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Abstract: Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and
complex structures. However, most fungal secondary metabolism genes are poorly expressed under
laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites
remains unclear. To activate silent gene clusters in fungi, successful approaches such as epigenetic
control, promoter exchange, and heterologous expression have been reported. Pyricularia oryzae,
a well-characterized plant pathogenic fungus, is the causal pathogen of rice blast disease. P. oryzae
is also rich in secondary metabolism genes. However, biosynthetic genes for only four groups
of secondary metabolites have been well characterized in this fungus. Biosynthetic genes for
two of the four groups of secondary metabolites have been identified by activating secondary
metabolism. This review focuses on the biosynthesis and roles of the four groups of secondary
metabolites produced by P. oryzae. These secondary metabolites include melanin, a polyketide
compound required for rice infection; pyriculols, phytotoxic polyketide compounds; nectriapyrones,
antibacterial polyketide compounds produced mainly by symbiotic fungi including endophytes and
plant pathogens; and tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic
fungi and biosynthesized by a unique NRPS-PKS enzyme.

Keywords: plant pathogenic fungus; Magnaporthe oryzae; secondary metabolite biosynthetic gene
cluster; biological function

1. Introduction

Filamentous fungi, including plant pathogenic fungi, produce a wide variety of secondary
metabolites with unique and complex structures. However, the relationship between pathogenicity and
secondary metabolites remains unclear in most cases. Filamentous fungi are a rich source of secondary
metabolites for drug development. Whole-genome sequencing analyses have revealed that filamentous
fungi possess many more secondary metabolism genes than expected, suggesting that most secondary
metabolite biosynthetic genes are silent under laboratory conditions. To utilize fungal secondary
metabolite production ability, secondary metabolism genes have been activated through many
approaches, including epigenetic control, manipulation of global regulators, ribosome engineering,
overexpression of pathway-specific transcription factors, co-culture, and heterologous expression of
secondary metabolite gene clusters [1–4].

Pyricularia oryzae (syn. Magnaporthe oryzae) is the causal pathogen of rice blast disease and
is a well-characterized plant pathogen. P. oryzae infects rice plants through an infection-specific
organ, the appressorium, and proliferates inside the rice plant via filamentous growth and causes
rice blast disease [5]. P. oryzae is also rich in secondary metabolism genes and shown to have
22 polyketide synthase (PKS) genes and eight non-ribosomal peptide synthetase (NRPS) genes [6,7].
Biosynthetic genes for only four groups of secondary metabolites (melanin, pyriculols, nectriapyrones,
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and tenuazonic acid) have been well characterized in P. oryzae (Figure 1). Biosynthetic genes for two
(nectryapyrones and tenuazonic acid) of the four groups of secondary metabolites have been identified
by activating secondary metabolism.
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Here, I review the biosynthesis and biological roles of secondary metabolites in the rice blast
fungus P. oryzae. This review mainly focuses on the four groups of secondary metabolites shown in
Figure 1.

2. Melanin

P. oryzae produces the black pigment melanin (Figure 1), which is essential for rice infection [8].
Melanin is not a toxin, but this secondary metabolite is essential for infection by the mechanism
shown below. P. oryzae forms an infection-specific organ, appressorium, and infects rice plants through
this organ. Appressorium formation and appressorium melanin formation are essential for rice
infection. The invasion of rice plants is achieved by an infection peg that is formed at the base of an
appressorium, which adheres tightly to the host surface. For successful penetration from the infection
peg, mechanical force exerted by appressoria is necessary [8]. An appressorial melanin layer between
the cell wall and cell membrane is required for the generation of the mechanical force. The turgor forces
are focused toward the epidermal surfaces of the rice plant, and the pressure inside the appressoria has
been estimated to be as high as 8 MPa [9,10]. This pressure can be produced by 3.2 M glycerol formed
inside the appressorium [11]. Melanin was proposed to function as a semipermeable membrane that
passes water but not glycerol and as a structural support for this very high pressure.

