observed for the three strains. The LD50 was lower for the Morocco 2003 and
NY99 strains (1.78 and 2.31 PFU/mL, respectively), while a higher LD50 was observed for WNV Spain
2007 (18 PFU/mL). Consequently, the WNV Morocco 2003 (with a T at NS3-249) was more virulent in
mice than WNV Spain 2007 (with P at NS3-249). These results suggest that the amino acid residues at
not only position 249 but also at other positions play a role in WNV virulence in mice.

2.3.4. NS4 Protein

NS4A and NS4B are small (16 kDa and 27 kDa) hydrophobic proteins. NS4A plays a role in the virus
replication process and may act as a cofactor regulating the ATPase activity of the NS3 helicase [136,137].
NS4B plays a role in immune evasion through inhibition of WNV IFN signaling [138,139] and may
also play a role in viral replication [139].

The hydrophobic NS4A protein interacts with cellular membranes through four internal
hydrophobic domains. Its N-ter domain is exposed at the cytoplasmic side of ER membranes, such as
the NS3 helicase domain. Several studies have demonstrated that NS3-NS4A binding plays a role in
polyprotein processing of yellow fever and dengue flaviviruses [140]. Based on these observations,
Shiryaev et al. investigated nucleotide changes in the NS4A protein and their impact on NS3 helicase
activity by measuring the ATPase activity. The introduction of NS4A-Q46K/Q47K/D50K mutations
abolished the ATP-saving functions of NS4A. Taken together, these results suggest that NS4A is
essential for optimal performance of the helicase activity of NS3 [136].

Several publications have described mutations in the NS4B protein in attenuated and
passage-adapted mosquito-borne flaviviruses [141–143]. Sequence alignment of multiple flaviviruses
showed that these mutations occurred in the same region of the protein. Wicker and colleagues [144]
investigated the role of the four cysteine residues (102, 120, 227, and 237) of the NS4B protein using the
WNV as a model. They specifically identified the serine–cysteine substitution at position 102 as key
to conferring an attenuated phenotype in NIH Swiss mouse models. In vitro, this mutation induced
thermosensitivity of the mutant WNV in Vero cells at 41 ◦C. Other mutations at residues 77 and 125
of the NS4B of DENV serotype 2 were identified as essential to inhibit IFN signaling. It is therefore
tempting to consider that the C102S mutation, located in the same region, may play a role in the IFN
signaling cascade.

Puig-Basagoiti and colleagues [145] established the adaptive mutation of the Glu to Gly at position
249 (E249G) in the C-ter tail of NS4B as being important for conferring an attenuated phenotype of
WNV in mammalian cell cultures and in vivo in mice. In mosquito cells, however, no differences were
noted between the parental and mutant virus. Of note, this mutation was also identified in a strain
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isolated from birds (WNV Texas 2003), which displayed attenuated virulence compared with WNV
NY99 [146].

In the N-ter region of NS4B, several residues are conserved among the WNV strains (D35, P38,
W42, and Y45). Wicker and colleagues demonstrated a role for the proline residue at position 38 in
WNV virulence in mammals. The engineered P38G mutant virus was found to contain additional
NS4B T116I and NS3 N480H substitutions. The importance of the P38G mutation in the virulence and
viral replication was demonstrated in vitro on different cell lines and also in mice [139].

2.3.5. NS5 Protein

The NS5 protein is the largest NS protein (103 kDa) and comprises a N-ter methyltransferase
(MTase) and a C-ter RNA-dependent RNA polymerase [147]. By consequence, NS5 is pivotal for
flavivirus replication. NS5 catalyzes sequential methylation of a guanine N-7 residue and a ribose 2′O
site to generate a type 1 cap on the 5′ end of viral RNA [148].

Davis et al. [149] published complementary data on the NS4B-E249G substitution mutation.
They demonstrated that the substitution of alanine by valine at position 804 in the C-ter domain of
NS5 confers an attenuated phenotype of WNV in cell culture and in vivo in mice.

Several studies [148,150–153] have addressed the MTase activity of NS5, and have served to identify
three stable attenuating mutations that abolish 2′O methylation activity (K61A, K182A, and E218A).
These mutants, however, retain varying degrees of N-7 methyltransferase activity, which seems to be
sufficient for virus viability [153].

