Supplementary Figures

Foam cell induction activates AMPK but uncouples its regulation of autophagy and lysosomal homeostasis

Nicholas D. LeBlond^{1,2,3}, Julia R. C. Nunes^{1,2,3}, Tyler K.T. Smith^{1,2,3}, Conor O'Dwyer^{1,2,3}, Sabrina Robichaud^{1,4}, Suresh Gadde^{1,2,5}, Marceline Cote^{1,2,3}, Bruce Kemp^{6,7}, Mireille Ouimet^{,1,4} and Morgan D. Fullerton^{1,2,3*}

Supplementary Figure S1. Atherogenic lipoproteins agLDL and oxLDL enhance AMPK-specific signaling to ACC. (A) Representative immunoblot depicting increased AMPK signaling in response to incubation with agLDL (50 µg/mL) for 8 and 24 h. A-769662 (8h; 100 µM) was used as a positive control for AMPK activation. (B) Representative immunoblot depicting increased AMPK signaling in response to incubation with oxLDL (50 µg/mL) for 8 and 24 h. A-769662 (8h; 100 µM) was used as a positive control for AMPK activation. (B) Representative immunoblot depicting increased AMPK signaling in response to incubation with oxLDL (50 µg/mL) for 8 and 24 h. A-769662 (8h; 100 µM) was used as a positive control for AMPK activation. (C) Quantification of relative signaling to ACC at Ser79 in response to 8 and 24 h incubation with atherogenic lipoproteins agLDL and oxLDL. pACC and ACC (260 kDa), pAMPKα and AMPKα (60 kDa) and β actin (37 kDa). Data represent the mean ± SEM.

Supplementary Figure S2. oxLDL induces ER stress and activates AMPK partially through CaMKK2 signaling in cultured macrophages. (A) Representative immunoblots depicting the induction of ER stress by up-regulation of its markers IRE α (130 kDa), ATF6 (90 kDa) and CHOP (27 kDa), in response to agLDL (50 µg/mL). (B) Relative quantification of ER stress markers relative to β actin. (C) Assessing the potential role that CaMKK2 (STO-609; 25 µM), cholesterol trafficking (U18666A; 1 µM), ER-calcium release (Ryanodine; 1 µM), and ROS (BHA; 100 µM) play in activating macrophage AMPK in response to agLDL (50 µg/mL) (D) Relative quantification of pACC to ACC signal, shown relative to vehicle control treated (no oxLDL) cells (hashed line). Macrophages isolated from WT mice were incubated with agLDL (50 µg/mL) along with inhibitors for 18 h. A-769662 (100 µM) and Tunicamycin (2.5 µg/mL) were used as a positive control for AMPK activation and ER stress, respectively. Data is mean ± SEM and is representative of at least 3 independent experiments using BMDM isolated from separate mice, where

* and *** represent p<0.05 and p<0.001 compared to vehicle control for (B) and compared to oxLDLtreated cells in (D).

Supplementary Figure S3. Macrophage AMPK signals through autophagy and is linked to autophagic protein expression. Relative quantification of indicated protein ratios. Data is mean±SEM and is representative of at least 3 independent experiments from BMDM isolated from separate mice.

Supplementary Figure S4. Atherogenic lipoproteins uncouple macrophage AMPK's ability to regulate lysosomal-associated gene transcription. (A-C) Relative transcript expression for (A) *Tfeb*, (B) *Beclin-1* and *Lipa* (lysosomal acid lipase) in the presence of atherogenic lipoproteins agLDL and oxLDL (50 μ g/mL) over time. Transcript expression was made relative to untreated WT macrophages and normalized to the average of β *actin* and *Tbp*. Data represent the mean ± SEM.

Supplementary Figure S5. Graphical abstract