Melanin is a well-known black pigment of biological origin. One type of fungal melanin is
dihydroxynaphthalene (DHN)-melanin, which is biosynthesized by polymerizing the polyketide
compound 1,8-dihydroxynaphthalene (1,8-DHN) [12,13]. P. oryzae produces DHN-melanin and
biosynthetic genes have been identified, and the biosynthetic pathway has been elucidated
(Figure 2) [14–17]. The PKS enzyme ALB1/MGG_07219 biosynthesizes the backbone compound
1,3,6,8-tetrahydroxynaphthalene (1,3,6,8-THN). Melanin was originally proposed as a pentaketide
compound. However, from the analysis of an ALB1 homolog in a closely related fungus,
Colletotrichum lagenarium, it has been shown that melanin is a hexaketide compound and the backbone
(1,3,6,8-THN) is biosynthesized using an acetyl-CoA and five malonyl-CoA [18]. Then, 1,3,6,8-THN is
converted to 1,8-DHN by using three enzymes: 1,3,6,8-THN reductase (4HNR), scytalone dehydratase
(SDH1/RSY1), and 1,3,8-trihydroxynaphthalene (1,3,8-THN) reductase (3HNR/BUF1). Finally, 1,8-DHN
is polymerized to form DHN-melanin. Melanin biosynthesis can be induced by epigenetic control [19].



Int. J. Mol. Sci. 2020, 21, 8698 3 of 16
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 17 

 

 
Figure 2. Melanin biosynthetic pathway of the rice blast fungus P. oryzae. 

Melanin biosynthetic enzymes are targets of agrochemical development, and three types of 
commercial melanin biosynthesis inhibitors (MBIs) have been developed (Figure 2). These inhibitors 
are classified into three groups: MBI-R (tricyclazole, pyroquilon, and phthalide), MBI-D 
(carpropamid, diclocymet, and fenoxanil), and MBI-P (tolprocarb) [20–22]. The targets of MBI-R, 
MBI-D, and MBI-P are 1,3,8-trihydroxynaphthalene reductase (3HNR/BUF1), scytalone dehydratase 
(SDH1/RSY1), and polyketide synthase (ALB1), respectively. MBIs are environmentally friendly 
agrochemicals because MBIs inhibit fungal infection without inhibiting fungal growth. 

3. Pyriculols 

Pyriculol (Figure 1) is a well-known secondary metabolite of the rice blast fungus and is known 
as a phytotoxin [23]. Several analogs of pyriculol have been reported. The main analogs are 
dihydropyriculol [24], pyriculariol [25], and dihydropyriculariol [26] (Figure 3). It is also shown that 
griseaketides, analogs of pyriculol, are produced by an isolate of rice blast fungus [27]. Pyriculols are 
classified into two groups: Alcohol-type (dihydropyriculol and dihydropyriculariol) and aldehyde-
type (pyriculol and pyriculariol). It has been shown that aldehyde derivatives induce lesion-like 
necrosis on rice leaves, while alcohol derivatives are inactive [24,26,28]. Four analogs are produced 
simultaneously [28] and interconversion between oxidized aldehyde analogs and reduced alcohol 
derivatives is expected. Currently, it is not clear why and how P. oryzae produces both alcohol and 
aldehyde analogs. Identification of the genes responsible for this oxidoreductive conversion will help 
to answer this question. 

 
Figure 3. Structures of the pyriculols and a related compound. 

Melanin

acetyl-CoA
+

5 x malonyl-CoA

PKS ALB1

reduction -H2O reduction

SDH1/RSY1

scytalone

-H2O

3HNR/BUF1
+4HNR

4HNR
+3HNR

SDH1/RSY1

1,3,8-THN1,3,6,8,-THN vermelone 1,8-DHN

polymerization

MBI-D

MBI-R

MBI-P

Figure 2. Melanin biosynthetic pathway of the rice blast fungus P. oryzae.

Melanin biosynthetic enzymes are targets of agrochemical development, and three types of
commercial melanin biosynthesis inhibitors (MBIs) have been developed (Figure 2). These inhibitors
are classified into three groups: MBI-R (tricyclazole, pyroquilon, and phthalide), MBI-D (carpropamid,
diclocymet, and fenoxanil), and MBI-P (tolprocarb) [20–22]. The targets of MBI-R, MBI-D, and MBI-P
are 1,3,8-trihydroxynaphthalene reductase (3HNR/BUF1), scytalone dehydratase (SDH1/RSY1),
and polyketide synthase (ALB1), respectively. MBIs are environmentally friendly agrochemicals
because MBIs inhibit fungal infection without inhibiting fungal growth.