Kaiser and colleagues investigated different single NS5 mutants, including NS5-K61A and
NS5-E218A, as well as the double mutant NS5-K61A/E218A, in the framework of a NY99 IC. Although
each single mutant was attenuated for neuroinvasiveness in NIH Swiss Webster mice, the double
mutant was not, though the mice survived for a longer period than those challenged with the parental
NY99 strain. This unexpected result was due to the reversion of the double mutant at both mutation
sites. To demonstrate the reversion of this double mutant, Kaiser et al. realized next-generation
sequencing on the double mutant viral stock after many passages on Vero cells. At P0, 3.3% of viral
stock presented the A61K reversion and 2.8% the A218E reversion. After one passage, the A61K
reversion was detected in 5% of the viral population and A218E in 4.1%. Finally, at passage 5 on
Vero cells, the A61K and A218E reversions made up 41% and 47.6%, respectively, of the population.
Nonetheless, the NS5-K61A and NS5-E218A mutations in the N-ter methyltransferase domain of NS5
are important virulence determinants of the WNV and appear to be promising targets to generate
candidate live WNV vaccines [154].

2.4. The 3′UTR Non-Coding Region

The 5′ and 3′ UTR flanking the single ORF of flaviviruses act as important regulators of viral
genome replication and translation. They contain highly elaborated secondary structures [155].
The 3′UTR of flaviviruses ranges between 380 to 600 nt in length and can be divided into three domains:
a highly variable proximal domain 1 that follows the stop codon, a second domain 2 with a moderately
conserved sequence and a number of stem-loops and dumbbell structures, and the highly conserved
distal domain 3 [156].

In addition to the full-length genomic RNA (gRNA), an RNA sequence of approximatively
0.5 kb—called subgenomic flaviviral RNA (sfRNA)—has been detected in flavivirus-infected cells [157,
158]. Recent studies have shown that sfRNA is a degradation product generated by a host enzyme,
probably the 5′-3′ exoribonuclease XRN1 [158,159]. It is thought that complete degradation of gRNA
by XRN1 may be prevented by the 3′UTR secondary structure. The generation of sfRNA plays a
role in WNV virulence [160]. A study conducted by Roby and colleagues [156] demonstrated that
deletion mutants of WNV incapable of producing sfRNA were attenuated both in cell culture and
in vivo in mice.
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Davis and colleagues [149] sought mutations in the 3′ UTR involved in WNV virulence.
They determined that the following substitutions—3′UTR-A10596G/C10774U/A10799G—did not
by themselves change the WNV phenotype. However, WNV virulence was attenuated when these
three mutations occurred simultaneously with the NS4B-E249G mutation.

3. Avian Model

In many bird species, the level of viremia is sufficient to infect mosquitoes. They are not only
reservoirs of WNV but also amplifiers of the virus and a source of infection for dead-end-hosts.
Severe WNV disease has been diagnosed in Accipitriformes and Passeriformes, and among the latter,
especially in Corvidae. Clinical signs in susceptible species include ruffled feathers, lethargy, ataxia,
inability to fly, seizures, and unusual postures.

A variety of wild bird species (at least 77 species belonging to 29 families and 12 orders) have
been experimentally inoculated with different WNVs to estimate their host competence and to study
WNV pathogenesis and virulence [49]. Passeriformes and Charadriiformes are considered to be
highly competent hosts [48]. The virulence determinants of WNV have mainly been characterized
in the American crow (AMCR) (Corvus brachyrhynchos), house sparrow (HOSP) (Passer domesticus),
red-legged partridge (Alectoris rufa) [49], house finch (HOFI) (Haemorhous mexicanus), and young
specific-pathogen-free (SPF) chicks (Gallus gallus domesticus) [161,162]. Host competence should be
considered when evaluating WNV fitness and virulence in birds [49]. Bird species with low (chicken),
moderate, and high (AMCRs and HOSPs) competence will differentially replicate the WNV and,
consequently, evaluation of virulence factors in vivo will be influenced to some extent by the bird
species used. The geographic distribution and abundance of avian species will also influence the
amplification and transmission dynamics locally. Only a few of the identified molecular determinants
of virulence identified in mice have been confirmed in natural avian hosts (Table 1 and Figure 7).
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Table 1. Comparison of molecular virulence determinants of WNV in mammalian, avian, and insect models. The table details most of the residues involved in virulence
variation in vivo and in vitro, as well as mutations or deletions most often observed. Green: mutations that decrease virulence. Red: mutation that increase virulence.

