

Supplementary Materials

A clearance period after soluble lead nanoparticle inhalation did not ameliorate the negative effects on target tissues due to decreased immune response

Jana Dumková ¹, Tereza Smutná ^{1,2}, Lucie Vrlíková ², Bohumil Dočekal ³, Daniela Kristeková ^{2,4} Zbyněk Večeřa ³, Zuzana Husáková ⁵, Veronika Jakešová ², Adriena Jedličková ², Pavel Mikuška ³, Lukáš Alexa ³, Pavel Coufalík ³, Michaela Tvrdoňová ⁵, Kamil Křůmal ³, Tomáš Vaculovič ⁵, Viktor Kanický ⁵, Aleš Hampl ¹ and Marcela Buchtová ^{2,4,*}

- ¹ Department of Histology and Embryology, Faculty of Medicine, Masaryk University,
 625 00 Brno, Czech Republic; jdumkova@med.muni.cz (J.D.); terka.smutna12@gmail.com (T.S.);
 ahampl@med.muni.cz (A.H.)
- ² Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; vrlikova@iach.cz (L.V.); daniela.kristekova@gmail.com (D.K.); veronikam@volny.cz (V.J.); adri.jedlickova@gmail.com (A.J.)
- ³ Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; docekal@iach.cz (B.D.); vecera@iach.cz (Z.V.); mikuska@iach.cz (P.M.); alexa@iach.cz (L.A.); coufalik@iach.cz (P.C.); krumal@iach.cz (K.K.)
- ⁴ Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- ⁵ Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; zuzka.husakova@seznam.cz (Z.H.); 358018@mail.muni.cz (M.T.); vaca_777@yahoo.com (T.V.); viktork@chemi.muni.cz (V.K.)
- * Correspondence: buchtova@iach.cz

Received: date; Accepted: date; Published: date

Calculation of deposited dose of Pb(NO₃)₂ nanoparticles

The estimation of deposited dose was calculated based on previously published methodology [1,

2, 3] and based on the average mass concentration of $Pb(NO_3)_2$ nanoparticles (68.6 μ g $Pb(NO_3)_2/m^3$). Deposited dose=(C *RMV * T * DF)/BW [3]

Where C is average concentration in the exposure atmosphere 68.6 μ g Pb(NO₃)₂/m³ (68.6 ng Pb(NO₃)₂/L). RMV is respiratory minute volume (L/min) that can be calculated using the equation

RMV =0.499 * BW^{0.809} L/min [1]. BW is average body weight (0.024 kg).

T is exposure time (min) equal to 110 880 min ($11 \times 7 \times 24 \times 60$) for inhalation group (11 weeks) or 60 480 min ($6 \times 7 \times 24 \times 60$) for clearance group (6 weeks), respectively.

DF is pulmonary deposition fraction (10%), therefore 0.1 [2]. Estimated deposition dose of $Pb(NO_3)_2$ was $0.774 \mu g$ per gram of mouse body weight over the 11 weeks inhalation period and 0.422 μg of $Pb(NO_3)_2$ NPs per gram of mouse body weight for the clearance group.

References:

[1] Bide, R. W., Armour, S. J., & Yee, E. (2000). Allometric respiration/body mass data for animals to be used for estimates of inhalation toxicity to young adult humans. *J Appl Toxicol*, 20(4), 273-290.

[2] Miller, F. J. (2000). Dosimetry of particles in laboratory animals and humans in relationship to issues surrounding lung overload and human health risk assessment: a critical review. *Inhal Toxicol*, *12*(1-2), 19-57.

[3] Mitchell, L. A., Gao, J., Wal, R. V., Gigliotti, A., Burchiel, S. W., & McDonald, J. D. (2007). Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. *Toxicol Sci*, 100(1), 203-214.

Table S1a: Lung – histopathological changes after 2-week Pb(NO₃)₂ NP inhalation

luna	2 weeks											
lung	co1	co2	co3	co4	co5	Pb1	Pb2	Pb3	Pb4	Pb5		
bronchiolitis			++		+				+	+		
thickened septa		++	+	++				+	++	++		
hemorrhage			+					+				

Table S1b: Lung – histopathological changes after 6-week Pb(NO₃)₂ NP inhalation

1	6 weeks												
lung	co1	co2	co3	co4	co5	Pb1	Pb2	Pb3	Pb4	Pb5			
infiltrate perivasc.										+			
bronchiolitis		+	+	+	++		+	+		+			
thickened septa			+	++	++	+	++		++	+			
alv. emphysema						+	+	+		+			
hemorrhage										+			
bronchiectasis							+		+	+			