3. Pyriculols

Pyriculol (Figure 1) is a well-known secondary metabolite of the rice blast fungus and is
known as a phytotoxin [23]. Several analogs of pyriculol have been reported. The main analogs
are dihydropyriculol [24], pyriculariol [25], and dihydropyriculariol [26] (Figure 3). It is also
shown that griseaketides, analogs of pyriculol, are produced by an isolate of rice blast fungus [27].
Pyriculols are classified into two groups: Alcohol-type (dihydropyriculol and dihydropyriculariol)
and aldehyde-type (pyriculol and pyriculariol). It has been shown that aldehyde derivatives induce
lesion-like necrosis on rice leaves, while alcohol derivatives are inactive [24,26,28]. Four analogs are
produced simultaneously [28] and interconversion between oxidized aldehyde analogs and reduced
alcohol derivatives is expected. Currently, it is not clear why and how P. oryzae produces both alcohol
and aldehyde analogs. Identification of the genes responsible for this oxidoreductive conversion will
help to answer this question.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 17 

 

 
Figure 2. Melanin biosynthetic pathway of the rice blast fungus P. oryzae. 

Melanin biosynthetic enzymes are targets of agrochemical development, and three types of 
commercial melanin biosynthesis inhibitors (MBIs) have been developed (Figure 2). These inhibitors 
are classified into three groups: MBI-R (tricyclazole, pyroquilon, and phthalide), MBI-D 
(carpropamid, diclocymet, and fenoxanil), and MBI-P (tolprocarb) [20–22]. The targets of MBI-R, 
MBI-D, and MBI-P are 1,3,8-trihydroxynaphthalene reductase (3HNR/BUF1), scytalone dehydratase 
(SDH1/RSY1), and polyketide synthase (ALB1), respectively. MBIs are environmentally friendly 
agrochemicals because MBIs inhibit fungal infection without inhibiting fungal growth. 

3. Pyriculols 

Pyriculol (Figure 1) is a well-known secondary metabolite of the rice blast fungus and is known 
as a phytotoxin [23]. Several analogs of pyriculol have been reported. The main analogs are 
dihydropyriculol [24], pyriculariol [25], and dihydropyriculariol [26] (Figure 3). It is also shown that 
griseaketides, analogs of pyriculol, are produced by an isolate of rice blast fungus [27]. Pyriculols are 
classified into two groups: Alcohol-type (dihydropyriculol and dihydropyriculariol) and aldehyde-
type (pyriculol and pyriculariol). It has been shown that aldehyde derivatives induce lesion-like 
necrosis on rice leaves, while alcohol derivatives are inactive [24,26,28]. Four analogs are produced 
simultaneously [28] and interconversion between oxidized aldehyde analogs and reduced alcohol 
derivatives is expected. Currently, it is not clear why and how P. oryzae produces both alcohol and 
aldehyde analogs. Identification of the genes responsible for this oxidoreductive conversion will help 
to answer this question. 

 
Figure 3. Structures of the pyriculols and a related compound. 

Melanin

acetyl-CoA
+

5 x malonyl-CoA

PKS ALB1

reduction -H2O reduction

SDH1/RSY1

scytalone

-H2O

3HNR/BUF1
+4HNR

4HNR
+3HNR

SDH1/RSY1

1,3,8-THN1,3,6,8,-THN vermelone 1,8-DHN

polymerization

MBI-D

MBI-R

MBI-P

Figure 3. Structures of the pyriculols and a related compound.



Int. J. Mol. Sci. 2020, 21, 8698 4 of 16

Pyriculols are polyketide compounds, and the biosynthetic gene cluster has been recently
identified [28]. The PKS gene (MGG_10912/MoPKS19) and other genes predicted to be responsible
for the biosynthesis of pyriculols have been identified [28]. It has been suggested that aldehyde-type
analogs are produced first and converted to alcohol-type analogs by the reduction reaction [26]. The gene
(MGG_10961/MoC19OXR1) responsible for the oxidation of alcohol-type analogs to aldehyde-type
analogs has been reported [9], although the gene catalyzing the reverse reductive reaction has not yet
been identified.