Mammals Model Avian Model Insect Model

nucleotides
involved/mutation/deletion effect nucleotides

involved/mutation/deletion effect nucleotides
involved/mutation/deletion effect

5′UTR 5′UTR (nt 50-52)

prM/M
prM-N15Q decreases viral RNA quantity prM-I141T decreases virulence
M-I36F small plaque phen., att phen.
M-A43G small plaque phen., att phen.

E

glyE+ (nt 154-156) increases neuroinv., neurovir. E-S156P (glyE-) decreases viremia E-N154I (glyE-) decreases viral repli.
E-L107F
E-159
E-A316V/E decreases virulence
E-K440R decreases virulence

NS1

NS1-N130A stop neuroinv. NS1-K110N enhance viral temp. resistance NS1-130-132QQA decreases infection, dissemin., transm.
NS1-N175A stop neuroinv. & neurovir. NS1-175A decreases infection, dissemin., transm.
NS1-N207A stop neuroinv. NS1-207A decreases infection, dissemin., transm.
NS1-P250L decreases viral titer and stop neuroinv.

NS2 NS2A-A30P decreases viral repli., att. for neuroinv.
and neurovir.

NS3
NS34483 decreases mortality NS34483 decreases virulence NS34483 decreases fitness
NS3-249 NS3-T249P decreases virulence

NS4

NS4A-E46K NS4A-F92L enhance viral temp. resistance
NS4A-E47K NS4A-T116A
NS4A-D50K

NS4B-C102S temp. sens., decreases neuroinv.
and neurovir. NS4B-C102S better mosquito transm.

NS4B-E249G decreases viral repli. and mortality NS4B-E249G

NS4B-P38G temp. sens., small plaque,
decreases mortality NS4A-P38G/A better mosquito transm.

NS5

NS5-A804V att. for neuroinv.
NS5-K61A decreases repli., no lethality
NS5-K182A decreases repli.
NS5-E218A decreases repli., no lethality
NS5-D146A decreases repli.

3′UTR
3′UTR-A10596G decreases virulence
3′UTR-C10774U decreases virulence
3′UTRA10799G decreases virulence
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3.1. Structural Proteins

3.1.1. E Protein

Several studies [76,163] have confirmed the role of glycosylation of the E protein in viral
pathogenicity in birds, both in vitro (on avian cells) and in vivo (on two-day old chicken).
Brault et al. [71] confirmed that Mexican variants of WNV with a glycosylated E motif (E-P156S)
produced a higher viremia and shorter survival time in American crows and house sparrows, thereby
defining the glycosylation state of E protein as a virulence determinant in birds. However, strains that are
non-neuroinvasive in mice cause significant mortality in birds, suggesting that mechanisms of virulence
and attenuation may vary between vertebrate hosts. Therefore, results acquired in mouse models may
not accurately predict virulence in birds. Moreover, among avian species, results obtained in a given
species cannot be transported to other susceptible species and need to be assessed experimentally.

3.1.2. prM Protein

In comparison with the highly virulent NY99 strain, the strains isolated in Mexico, Central
America, or South America in 2003 were attenuated [164–166]. A study conducted by Brault and
colleagues in 2011, found that the WNV Mexican variants, whether the E protein was glycosylated or
not, were less virulent than the NY99 strain, suggesting that other determinants impact the virulence
in the avian model. Langevin et al. generated chimeric mutants between the Mexican and the NY99
strains and inoculated them into three bird species (AMCRs, HOSPs, and HOFIs). They demonstrated
that the prM-I141T and E-S156P mutations decrease WNV NY99 virulence and that the reciprocal
mutations prM-T141I and E-P156S raise the virulence of the Mexican strain in birds [162].

