Supplementary Materials

Table S1. Primers for cloning and real-time PCR analyses.

Primers Application	Sequence (5' to 3')	
For amplifying full-length OsFKBP12	AAGAAGAAGAAGAAGAGAGGATGG	
from LN44-inoculated SN1033 cDNA	GAATTACATGATGCGTTTACTGGG	
sample		
For amplifying OsFKBP12 with SmaI and	TTCCCGGGGATGGGCTTCGAGAAGACGA	
SalI restriction sites for cloning into	CAGGTCGACGTTACTGGGCGCTAAGAACC	
pGBKT7 ^a		
For amplifying OsFKBP12 with BamHI	TTGGATCCCCGATGGGCTTCGAGAAGACGA	
and SalI restriction sites for cloning into	CAGGTCGACGTTACTGGGCGCTAAGAACC	
pGEX-4T-1 ^a		
For amplifying OsFKBP12 with XhoI and	TTATACTCGAGATGGGCTTCGAGAAGACGA	
XmaI restriction sites for cloning into	TTCCTCCCGGGCTGGGCGCTAAGAACCTC	
KSII (+) with nYFP expression cassette ^a		
For real-time PCR of OsFKBP12 ^b	ACCGGCTTCGGGAAAGATAA	
	ATCACCGAACCCTGGCCTAT	
For real-time PCR of AtFKBP12 ^b	CACCGGATTCGGGAAAGATG	
	CACAGCACCTTTACCGATTTGG	
For real-time PCR of A. thaliana	GAAGGTGCTGAGTTGATTG	
polyubiquitin UBQ10 (At4G05320) ^b	GGACTTGACGTTGTTTGG	
For realtime PCR of A. thaliana PR1 ^b	TCAAGATAGCCCACAAGATTATC	
	CTTCTCGTTCACATAATTCCCAC	
For real-time PCR of A. thaliana PR2 ^b	ACCACCACTGATACGTCTCCTC	
	AACTTCATACTTAGACTGTCGATC	
For real-time PCR of A. thaliana RD22 ^b	GACTTTGACTCTGTTCTCGGTA	
	TTTTCCAGCTCAGCTCCT	
For real-time PCR of <i>A. thaliana RD29a</i> ^b	GGGAATTCAAGGAACTTGGCAATGAA	
	GGTCTAGAGACGGATGGATCTCATTT	
For real-time PCR of OsAc1D ^b	CTTCATAGGAATGGAAGCTGCGGGTA	
	GACCACCTTGATCTTCATGCTGCTA	

^a PCR for subcloning of *OsFKBP12* was performed as follows: 95°C for 5 min; 35 cycles of 95°C for 5 min, 55°C for 30 s, 72°C for 1 min; a final extension polymerization step at 72°C for 10 min. PCR product was resolved by gel electrophoresis on a 2% agarose gel. A single and unique band of the expected size was purified and subcloned into designated vectors via restriction digestion.

^b Real-time PCR protocol: 95°C for 5 min; 40 cycles of 95°C for 10 s, 60°C for 30 s.

No. of colonies No. of colonies No. of positive result grown up on SD/-3 grown up on SD/-4 in colony-lift assay 1st round 113 34 92 screening 2nd round 121 48 23 screening

Table S2. Results of the yeast two-hybrid library screening of OsFKBP12.

Table S3. Identity of the putative OsFKBP12-interacting protein partner.

OsFKBP12 partner clone identity	Number of hits
GTP-binding protein	4
(GenBank accession number: BAD03576, NP_001061206)	

Figure S1. The expressions of the *OsFKBP12* transgene in 4 weeks-old seedlings were verified by reverse transcription followed by real-time PCR (real-time RT-PCR). The expression level of *OsFKBP12* in the transgenic line J was the lowest and was set to 1 for comparison with the transgene expression levels in the other two transgenic lines. Relative gene expression was calculated by the $2^{-\Delta\Delta CT}$ method [1]and normalized against the expression level of the polyubiquitin gene *UBQ10* [2,3].

Prey vector	Yeast two-hybrid result on SC-4 medium	Result of colony lift assay
pGADT7-Rec/ BAD03576 partial fragment	11 11 11 11	19. 4 1. 21
pGADT7-Rec empty vector		

Figure S2. Results of the yeast two-hybrid test using the AH109 yeast clone co-transformed with two plasmids, pGBKT7-*OsFKBP12* and pGADT7-Rec-*BAD03576* partial-fragment, grown on SD medium lacking Trp, Leu, Ade and His (panels on the left) and colony lift assay (panels on the right). Co-transformation with pGBKT7-*OsFKBP12* and pGADT7-Rec empty vector was used as negative control. Each experiment is shown with four replicates with similar results.