Neurospora crassa produces the structurally related salicylaldehyde sordarial (Figure 3).
The biosynthetic mechanism of sordarial has been proposed [29]. In sordarial biosynthesis, it has been
predicted that an aldehyde-type intermediate is released from PKS (SrdA) and cyclized by SrdC/D/E.
The aldehyde-type intermediate is predicted to be modified by SrbB and SrdG to yield sordarial. In this
pathway, an alcohol-type intermediate is thought to be produced from an aldehyde congener by an
endogenous reductase; however, the gene responsible for the reduction of the aldehyde moiety has not
yet been identified. SrdI, a homolog of MGG_10961/MoC19OXR1, is predicted to be involved in the
oxidation of this alcohol-type intermediate [29]. The biological functions of sordarial are not known.

The extract of the PKS gene knockout strain fails to induce phytotoxic lesions on rice leaves,
indicating that pyriculols are the sole lesion-inducing compounds produced by the wild-type strain
under the culture condition used [28]. Interestingly, the PKS gene knockout strain is as pathogenic as
the wild-type strain, demonstrating that pyriculols are not required for infection [28]. Further research
is required to elucidate the biological roles of pyriculols.

4. Nectriapyrones

Nectriapyrone (Figure 1) is known as a polyketide compound produced by various fungi [30–42].
Interestingly, producers are mainly symbiotic fungi, including endophytes [34,36–38,41,43],
plant pathogens [32,35], and sponge-associated fungi [30,31,33]. We recently found that nectriapyrone
production can be induced in the rice blast fungus P. oryzae by disturbing the two-component signal
transduction system [44]. We identified the nectriapyrone biosynthetic gene cluster and analyzed its
physiological function.

Secondary metabolite production may be strictly regulated to produce under specific
environmental conditions. Thus, we predicted that secondary metabolite production may be activated
by disturbing signal transduction pathways involved in environmental responses. A two-component
system (TCS) is a signal transduction system that regulates various cellular functions in response
to environmental signals and is found in bacteria, archaea, plants, slime molds, and fungi [45,46].
The P. oryzae TCS was disturbed by disrupting OSM1 and PoYPD1, encoding a HOG MAP kinase and
a His-containing phosphotransfer (HPt) protein, respectively. This genetic modification induced the
production of two polyketide compounds, nectriapyrone and its hydroxylated analog.

We identified the nectriapyrone biosynthetic gene cluster consisting of a PKS gene
(NEC1/MGG_00806) and an O-methyltransferase gene (NEC2/MGG_14657) (Figure 4). Overexpression
of the two genes caused overproduction of nectriapyrone and five nectriapyrone analogs, including a
new derivative, zaepyrone (Figure 4) [47–50]. Nectriapyrone shows similarity to the gibepyrones
(Figure 4) from Fusarium spp. Gebepyrones do not have a methoxy group, and the O-methyltransferase
gene is absent from the gibepyrone biosynthetic gene cluster [51]. Nectriapyrone also shows similarity
to germicidins [52–54] from Streptomyces spp. (Figure 4). A type III PKS biosynthesizes the germicidin
backbone [55]. In contrast, a type I PKS (NEC1) biosynthesizes the nectriapyrone backbone.
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Nectriapyrones belong to the class α-pyrone. α-Pyrones have a wide range of biological
activities [56,57]. For example, photopyrones are bacterial signaling molecules that control cell
clumping [58]. Germicidins, produced by some Streptomyces strains, act as autoregulators of spore
germination [52,53]. Some biological activities of nectriapyrone have been reported, although the
functions of nectriapyrone in its producers are unknown. Nectriapyrone is toxic to bacteria, tumor cells,
and plants [35,36,42,59]. It stimulates the formation of DOPA melanin in B16-F1 melanoma cells [39].
Nectriapyrone also inhibits monoamine oxidase in the mouse brain [60].