3.2. Non-Structural Proteins

3.2.1. NS1, NS2, and NS4 Proteins

Andrade et al. [167] evaluated temperature sensitivity using WNV NY99 and COAV997 (WNV
California 2003) strains that differed at five non-synonymous mutations. They infected duck embryonic
fibroblasts (DEF) cells with parental and chimeric viruses at three temperatures, 37 ◦C, 41 ◦C, and 44 ◦C,
corresponding to temperatures observed in birds that are slightly, moderately, and severely ill,
respectively [168]. They observed that the NS1-K110N and the NS4A-F92L substitutions in WNV
NY99 decreased cell growth only at 44 ◦C. These results highlight the importance of residues 110
(asparagine) of the NS1 protein and 92 (phenylalanine) of the NS4A protein in WNV infection of avian
cells. A similar test was carried out in vitro on Aedes albopictus mosquito cells (C6/36) by studying
infection at 22 ◦C, 28 ◦C, and 34 ◦C, corresponding to temperatures typical of spring, early summer,
and summer, respectively. No differences were observed in C6/36 cells, suggesting that certain genomic
regions could be involved in temperature adaptation in the host but not in the vector.

The NY99 strain has been extensively studied and is widely used as a model strain for WNV studies.
An alternative lineage 1 WNV strain isolated in Kenya (WNV KN3829) shows only eleven amino-acid
differences with the NY99 strain. The two strains exhibit a different virulence phenotype in American
crows. Although NS3 studies show the importance of the NS3-249T substitution in attenuation of
WNV virulence in birds, viremia was lower for the KN3829 parental strain and KN3829-T249P mutant
than the NY99-P249T and NY99 strains, respectively, suggesting the importance of other mutations
for the avian virulence phenotype. Dietrich et al. [169] focused on the role of NS1 and NS2 proteins
in addition to the NS3-P249T substitution in bird virulence. In an in vivo study, viremia was shown
to be higher for mutants having either a proline or a threonine residue at position 249 in the NS3
protein along with the NS1 and NS2B regions of NY99, than for the parental viruses. These regions
differ by three residues between the two strains (residues 70 of NS1; 52 and 103 of NS2). Site-directed
mutagenesis was then used to replace low virulence strain residues with those of a high virulence strain
(NS1-S70A, NS2A-A52T, and NS2B-A103V). Significant differences were not observed in vivo, whether
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for viremia or mortality, suggesting that the difference in virulence does not depend on a single residue.
They also evaluated the temperature sensitivity of WNV NY99, KN3829, and the chimeric mutants
thereof. They infected peripheral blood mononuclear cells (PBMC) of AMCR and DEF at different
temperatures. Replacement of the NS1-NS2B region of KN3829 by the corresponding fragment of
NY99 increased the viral titer in DEF.

These results show that differences in the NS1 and NS2B region may influence the pathogenicity of
WNV in bird models, independently of the NS3-249 substitution. Moreover, it seems that modification
of the NS1 and NS2B proteins impacts the strain-specific temperature sensitivity. However, the
temperature of viral replication directly influences the capacity of the WNV to infect vectors and hosts.
Indeed, to increase the probability of survival, WNV has to be able to replicate at temperatures ranging
from 14 ◦C (minimal temperature for mosquito life cycle) to 45 ◦C (maximal temperature of febrile
bird). It is frequently observed that a poor in vitro adaptation of viral strains to different temperatures
is correlated with an attenuated virulence phenotype in vivo [170–172].

3.2.2. NS3 Protein

The NS3-T249P is present in many WNV strains that have caused major outbreaks in humans,
such as in Egypt (1950), Romania (1996), Russia (1996), New York (1999), and Israel (1997–1998) [134].

Brault and colleagues also identified the NS3-249P residue as a critical determinant of WNV
virulence in American crows. To this end, they compared the viremia of AMCRs infected with
WNV NY99 (highly virulent), KN3829 (attenuated strain), and the mutants NY99-P249T and
KN3829-T249P [133,173]. The attenuated strain KN3829 and the mutant NY99-P249T gave rise to a low
level, delayed viremia at day 3 pi, compared with high titers obtained for NY99 and KN3829-T249P.
However, studies conducted by Langevin et al. in 2005 and Sotelo et al. in 2011 in other avian
species, HOSPs and red-legged partridges, respectively, did not validate these results. This observation
suggests that results obtained in a given species cannot be transported to other susceptible avian
species and need to be validated experimentally.

