

Article Suppression of Non-Random Fertilization by MHC Class I Antigens

Junki Kamiya ^{1,†}, Woojin Kang ^{2,†}, Keiichi Yoshida ^{3,†}, Ryota Takagi ¹, Seiya Kanai ¹, Maito Hanai ¹, Akihiro Nakamura ⁴, Mitsutoshi Yamada ⁴, Yoshitaka Miyamoto ², Mami Miyado ⁵, Yoko Kuroki ⁶, Yoshiki Hayashi ⁷, Akihiro Umezawa ², Natsuko Kawano ^{1,*} and Kenji Miyado ^{2,*}

- ¹ Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; cf190407@meiji.ac.jp (J.K.); ryouta.0724512@gmail.com (R.T.); nekomaru0@gmail.com (S.K.); hanamai8713@gmail.com (M.H.)
- ² Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; kwjbear@gmail.com (W.K.); myoshi1230@gmail.com (Y.M.); umezawaa@ncchd.go.jp (A.U.)
- ³ Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka Prefectural Hospital Organization, Osaka 541-8567, Japan; <u>keiichi.yoshida@oici.jp</u>
- ⁴ Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; aki_nakamura@hotmail.co.jp (A.N.); mitsutoshi.yamada@gmail.com (M.Y.)
- ⁵ Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; <u>miyado-m@ncchd.go.jp</u>
- ⁶ Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; <u>kuroki-y@ncchd.go.jp</u>
- ⁷ Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan; <u>yoshikih@tara.tsukuba.ac.jp</u>
- * Correspondence: nkawano@meiji.ac.jp (N.K.); miyado-k@ncchd.go.jp (K.M.)
- + These authors contributed equally to this work.

Received: 22 October 2020; Accepted: 17 November 2020; Published: date

Table of content

Supplemental figure 1 (S1). Immunoblotting with anti-H-2K^b/H2-D^b monoclonal antibody

Supplemental figure 2 (S2). Immunoblotting with anti--H2-K^b (polyclonal), CD9 (monoclonal) antibodies, and horseradish peroxidase (HRP)-conjugated streptavidin

Supplemental figure 3 (S3). Immunofluorescence of H2-K^b in sperm

Figure S1. Immunoblotting with anti-H-2K^b/H2-D^b monoclonal antibody. mAb, monoclonal antibody; Reduced, with a disulfide-reducing agent (2-mercaptoethanol). Preimmune mouse IgG was used as a negative control for immunoblotting of H-2K^b/H2-D^b.

Figure S2. Immunoblotting with anti-H2-K^b (polyclonal) (**a**), CD9 (monoclonal) antibodies (**b**), and horseradish peroxidase (HRP)-conjugated streptavidin (**c**). PolyAb, polyclonal antibody; mAb, monoclonal antibody; Reduced, with a disulfide-reducing agent (2-mercaptoethanol); Non-reduced, without a disulfide-reducing agent. Boxes indicate bands represented in Figure. 3d.

Figure S3. Immunofluorescence of H2-K^b in sperm. The sample was incubated with H2-K^b polyclonal antibody. BF, bright-field; DAPI, nucleus. Boxes indicate images represented in Figure 3e. Scale bars, 20 μm.