Insights into transcriptional repression of the homologous toxin-antitoxin cassettes *yefM-yoeB* and *axe-txe*

Barbara Kędzierska ^{1,*}, Katarzyna Potrykus ¹, Agnieszka Szalewska-Pałasz ¹ and Beata Wodzikowska ¹

Figure S1. 15% SDS-PAGE shows the indicated proteins' overproduction in lysates of BL21(DE3) cells transformed with appropriate pET22(b) derivatives. PageRuler Prestained Protein Ladder (Thermo Scientific) was loaded in the last lane. Appropriate molecular weights of the protein marker are indicated in kDa.

Figure S2. Transcriptional repression of p_{yy} by the YefM-YoeB complex *in vitro*. Multiround *in vitro* transcription reactions were performed on 5 nM pTEpyy DNA template, using 25 nM *E. coli* σ^{70} RNA polymerase holoenzyme and increasing concentrations of YefM-YoeB6His complex (0, 20, 100, 200, 1000, 2000 nM) – left panel. *In vitro* transcription reactions on pTEpyy and pTEyy-35mut DNA templates with increasing concentrations of YefM-YoeB6His complex (0, 20, 100, 200, 1000, 2000 nM) – left panel. *In vitro* transcription reactions on pTEpyy and pTEyy-35mut DNA templates with increasing concentrations of YefM-YoeB6His complex (0, 200, 400, 800 nM) – right panels. Reactions were carried out and analyzed as outlined in Materials and Methods.

Figure S3. DNaseI footprinting of the YefM-YoeB complex on p_{yy} wt, p_{yy} -35mut and p_{at} promoter-operator regions. Footprinting reactions were performed as outlined in Materials and Methods using increasing concentrations of YefM-YoeB6His (0, 0.25, 0.5, 1, 2 µM) bound to 20 nM cy5-labeled appropriate DNA fragment for 10 min at 37°C. The samples were then treated with DNaseI and reactions were run on 8% denaturing acrylamide gels along with sequencing reactions (GATC). The relative positions of regions on the upper strand that is protected from DNaseI digestion are illustrated on the right side of the gels.

Figure S4. Transcription repression of p_{al} -35mut mediated by YefM and YefM-YoeB *in vivo*. Transcriptional *lux* gene fusions of p_{al} -35mut promoter were made in pBBRlux-amp vector and were introduced into the SC301467 strain together with pBAD33 vector control (for promoter unrepressed conditions – first bars) and pBAD33 derivatives producing YefM or YefM-YoeB complex. Assays were conducted after induction with 0.2% L-arabinose. Luminescence was measured in RLU (relative luminescence units) when cell cultures reached OD₆₀₀~0.5. The basal activity of pBBRlux-amp vector control was ~100 units. These results are average of three independent experiments.

Table S1. Plasmids used in this work.