Langevin and colleagues demonstrated that, depending on the nature of the substitution at
position 249 of NS3 (tested substitutions: NS3-P249A, NS3-P249D, NS3-P249H, and NS3-P249T),
in vivo virulence in AMCRs and HOSPs is differentially affected. No differences in viremia was
observed in AMCRs infected with NS3-P249D and NS3-P249H mutants or the parental strain NS3-249P.
The NS3-P249T mutation, however, drastically reduced the viremia and diminished the lethality.
Modification of the NS3-249 residue had an impact on viremia in HOSPs. Unlike observations
made in AMCRs, the NS3-249T mutant produced a higher viral titer than the NS3-249P mutant,
but rapidly declined at 3 dpi. These results confirm the importance of the NS3-249 residue in avian
virulence, especially in the Israelo-American clade, which is the only group of lineage 1 WNV strains
with high pathogenicity in birds [134]. Dridi’s group [73] also investigated the NS3-249P residue.
They performed an in vivo experiment in young SPF chickens, inoculated with three different lineage
2 WNV strains: Hun2004 and Aus 2008, which have a NS3-249H residue, and Gr2011, which has a
NS3-249P residue. After subcutaneous inoculation, viremia peaked for all viruses at 2 dpi. However,
for Gr2011, an infectious virus could only be detected at this time point. Moreover, the infectious titer
was significantly higher for Hun2004 and Aus2008 than for Gr2011. These results show that, despite
its NS3-249P residue, Gr2011 is less virulent than the other strains tested. That could suggest that
NS3-249P is neither sufficient nor necessary for WNV virulence in birds.

Viral fitness was evaluated by Ebel et al. [131] in mosquitos and chicken. Competitive inoculation
of both wild-type WNV and mutant NS3∆483 showed that the NS3∆483 mutant was outcompeted by
wt WNV in chickens, suggesting a role for NS3 helicase activity in WNV virulence.

4. Insect Model

Using the mosquito as an in vivo model can be complex depending on the route used to inoculate
the virus. Experimental techniques for WNV infection in mosquitoes vary from thoracic microinjection
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and membrane blood feeding to blood feeding directly on mice [174]. The origin of the blood source is
also an important criterion in the study of vector competence of mosquitoes. Avian blood, especially
chicken blood, is ideal [68]. Experimental infections with WNV in mosquito vectors have mainly been
performed to assess the replication efficacy in mosquito hosts and therefore deduce virus circulation in
the natural enzootic transmission cycle. Studies of WNV virulence have first addressed multiplication
and dissemination of WNV variants in vitro in cell lines, essentially on C6/36 (Ae. albopictus cells),
and then sought confirmation in vivo, mainly in Cx. pipiens mosquitoes. Other studies have been
performed on Ae. albopictus, Ae. caspius, Ae. detritus, and Cx. modestus [68].

4.1. Structural Proteins

E Protein

Murata et al. examined the role of glycosylation of the E protein in viral dissemination and
replication for two mutant viruses, 6-LP (S156, glyE+, GenBank No. AB185914) and 6-SP (P156, glyE-,
GenBank No. AB185915) in C6/36 cells and in vivo in Cx. pipiens. In vitro temperature sensitivity tests
and in vivo experiments revealed that the mutations had no effect on multiplication and dissemination
of WNV [64]. Therefore, glycosylation of the E protein is not critical for the virus to propagate and
disseminate within the vector, at least when the virus is inoculated intrathoracically into mosquito
hemolymph so as to bypass the midgut barrier [110].