Identification of the nectriapyrone biosynthetic gene cluster allowed us to analyze the biological
functions of nectriapyrones in the fungi that produce them [44]. While many nectriapyrone producers
have been identified from plant pathogens, our data have indicated that nectriapyrones are not involved
in rice infection and have different functions. The structure of nectriapyrone is similar to that of the
germicidins produced by Streptomyces spp. Our data have indicated that nectriapyrone can control
growth and pigment formation in S. griseus and has a growth-promoting effect on P. oryzae in interactions
with S. griseus. Therefore, nectriapyrones may be involved in microbe-microbe interactions with other
environmental organisms, including bacteria such as endophytic Streptomyces strains. To identify the
active nectriapyrone analogs in this interaction, we analyzed the bioactivity of each analog (Figure 4)
and found that nectriapyrone was the active analog, suggesting that other nectriapyrone analogs may
be inactivated (detoxified) compounds of nectriapyrone.

5. Tenuazonic Acid

Tenuazonic acid (TeA, Figure 1), a tetramic acid derivative, is a well-known mycotoxin first isolated
from the culture broth of Alternaria tenius in 1957 [61]. Alternaria, a ubiquitous plant pathogenic fungus,
causes spoilage of various fruits and food crops in the field and post-harvest decay [62]. TeA has
been detected in various Alternaria-contaminated vegetables, fruits, and crops [63–65]. The plant
pathogenic fungi P. oryzae and Phoma sorghina (sorghum pathogen) are known as TeA producers [66,67].
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P. oryzae also produces a related tetramic acid derivative from valine as a very minor product [68].
Among the Alternaria toxins, TeA is the most toxic and shows acute toxicity to mammals. The oral
median lethal doses for male and female mice are 182 or 225 mg kg−1 and 81 mg kg−1 body weight,
respectively [69,70]. The European Food Safety Authority evaluates TeA toxicity and determines its
threshold of toxicological concern to be 1500 ng kg−1 body weight day [71]. TeA inhibits protein
biosynthesis by inhibiting the release of the polypeptide from the ribosome [72]. TeA also has antitumor,
antiviral, antibacterial, phytotoxic, and plant disease-controlling activities [69,73–75]. TeA has been
shown to inhibit photosynthesis [76–78], and the potential use of TeA as a herbicide targeting
photosystem II (PSII) has been proposed [79]. A recent paper [80] has shown that TeA inhibits plant
plasma membrane (PM) H+-ATPase at micromolar concentrations. Inhibition of the PM H+-ATPase
results in depolarization of the membrane potential and eventually necrosis. However, it is still
unclear whether TeA is required for plant infection or not. We previously induced TeA production
in P. oryzae and identified the biosynthetic gene TAS1, encoding the first reported fungal NRPS-PKS
hybrid enzyme [81,82]. We also revealed the biosynthetic and induction mechanisms of TeA [83,84].
In this section, we review the data on the induction and biosynthesis of TeA.

The major fungal secondary metabolites, polyketides and nonribosomal peptides,
are biosynthesized by PKSs and NRPSs, respectively. Fungal PKSs can be classified into three types.
The first type is iterative type I PKSs, which consist of multiple catalytic domains, including ketosynthase
(KS), acyltransferase (AT), and acyl carrier protein (ACP) main domains, along with several optional
β-keto modifying domains, such as β-ketoacyl reductase (KR), dehydratase (DH), and trans-acting
enoyl reductase (ER) domains [85]. The second type is the type III PKSs, which consist of a homodimeric
KS [86]. The third type is fungal PKS-NRPS hybrid enzymes, which consist of an iterative type I
PKS followed by a single module NRPS. These enzymes are involved in producing a wide variety of
structurally diverse polyketide-amino acid hybrid compounds [87–91]. In fungal PKS-NRPS, the PKS
part consists of KS, AT, and ACP domains, along with several modifying domains such as KR, DH,
and methyltransferase (MT) domains. The NRPS part consists of adenylation (A), peptidyl carrier
protein (PCP), condensation (C), and terminal release or cyclization (R, reductase or DKC, Dieckmann
cyclization) domains [90]. PKS-NRPS hybrid enzymes have also been observed in bacteria [92,93].
Furthermore, a different type of hybrid enzymes, NRPS–PKS hybrid enzymes (which begin with an
NRPS module), are also known. However, this type of enzyme has only been found in bacteria [94–99].