Table S1c: Lung – histopathological changes after 11-week Pb(NO₃)₂ NP inhalation

lune		11 weeks													
lung	co1	co2	co3	co4	co5	Pb1	Pb2	Pb3	Pb4	Pb5	cl1	cl2	cl3	cl4	cl5
inf. peribron.	+	+	+		+	+	+	+	+		+		+		
inf. perivasc.								+					+		
atelectasis									+	++			+		
bronchiolitis				+				+	+	+	++	+	+	+	+
thickened septa	+	+	++	+	+	+	+	+	+	++	++	+++	++	+++	++
alv. emphysema		+				+	++	+	+	+		+		++	
hemorrhage					+		+			+	+				+

We evaluated at least 8-10 slides per organ and assessed alterations in histopathological changes as follows: inflammatory cell infiltrate peribronchiolar, inflammatory cell infiltrate perivascular, atelectasis, bronchiolitis, thickened septa with congested capillaries, alveolar emphysema, hemorrhage, and bronchiectasis; co1 - co5 control animals, Pb1 - Pb5 exposed animals, cl1 - cl5 animals after a 5-week clearance period at designated time-points. The increased level of phenotype was labelled by increased number of + symbols, where "+" means mild phenotype, "++" moderate phenotype, and "+++" severe phenotype in relevant type of alteration in organ.

Table S2: Analysis of macrophage numbers in lungs

number of	number of	mean number of		
macrophages/ slide	macrophages/ mm ²	macrophages/ mm ²		

ctr/11w /1	range	16.0-18.6		
	mean	17.58	210	238.72
	SD	1.11		
ctr/11w /2	range	19.3-22.6		
	mean	20.40	244	
	SD	1.50		
ctr/11w /3	range	15.8-22.0		
	mean	19.33	231	
	SD	2.74		
ctr/11w /4	range	19.1-26.0		
	mean	22.75	272	
	SD	3.46		
ctr/11w /5	range	17.9-22.0		
	mean	19.80	237	
	SD	1.97		
Pb/11w/1	range	15.3-18.4		
	mean	16.85	201	178.77**
	SD	1.53		
Pb/11w/2	range	13.3-18.0		
	mean	15.10	181	
	SD	2.01		
Pb/11w/3	range	13.6-15.1		
	mean	14.58	174	
	SD	0.68		
Pb/11w/4	range	12.6-19.6		
	mean	15.90	190	
	SD	2.89		
Pb/11w/5	range	11.5-13.2		
	mean	12.35	148	
	SD	0.87		
Pb/cl/1	range	14.9-20.2		
	mean	17.90	214	198.38*
	SD	2.25		
Pb/cl/2	range	17.1-19.6		
	mean	18.28	218	
	SD	1.31		
Pb/cl/3	range	15.5-17.3		
	mean	16.50	197	
	SD	0.74		
Pb/cl/4	range	13.8-16.2		
	mean	15.33	183	
	SD	1.11		
Pb/cl/5	range	13.9-15.9		
	mean	14.98	179	
	SD	0.98		

Data are presented as mean \pm SD; analyses were performed with five mice per each group. Number of CD68+ macrophages was evaluated from 4 slides (10 images/1 slide) of each animal. The values of CD68+ macrophages were counted per square millimeter; *p < 0.05, **p < 0.01 compared with the corresponding control group (ctr) by unpaired t-test.

Table S3: Blood biochemical analysis following Pb(NO₃)₂ NP inhalation

		ctr/2w	Pb/2w	ctr/6w	Pb/6w	ctr/11w	Pb/11w	Pb/cl	CD-1
Tbil (umol/l)	range	3.2-3.6	2.4-2.6	2.6-3.7	2.1-3.3	3.3-4.3	2.9-5.4	3.4-3.9	2.7-4.6
(p,,,,	mean	3.4	3.9	3.3	2.7	3.8	3.9	3.7	
	SD	0.2	0.6	0.5	0.5	0.4	0.9	0.2	
ALT (µkat/l)	range	0.6-3.3	0.7-4.1	0.3-1.4	0.3-0.5	0.27-0.40	0.3-0.6	0.2-0.5	0.3-0.7
	mean	1.4	1.5	0.6	0.5	0.3	0.4	0.4	
	SD	1.3	1.4	0.4	0.1	0.1	0.1	0.1	
AST (µkat/l)	range	3.7-14.6	6.6-12.1	2.5-9.4	1.7-5.5	1.80-3.13	1.1-3.4	2.2-3.0	0.8-1.3
	mean	8.2	8.4	4.9	3.4	2.3	2.2	2.5	
	SD	4.6	2.3	3.1	1.4	0.6	0.9	0.3	
Na (mmol/l)	range	146-149	140-148	141-149	138-146	146-148	143-146	140-147	151-161
	mean	147	145	144	142	147	144	144	
	SD	1	3	3	3	1	1	3	
K (mmol/l)	range	6.1-8.2	7.0-10.8	5.8-8.9	6.6-9.2	5.2-6.9	5.1-7.4	6.7-9.5	8.1-12.2
	mean	7.3	8.0	7.2	8.1	6.2	6.3	7.9	
	SD	0.9	1.6	1.6	1.2	0.9	1.0	1.3	
Cl (mmol/l)	range	115-125	114-121	115-121	112-120	112-120	116-121	117-122	112-124
	mean	119	117	118	116	116	118	119	
	SD	4	2	2	3	3	2	3	
Glu (mmol/l)	range	8.2-11.3	8.8-11.3	8.4-13.8	7.3-14.0	8.0-12.0	8.1-11.6	10.1-12.1	8.0-17.8
	mean	10.2	10.7	11.0	11.0	9.7	10.0	11.0	
	SD	1.4	1.2	2.1	2.8	1.7	1.5	0.9	
GGT (µkat/l)	range	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07