Figure S3. Bimolecular fluorescence complementation (BiFC) experiment showing in vivo interaction between OsFKBP12 and OsYchF1. Fluorescent signals were analyzed with confocal microscopy when fusion constructs of nYFP-OsFKBP12 and cCFP-OsYchF1, nYFP and cCFP-OsYchF1 or nYFP-OsFKBP12 and cCFP were co-transfected into tobacco BY-2 protoplasts by polyethylene glycol (PEG) treatment. Differential interference contrast (DIC) images, fluorescent images and overlay images were shown. Scale bar: 50 µm. Expression cassettes were subcloned into the vector pBluescript KSII (+) for transient expression. Protoplast preparation and PEG transformation was adopted from method described in Tian et al. [4]. In brief, 3 days-old BY-2 culture was used as the starting materials. Protoplasts were digested with enzyme solution for 3 hours and transformed with 10 µg plasmid DNA of each construct carrying the expression cassettes via polyethylene glycol (PEG)-mediated DNA transfer, the transformed protoplast was further cultivated in protoplast cultivating medium for further 16 h. Protoplasts were then observed under confocal microscope (Leica TCS SP8 Confocal Microscope System). Constructs of cCFP-OsYchF1, cCFP and nYFP were described in our previous publication [5]. Fusion construct of nYFP-OsFKBP12 was made by inserting OsFKBP12 full-length cDNA into the nYFP expression cassette in frame.

Figure S4 Motif analysis of plant FKBP12 homologues. Nine plant FKBP12 homologues closest to OsFKBP12 were selected from Figure 1B. Motif analysis was performed using the MEME Suite (Version 5.2.0) (http://meme-suite.org/tools/meme) [6]. (A) Four motifs were identified. (B) Protein sequence of the 10 plant FKBP12 homologues were aligned withClustalW [7]. "*": conserved residues; ":": conserved substitutions; and ".": semi-conserved substitutions. The three motifs identified are underlined. Osa, *O. sativa* (NP_001048188); Zma, *Z. mays* (NP_001105537); Vfa, *V. faba* (AAB57848); Ath, *A. thaliana* (NP_201240); Sbi, *Sorghum bicolor* (XP_002454586);

Vvi, *Vitis vinifera* (XP_002263647); Gma, *Glycine max* (ACU15318); Psi, *Picea sitchensis* (ABK22086); Ppa, *Physcomitrella patens* subsp. patens (XP_001756105); Pal, *Polytrichastrum alpinum* [8]. Red arrows highlighted amino acid residues located in motifs predicted in panel A and are different in the salt sensitivity conferring OsFKBP12 and AtFKBP12 homologues when compared to the salt tolerance conferring PaFKBP12.

Figure S5 Prediction of Phosphorylation sites in FKBP12 homologues from Arabidopsis (Ath; (A)), rice (Osa; (B)) and *P. alpinum* (Pal; (C)) with NetPhos 3.1 Server (http://www.cbs.dtu.dk/services/NetPhos/) [9,10]. Phosphorylation potential at 0.5 was set as threshold. The higher the score, the higher confidence as a phosphorylation site.

References for Supplementary Materials

- 1. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the $2-\Delta\Delta CT$ Method. *Methods* **2001**, *25*, 402–408.
- Czechowski, T.; Bari, R.P.; Stitt, M.; Scheible, W.R.; Udvardi, M.K. Real time RT PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root and shoot specific genes. *Plant J.* 2004, *38*, 366–379.
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. *Biochem. Biophys. Res. Commun.* 2006, 345, 646–651.
- Tian, L.; Chou, H.L.; Zhang, L.; Hwang, S.K.; Starkenburg, S.R.; Doroshenk, K.A.; Kumamaru, T.; Okita, T.W. Rna-binding protein rbp-p is required for glutelin and prolamine mrna localization in rice endosperm cells[open]. *Plant Cell* 2018, *30*, 2529– 2552, doi:10.1105/tpc.18.00321.
- Cheung, M.Y.; Xue, Y.; Zhou, L.A.; Li, M.W.; Sun, S.S.M.; Lam, H.M. An Ancient P-Loop GTPase in Rice Is Regulated by a Higher Plant-specific Regulatory Protein. *J. Biol. Chem.* 2010, 285, 37359–37369.
- Bailey, T.L.; Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology; 1994; pp. 28–36.
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 1994, 22, 4673–4680.
- Alavilli, H.; Lee, H.; Park, M.; Yun, D.J.; Lee, B. ha Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. *Plant Cell Rep.* 2018, *37*, 453–465, doi:10.1007/s00299-017-2242-9.
- Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of posttranslational glycosylation and phosphorylation of proteins from the amino acid sequence. *Proteomics* 2004, *4*, 1633–1649, doi:10.1002/pmic.200300771.
- Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. *J. Mol. Biol.* 1999, 294, 1351–1362, doi:10.1006/jmbi.1999.3310.