Another study conducted by Moudy et al. [175] focused on the N154I substitution within the
E protein of WNV NY99. No differences were observed between the parental and mutant virus.
These results do not agree with conclusions from previous studies [92,176], which demonstrated a
10-fold decrease in WNV titers in mosquito cells. This difference could possibly be explained by
the strain of WNV used. In vivo experiments were performed on Culex pipiens and Culex tarsalis.
The authors tested two inoculation routes (perioral and intrathoracic) to infect female mosquitoes, in
which the inoculation route, replication of the NY99 N154I variant, was lower than that of the parental
virus in the two mosquito species tested. This result highlights the importance of the asparagine
residue at position 154 of the E protein in WNV replication in mosquitoes. The currently known genetic
determinants of virulence in mosquitoes are represented in Figure 8.
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4.2. Non-Structural Proteins

4.2.1. NS1 and E Protein Glycosylation

Van Slyke and colleagues [177] carried out in vivo experiments to study vector competence of
Culex tarsalis. They investigated three mutations that remove NS1 glycosylation (NS1-130-132QQA/

175A/207A) alone or in addition to ablation of the glycosylation site of the E protein (E154S-NS1-130A/

175A/207A). Both mutants were attenuated for vector competence in Culex tarsalis. Infection,
dissemination, and transmission were more impaired for the NS1-130-132QQA/175A/207A mutant
than for the mutant E154S-NS1-130A/175A/207A. The NS1 glycosylation is therefore an important
determinant for WNV dissemination and transmission in Culex tarsalis.

4.2.2. NS3 Protein

Ebel et al. [131] evaluated the fitness of the WNV NS3∆483 mutant in Culex quinquefasciatus.
A lower to moderate fitness was observed for the mutant WNV compared with that of the parental
counterpart. The authors also demonstrated reduced fitness for the WNV NS3∆483 mutant in chicken.
The RNA helicase of NS3 thus plays a role in fitness in both avian and mosquito hosts.

4.2.3. NS4 Protein

Van Slyke et al. [177] studied the impact of several mutations in NS4B (NS4B-P38G/T116A,
NS4B-C102S, NS4B-P38A, and NS4B-E249G) on the vector competence of Culex tarsalis. They found
that all the NS4B mutations increased the vector competence of Culex tarsalis, as evidenced by a higher
infection rate, dissemination, and transmission for these viruses. These results are discordant with
observations in mammals in which the corresponding NS4B mutants had attenuated phenotypes in
neurovirulence [144].

5. Discussion

WNV is expanding across Europe and other continents. It re-emerged in Europe during the
summers of 2016–2018, with an increase in reported autochthonous cases (ECDC, update 9 November
2018). This flavivirus is maintained in an enzootic cycle involving different species of birds and
mosquitoes with humans and horses identified as dead-end hosts [47,48,178]. It is important to acquire
better clarification for several aspects of WNV circulation, including genomic diversity, pathogenicity,
and transmissibility of the WNV strain. Many studies have provided insight into the profile of
circulating WNV isolates. Some isolates from birds and mosquitoes are naturally attenuated [146,179].
For instance, strains isolated in Texas (Houston) in 2003 are temperature sensitive and attenuated
in mice and birds. Genomic sequence analyses did not identify specific mutations related to this
phenotype. Authors have described the NS4B E249G substitution and additional mutations such as
prM-N4D and NS5 A804V, all or most of which are present in all but a few of these attenuated isolates.
Therefore, natural attenuation probably relies on the accumulation of multiple specific mutations in
different parts of the genome. Thanks to reverse genetic technologies and site-directed mutagenesis,
research groups have successfully investigated the impact of individual mutations engineered in the
structural, prM/M, and E genes, and non-structural NS1, NS2A, NS3, NS4A, NS4B, and NS5 genes.