Data were obtained from five animals per every group. As reference values were used values of female mice crl:CD-1 (ICR) BR of different strains of female mice according to Serfilippi et al. (2003). Reference biochemical values were count to our used units.

Table S4a: Liver – histopathological changes after 2-week Pb(NO₃)₂ NP inhalation

1:		2 weeks											
liver	co1	co2	co3	co4	co5	Pb1	Pb2	Pb3	Pb4	Pb5			
mononuclear cell inf.	+	+		++									
hemostasis		+	+			+		+	+	+			
hepatic remodeling			+				+						
infiltrate in portal area		+		+									
hep. dystrophy						++	++	++	+	++			

Table S4b: Liver – histopathological changes after 6-week Pb(NO₃)₂ NP inhalation

1:		6 weeks											
liver	co1	co2	co3	co4	co5	Pb1	Pb2	Pb3	Pb4	Pb5			
mononuclear cell inf.	+	+	+				+			+			
focal necrosis						+	+						
hemostase		+	+	+		++	++	+	+	+			
hepatic remodeling						+	++	++					
infiltrate in portal area							+			+			
hep. dystrophy						+			+				

1:							11	week	s						
nver	co1	co2	co3	co4	co5	Pb1	Pb2	Pb3	Pb4	Pb5	cl1	cl2	cl3	cl4	cl5
mononucl. cell inf.	+	+	+		+	+	+	+	+	+	++	+++	+	+	+
focal necrosis						+		+	+			+	+		+
polynuclear hep.									+	+		+			
steatosis macroves.										+					
hemostasis		+	+	+		++	+		++	+	++	+	++		++
hepatic remodeling		+				++	+	+	++	+	+	+	++		+
hypertrophic hep.		++		+		+	+		+						+
infiltrate in portal area				+		+		+	+	+	+	++	+		+
hep. dystrophy								+							
vacuoles in nuclei						+			+	+			+		+
megakaryocytes						+			+		+	+			+

Table S4c: Liver – histopathological changes after 11-week Pb(NO₃)₂ NP inhalation

We evaluated at least 8-10 slides per organ and assessed alterations in histopathological changes as follows: mononuclear cell infiltrate, focal necrosis (degenerating hepatocytes), polynuclear hepatocytes, macrovesicular steatosis, hemostasis, hepatic remodeling, hypertrophic hepatocytes, infiltrates in portal area, hepatocyte dystrophy, vacuoles in hepatocyte nuclei, presence of megakaryocytes; co1 - co5 control animals, Pb1 - Pb5 exposed animals, cl1 - cl5 animals after a 5-week clearance period at designated time-points.

The increased level of phenotype was labelled by increased number of + symbols, where "+" means mild phenotype, "++" moderate phenotype, and "+++" severe phenotype in relevant type of alteration in organ.

		number of macrophages/ slide	number of macrophages/ mm ²	mean number of macrophages/ mm ²
ctr/11w /1	range mean SD	31.4-33.0 32.20 6.49	385	428.68
ctr/11w /2	range mean SD	36.7-38.6 37.65 5.20	450	
ctr/11w /3	range mean SD	39.3-43.8 41.55 9.68	497	
ctr/11w /4	range mean SD	34.5-35.3 34.90 6.20	417	
ctr/11w /5	range mean SD	29.1-36.9 33.00 7.57	394	
Pb/11w/1	range mean SD	22.2-23.7 22.95 4.84	274	252.59***
Pb/11w/2	range mean	15.8-18.2 17.00	203	