Plasmid	Description	Source
pBBRlux-amp	Vector for generating transcriptional fusion to <i>lux, bla</i> gene was cloned into <i>EcoRI</i> site within the <i>cat</i> gene, Amp ^R	[41]
pBBRlux_pat	p_{at} promoter-operator region, digested with <i>SpeI-BamHI</i> and cloned between equivalent sites in pBBRlux-amp	[41]
pBBRlux_pyy	<i>pyy</i> promoter-operator region, amplified with primers 84 and 85, digested with <i>Spe</i> I- <i>BamH</i> I and cloned between equivalent sites in pBBRlux-amp	This work
pBBRlux_pat+1mut	The same as pBBRlux_pat, but <i>p</i> ^{at} promoter fragment was amplified with primers 76 and 38 on a pTEpat+1mut template and cloned between <i>Spe</i> I and <i>BamH</i> I sites	This work
pBBRlux_pyy+1mut	The same as pBBRlux_pyy, but <i>pyy</i> promoter fragment was amplified with primers 84 and 85 on a pTE <i>pyy</i> +1mut template and cloned between <i>Spe</i> I and <i>BamH</i> I sites	This work
pBBRlux_pat-35mut	The same as pBBRlux_pat, but <i>p</i> ^{at} promoter fragment was amplified with primers 76 and 38 on a pTEpat- 35mut template and cloned between <i>Spe</i> I and <i>BamH</i> I sites	This work
pBBRlux_pyy-35mut	The same as pBBRlux_pyy, but <i>pyy</i> promoter fragment was amplified with primers 84 and 85 on a pTEpyy- 35mut template and cloned between <i>Spe</i> I and <i>BamH</i> I sites	This work
pBAD33 pBADyefM	Arabinose-inducible expression vector, Cm ^R <i>yefM</i> gene cloned into pBAD33 between <i>Hind</i> III and <i>Xho</i> I restriction sites, under control of L-arabinose inducible promoter	[65] [37]
pBADyefMyoeB	<i>yefM-yoeB</i> cassette cloned into pBAD33 between <i>Hind</i> III and <i>Xho</i> I restriction sites, under control of L-arabinose inducible promoter	[37]
pTE103	Vector for generating transcription templates, contains the multicloning site placed upstream from a bacteriophage T7 transcriptional terminator, Amp ^R	[66]
pTEpat	<i>pat</i> promoter fragment (bearing <i>pat2</i> and <i>pat1</i> sequences) amplified with primers 37 and 38 and cloned between <i>EcoRI</i> and <i>BamHI</i> restriction sites of pTE103	This work
рТЕруу	p_{yy} promoter fragment amplified with primers 72 and 85 and cloned between <i>EcoRI</i> and <i>BamHI</i> restriction sites of pTE103	This work
pTEpat+1mut	The same as pTEpat, but transcription start site (+1) of p_{at} was changed from A to G with primers 169 and 170	This work
pTEpyy+1mut	The same as pTEpyy, but transcription start site (+1) of p_{yy} was changed from G to A with primers 167 and 168	This work
pTEpat-35mut	The same as pTEpat, but -35 box of p_{at} was changed from TTGCTT to TAGTTA with primers 165 and 166	This work
pTEpyy-35mut	The same as pTEpyy, but -35 box of p_{yy} was changed from TAGTTA to TTGCTT with primers 163 and 164	This work
pET22b	IPTG-inducible expression vector allowing fusion of C- terminal 6His-tag to the target protein, Amp ^R	Novagen

	pETyefM	yefM cloned between NdeI and XhoI restriction sites in pET22b, resulting YefM with C-terminal 6His-tag	[37]
	pETyefM-yoeB	<i>yefM-yoeB</i> cloned between <i>NdeI</i> and <i>XhoI</i> restriction sites in pET22b, resulting YefM-YoeB complex with C- terminal 6His-tag on YoeB	[37]
	pETaxe	<i>axe</i> cloned between <i>Nde</i> I and <i>Xho</i> I restriction sites in pET22b, resulting Axe with C-terminal 6His-tag	[41]
	pETpat_axe-txe	<i>axe-txe</i> (with <i>p</i> ^{<i>at</i>} promoter) cloned between <i>Nde</i> I and <i>Xho</i> I restriction sites in pET22b, resulting Axe-Txe complex (without 6His-tag)	[41]
	pTEpat1	Promoter fragment bearing only <i>p</i> _{at1} promoter sequence (without <i>p</i> _{at2} promoter sequence) was amplified with primers 93 and 38 and cloned between <i>EcoR</i> I and <i>BamH</i> I restriction sites of pTE103	This work
	pTEpat2mut-10pat1	The same as pTEpat, but -10 box of p_{at2} was changed from TAGAAT to CGGAAT with primers 201 and 202	This work
	pTCVlac	Broad-host-range low copy number shuttle vector for construction of transcriptional fusion with promoterless <i>lacZ</i> gene (bearing Gram+ ribosome binding site) to study regulatory elements in gram positive bacteria, Kan ^R , Erm ^R	[62]
	pTCVlac_pat1	Promoter fragment bearing only <i>patt</i> promoter sequence (without <i>patt</i> promoter sequence) was amplified with primers 93 and 38 and cloned between <i>EcoRI</i> and <i>BamHI</i> restriction sites of pTCVlac	This work
	pTCVlac_pat2pat1	Fragment bearing <i>p</i> _{at2} <i>p</i> _{at1} promoters sequence was amplified with primers 37 and 38 and cloned between <i>EcoRI</i> and <i>BamHI</i> restriction sites of pTCVlac	This work

Table S2. Oligonucleotides used in this study. Restriction enzyme sites and mutated positions are underlined.