WNV is biologically diverse, with up to eight different lineages proposed. The majority of the
studies performed to identify the critical molecular determinants of virulence have used WNV NY99
as a reference strain. It would be therefore of great interest to look for molecular determinants of
virulence in WNV strains isolated more recently in Africa, Europe, and Australia. The identification
of virulence determinants is a key step in understanding WNV pathogenesis and in designing
preventive and therapeutic tools. The study of genetic expression, replication, and pathogenesis of
flavivirus, especially WNV, has been facilitated by the improvement of reverse genetic technologies.
In order to overcome the toxicity of full-length cDNA in bacteria, various approaches have been
employed, such as long PCR, CPEC, ISA, and ISA-derived methods [83]. These methods allow rapid
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generation of infectious flavivirus cDNA. The production of such tools was essential in acquiring
the current high level of knowledge about flavivirus virulence determinants. Most studies were
initially undertaken in mouse models but rapidly the research community moved on to assess WNV
virulence in more relevant models, especially birds, the natural hosts of the virus, and its vectors,
especially Culex spp. mosquitoes. A review edited by Kaiser and colleagues [88] summarized the
key molecular determinants implicated in WNV virulence in mammals and mosquitoes. Four years
later, the present review updates the current understanding of the virulence determinants of WNV in
mammals, birds, and mosquitoes, and provides a comparison of the differences observed between
the three models and with other flaviviruses (Table 2). Several groups have compared the role of
critical virulence determinants in the three models. Such is the case of Murata and colleagues [76], who
focused on the glycosylation state of the E protein. In vitro experiments performed in mammalian,
avian, and mosquito cell lines demonstrated that the WNV gly+E protein is temperature-sensitive in
vertebrate cells only. These results were validated in vivo. Glycosylation of the E protein increased
the virulence in avian and mammalian hosts but had no impact on the replication and dissemination
in Culex pipiens. Another group [131] focused on the NS3 protein, especially NS3∆483. This deletion
is conserved in other flaviviruses, causing encephalitis such as TBEV and JEV, but not in dengue
and yellow fever virus [132]. They observed an attenuated phenotype in mice, and a decreased
fitness of WNV in birds and mosquitoes. These two studies highlighted the necessity to perform
comparative studies in the natural hosts and reservoirs of WNV to appreciate the global impact of
mutations in WNV pathogenesis. In addition, the dynamics and stability of virulent/non virulent
mutations through serial cross-passages in mammalian/avian/arthropod hosts would deserve further
studies. Researchers now have a robust inventory of specific virulence determinants across most of the
WNV genome underpinned by phenotypic studies in vertebrate and/or invertebrate hosts/reservoirs.
The identification of key mutations accounting for WNV attenuation and pathogenesis need to be
pursued. The proper characterization of virulence determinants requires an extensive analysis of the
modifications induced in the complete gene-product and its effect on neuroinvasiveness, tissue tropism
by immunohistochemistry, and immunopathogenesis. It would be interesting to start investigating the
impact of combined mutations in several genes. Indeed, according to the phenotypic studies conducted
on WNV isolates, the level of virulence depends upon multiple sites in the genome. This would help
in elucidating the pathobiological mechanisms of flavivirus infection that underline the virulence
determinants. This approach, combined with reverse genetic and site-directed mutagenesis, would be
useful for design of a safer WNV vaccine containing the mutations of interest.



Int. J. Mol. Sci. 2020, 21, 9117 23 of 35

Table 2. Comparison of molecular virulence determinants among flaviviruses. The table details residues involved in virulence variation in vivo and in vitro and
shared by at least two flaviviruses. TBEV: tick-borne encephalitis virus; DENV: dengue virus; ZIKV: zika virus; YFV yellow fever virus; JEV: Japanese encephalitis
virus; MVEV: Murray valley encephalitis virus [92,97,99,102,106–108,112,113,116,177,180–206].

Location Virus(es) Residues Similar Residues in
WNV Genome Effects References

prM/M
prM glycosylation sites TBEV D143, R144 N15 ablation of prM glycosylation sites impacts virus assembly and

infectivity and enhances TBEV neurovirulence [92,180]

ApoptoM DENV, YFV L36 I36 modulates the death-promoting activity of M, virus replication
and neurovirulence [97,99,181]

E

Domain I
(N-glycosylation site)

TBEV N154

154–157
modulates virus secretion from infected cells and virus infectivity in

mammalian cells but not in arthropod cells, as well as virus
replication and neuroinvasiveness in in vivo models

[182]

ZIKV T156 [183]

ZIKV 154–157 [102,106–108,184]

Hinge region linking
Domains I and II

JEV, DENV, YFV E49 (JEV), Q52 not investigated on WNV impairs endocytosis and modulates neuroinvasiveness
and neurovirulence [185–188]

JEV E138K E138
reduces virus replication, neuroinvasion and neurovirulence for JEV,

neurovirulence not affected for WNV and residue prone to rapid
reversion in WNV

[113,186,189]

Domain II
(fusion peptide)