Table S5: Analysis of macrophage numbers in liver

	SD	5.32		
Pb/11w/3	range	23.8-26.6		
	mean	25.20	301	
	SD	5.97		
Pb/11w/4	range	14.2-19.3		
	mean	16.75	200	
	SD	5.97		
Pb/11w/5	range	23.0-24.5		
	mean	23.75	284	
	SD	3.96		
Pb/cl/1	range	34.4-39.0		
	mean	36.70	439	352.65*
	SD	8.27		
Pb/cl/2	range	29.3-39.0		
	mean	34.15	408	
	SD	8.40		
Pb/cl/3	range	24.6-30.0		
	mean	27.30	326	
	SD	6.53		
Pb/cl/4	range	21.8-25.1		
	mean	23.45	280	
	SD	7.24		
Pb/cl/5	range	24.5-27.3		
	mean	25.90	310	
	SD	9.41		

Data are presented as mean \pm SD; analyses were performed with five mice per each group. Number of CD68+ cells was evaluated from 2 slides (10 images/1 slide) of each animal, the values of cells were counted per square millimeter; ***p < 0.001 compared with the control group, and *p < 0.05 compared with the Pb(NO₃)₂ NP group by unpaired t-test.

Table S6a: List of antibodies used for immunohistochemical analysis

Primary antibody	Company	Catalog no.	Host species	Organs	Dilution	Time/temperature
α-SMA	Abcam	ab5694	rabbit	lung, liver	1:100	60 min/RT
MPO	Abcam	ab9535	rabbit	lung	1:50	60 min/RT
CD68	Abcam	ab125212	rabbit	lung, liver	1:100	60 min/RT

Table S6b: List of antibodies used for indirect immunofluorescence

Primary antibody	Company	Catalog no.	Host species	Organs	Dilution	Time/temperature
α-SMA	Abcam	ab5694	rabbit	lung, liver	1:100	60 min/RT

Figure S1. Weight of mice after Pb(NO₃)₂ NP inhalation. Lung, kidney, liver and spleen weight coefficient at different time points (2, 6 and 11 weeks).

The graphs values indicate average \pm SD; * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the corresponding control group (ctr), \pm p < 0.05 compared with the previous control by unpaired t-test.

Figure S2. The distribution of selected metals at designated time points after Pb(NO₃)₂ NP inhalation in the lung.

A) Distribution of Pb, Na, K, Ca, Fe and Zn in lung samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Numbers in parentheses show maximal value (μ g/g) of element on a scale. Scale bar in all panels = 5 mm. **B**) The graph of Pb level in the lungs at designated time points. **C**) The graphs of Na, K and Ca level in the lungs at designated time points. The graphs values denote average ± SD for 5 mice/group, ** p < 0.01, *** p < 0.001 compared with the corresponding control group (or between adjacent time points), and ++ p < 0.01 compared with the corresponding Pb(NO₃)₂ NP group by unpaired t-test. Limit of detection (LOD) for Pb in the lungs was 26 ng/g.

Figure S3: The effect of Pb(NO₃)₂ NP inhalation and its clearance on the lung inflammation.

A) Detection of CD68-positive cells (marker of macrophages) in lungs (arrows). **B**) Detection of Toluidine Blue-positive cells (marker of mastocytes) in lungs (arrows). **C**) Detection of MPO-positive cells (myeloperoxidase, marker of neutrophils) in blood vessels or in lung infiltrates in lung samples (arrows).

Figure S4. The distribution of selected metals at designated time points after Pb(NO₃)₂ NP inhalation in the kidney.

A) Distribution of selected elements (Na, K and Fe) in kidney samples using LA-ICP-MS after Pb(NO₃)₂ NP inhalation. Na and K were observed in similar manner in control and Pb(NO₃)₂ NP-exposed kidneys. The extent of the Fe was slightly increased after Pb(NO₃)₂ NP inhalation compared to the control. Numbers in parentheses show maximal value ($\mu g/g$) of element on a scale. Scale bar in all panels = 3 mm. **B**) The graphs of Na and K in kidney at designated time points. The graph values denote average ± SD for 5 mice/group.

A) Distribution of selected elements (Na, K, Fe and Zn) in liver samples using LA-ICP-MS after $Pb(NO_3)_2 NP$ inhalation. Numbers in parentheses show maximal value ($\mu g/g$) of element on a scale. Scale bar in all panels = 4 mm. **B**) The graphs of Na and K in liver at designated time points. The graph values denote average ± SD for 5 mice/group.

Figure S6. The graph of Pb level in the spleen.

The graph of Pb level in the spleen at designated time points. The graphs values denote average ± SD for 5 mice/group, ** p < 0.01, *** p < 0.001 compared with the corresponding control group (or between adjacent time points), and ++ p < 0.01 compared with the corresponding Pb(NO₃)₂ NP group by unpaired t-test. Limit of detection (LOD) for Pb in the spleen was 29 ng/g.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).