Name	Sequence (5'-3')	Description
84	GAGT <u>ACTAGT</u> GGGGAAAGGAGG	Forward primer for amplification of p_{yy}
	GGG	promoter fragment to pBBRlux-amp, SpeI
		restriction site; forward primer for one strand
		labelled EMSA p_{yy} and p_{yy} -35mut promoter
		fragment
85	CATTC <u>GGATCC</u> TGACGCGCTTCG	Revers primer for amplification of p_{yy} promoter
	CTG	fragment to pBBRlux-amp and pTE103, BamHI
		restriction site
38	CCAAGGATCCGAATAAGCTACT	Revers primer for amplification of p_{at} promoter
	GCTTCC	fragment to pBBRlux-amp and pTE103 and
		pTCVlac. BamHI restriction site
76	GAGTACTAGTGAAAAAGCAGGA	Forward primer for amplification of p_{at} promoter
	TTTGAGG	fragment to pBBRlux-amp. Spel restriction site
37	GAGTGAATTCGAAAAAGCAGGA	Forward primer for amplification of p_{at} promoter
01	TTTGAGG	fragment to pTF103 and pTCVlac EcoRI
	1110/100	restriction site
72	CCCCCCAATTCCCCCCAAACCAC	Forward primer for amplification of $n_{\rm res}$
72	6666	promoter fragment to pTE103 EcoRI restriction
	0000	site
169	<u>ΓΑ ΑΤΑΤΑ ΑΤ<u>Γ</u>ΤΑ<u>ΓΑ ΑΤΤ</u><u>Γ</u>ΤΤΤ<u>Γ</u></u>	Forward primer for +1 site mutagenesis of $n_{\rm st}$
105		promotor
170		Promoter Bowerse primer for ± 1 site mutagenesis of n
170		nremeter
167		Forward primer for 11 site mutagenesis of r
107	ACACCACATTC	Porward primer for +1 site indiagenesis or pyy
160		Promoter Devices primer for 11 site mutagenesis of a
100		Reverse primer for +1 site mutagenesis of <i>p</i> _{yy}
1(5		Former d arrive or for 25 hou must concerio of a
105	GIIAGAAIAIIAAICAII <u>A</u> G <u>IIA</u>	Forward primer for -35 box mutagenesis of <i>p</i> _{at}
1((AAIIGIACAAIAIAAIG	promoter
166	CATTAIAIIGIACAATI <u>I</u> A <u>ACI</u> A	Reverse primer for -35 box mutagenesis of <i>p</i> _{at}
1.18	AIGAIIAAIAIICIAAC	promoter
163	CIACAAACIAAIIAAIAAAI <u>I</u> G <u>C</u>	Forward primer for -35 box mutagenesis of p_{yy}
	T <u>T</u> ATTAACGCTCATCAT	promoter
164	ATGATGAGCGTTAAT <u>A</u> A <u>GCA</u> ATT	Reverse primer for -35 box mutagenesis of p_{yy}
. – .	TATTAATTAGTTTGTAG	promoter
154	[cy5]AGCTGATGGCACCAAAAAT	Forward primer for cy5 p_{yy} promoter fragment,
	AGCG	for DNaseI footprinting and EMSA
155	[cy5]TTGTTGCCGACAAATTCTGA	Reverse primer for cy5 p_{yy} promoter fragment
	CG	for EMSA
156	[cy5]AGCAGGATTTGAGGTACCA	Forward primer for $cy5 p_{at}$ promoter fragment,
	GC	for DNaseI footprinting and EMSA
157	[cy5]TCATATAACTACGTAAATTT	Reverse primer for $cy5 p_{at}$ promoter fragment for
	TGGCGG	EMSA
86	TTTCCCAGTCACGACGTTG	Forward primer for one strand labelled
		competitive EMSA on p_{at} promoter fragment
181	ATTAAGGCGCGAGAGATATTCG	Reverse primer for generating p_{at} and p_{yy}
		fragments for DNaseI footprinting

93	GATC <u>GAATTC</u> ATCATTTGCTTAA	Forward primer for amplification of pat1
	TTG	promoter fragment to clone to pTE103 and
		pTCVlac vectors, <i>EcoRI</i> restriction site
201	TAATTATAAGAAGT <u>CG</u> GAATATT	Forward primer for mutagenesis of <i>p</i> _{at2} promoter
	AATC	-10 box
202	GATTAATATTC <u>CG</u> ACTTCTTATA	Reverse primer for mutagenesis of <i>pat2</i> promoter
	ATTA	-10 box