JEV, YFV L107F
L107 impairs fusion, decreases viral growth in mammalian and insect cells

and neuroinvasiveness in mice but does not affect neurovirulence

[112,116,187,190]

DENV G102S, F108A [191]

Domain III
(receptor binding site)

JEV E306K

A316

influences binding to glycosaminoglycans (residues 325-326 and 380)
or other cell receptors, modulates the efficacy of virus spread,

neuroinvasiveness and neurovirulence - diminishes infection rates in
Aedes aegypti mosquitoes (YFV), not studied in Culex mosquitoes

[192]

YFV, DENV S305F [181,193–195]

TBEV D308K [197]

JEV A315V [198]

YFV S325P, E326K/R [193,195,196]

YFV, MVEV R380T [193,194,199,200]

NS1 N-glycosylation site
DENV N130A + N208A

N130 + N207

ablation of the first glycosylation site (N130) decreases replication,
viral production and neurovirulence and diminishes vector

competence of Culex tarsalis mosquitoes for WNV
[177,198]

YFV N130A + N208A Decreased replication and neurovirulence (1st glycosylation site) [116,201,202]

3′UTR Deletion of nucleotides

JEV −27nt

not investigated on WNV Attenuates or increases (TBEV) neurovirulence

[203]

DENV −4 nt [204,205]

TBEV −206 nt [206]
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It would also be a good starting point to compare the virulence and pathogenesis of the WNV
with those of other flaviviruses of interest, such as the dengue and yellow fever viruses [97]. It is
noteworthy that the study of flavivirus molecular determinants has been driven by the identification
in the field or by artificial selection of mutants with properties of interest, such as attenuation,
neuroadaptation, and escape from neutralization. Much work [207] has been performed on Culex-borne
JEV and WNV, Aedes-borne YFV and DENV, and tick-borne TBEV, while more limited datasets are
available for other or recently emerging flaviviruses (ZIKV, for example). As a consequence, most of the
molecular determinants shown to influence WNV, JEV, TBEV, MVEV, YFV, DENV, or ZIKV virulence
or vector-borne transmission have only been studied for a single flavivirus [208,209]. Moreover,
differences in the topology of NS proteins between flaviviruses, such as differences in NS2A aa residues
exposed at the luminal side of the endoplasmic reticulum or in the cytoplasm of YFV and DENV
infected cells, might explain, in part, the apparent variation in critical residues identified for different
flaviviruses [210]. Of note, a comparison of the molecular determinants of flaviviruses has identified
a number of these that are conserved in most flaviviruses, independent of the nature of the vector
(mosquitoes vs. ticks, with TBEV) or of their tropism (neurotropism for JEV, WNV, and TBEV vs.
viscerotropism for YFV and DENV (Table 2)); these shared determinants are likely to correspond to
protein domains or functions that are critical for flavivirus biology, such as N-glycosylation domains in
prM, E, and NS1, as well as E receptor-binding and fusion domains. Only one residue, E-138, has been
shown to modulate the neurovirulence of JEV and WNV in a differential manner, as the E-E138K
mutation diminished the neuropathogenicity of JEV in mice but had no impact on WNV [113,186,189]
(Table 2). The identification of attenuating non-synonymous mutations that are conserved among
flaviviruses could help in the rational design of attenuated vaccines against emerging flaviviruses,
such as the Usutu or Zika viruses.

Finally, we actually face environmental changes (climate change, ecosystem changes due to
biodiversity loss, and land-use modification). In response to global warming, bird species, some of
them competent for WNV, may have to change their distribution area, possibly spreading WNV into
new regions. In addition to altering the distribution of wildlife hosts, global warming will impact the
mosquito distribution globally. Global warming will lead to the desertification of many regions that
will become unfavorable to mosquitoes, but at the same time it could make temperate and cold regions
more favorable to mosquitoes. In this context, WNV distribution may change in the coming years,
leading to recurrent outbreaks in hitherto spared areas. We know that a fast reaction to a new outbreak
is one of the best ways to control an epidemic. Thanks to modern molecular biology, viral genomes
can be quickly sequenced. Detailed knowledge of the molecular determinants of virulence present in
the viral genome would certainly help to anticipate the possible grade of WNV epidemics and, hence,
properly implement control measures.
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