TeA was shown to be a hybrid of an isoleucine and two acetates [100]. Because TeA has a
tetramic acid-containing structure, TeA was also expected to be a product of a PKS-NRPS hybrid
enzyme [101]. We successfully induced TeA production by disruption of the OSM1 gene and 1%
dimethyl sulfoxide (DMSO) treatment. OSM1 is the osmosensory mitogen-activated protein kinase
(MAPK), which works downstream of the two-component signal transduction system involved in
environmental responses. We identified the TeA biosynthetic gene TAS1/MGG_07803 from the induced
genes under inducing conditions [81,82]. TAS1 (tenuazonic acid synthetase 1) was not a PKS-NRPS
hybrid enzyme but a NRPS-PKS hybrid enzyme. TAS1 is the first reported fungal NRPS-PKS hybrid
enzyme consisting of an NRPS module of domains C-A-PCP and a terminal PKS KS domain (Figure 5a).
TAS1 is a novel NRPS-PKS hybrid enzyme that starts with an NRPS module (C-A-PCP). This domain
structure is very different from that of conventional fungal PKS-NRPS enzymes, which start with
a PKS module (Figure 5a). The PKS portion of TAS1 has only a KS domain, in contrast to other
NRPS-PKS hybrid enzymes. This KS domain is indispensable for TAS1 activity and has a unique
sequence. By phylogenetic analysis, this KS domain was classified as an independent clade close to the
type I PKS KS domain. We revealed that TAS1 synthesizes TeA from isoleucine and acetoacetyl-CoA
(diketide) (Figure 5b). The unique KS domain catalyzes the final Dieckmann cyclization step for
tetramic acid ring formation and TeA release, although involvement in diketide biosynthesis has been
previously predicted [100]. In other NRPSs, bacterial NRPSs use the terminal thioesterase (TE) domain
to catalyze substrate cyclization [102], whereas fungal NRPSs use the terminal condensation-like
domain for substrate cyclization [103]. In addition, fungal PKS–NRPSs use the terminal reductase-like
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cyclization (DKC) domain for substrate cyclization [90]. These data indicate that TAS1 is a unique type
of biosynthetic enzyme and may be used for the production of various compounds.

Figure 5. Tenuazonic acid (TeA) biosynthesis. (a) Comparison of domain structures. (b) Biosynthetic
pathway of TeA.

The KS domains of PKS normally catalyze the decarboxylative Claisen condensation of acyl and
malonyl blocks to extend the polyketide chain [104]. In contrast, the terminal KS domain in TAS1
from P. oryzae conducts substrate cyclization [81]. Nonconventional KS domains with noncanonical
roles have also been reported in type I PKS systems. A KS domain, one His residue of the catalytic
triad is mutated, has been reported to only catalyze substrate transfer to the next domain in FR901464
biosynthesis [105]. KS3 of RhiE is required for vinylogous chain branching without polyketide chain
elongation in rhizoxin biosynthesis [106]. Furthermore, homodimers of KS domains catalyze polyketide
extension and substrate cyclization in a single catalytic pocket in type III PKSs [107]. However, a KS
domain without a polyketide chain extension role has only been reported in TAS1. We analyzed
the unique features of the TAS1 KS domain [84]. We found that the TAS1 KS domain is uniquely
monomeric like NRPSs [108] although KSs are usually dimeric [109–111]. The 1.68 Å resolution
crystal structure suggested that the substrate cyclization is triggered by proton abstraction from the
active methylene moiety in the substrate by the catalytic H322 residue. We also found that TAS1 KS
shows broad substrate specificity and promiscuously accepts aminoacyl substrates. Furthermore,
this promiscuity could be increased by a single amino acid substitution in the substrate-binding pocket.
These data provide hints to the substrate cyclization mechanism performed by the KS domain in TeA
biosynthesis. These data also provide insight into how the NRPS-PKS hybrid enzyme accepts bulky
amino acid-containing substrates.

Transcription of secondary metabolism genes should be properly regulated in fungi in response
to various environmental signals. Elucidation of the regulatory mechanism of these secondary
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metabolism genes is important for understanding the interaction between fungi and their environments.
For example, elucidation of the regulatory mechanism of mycotoxin biosynthesis is important for
protecting human and animal health by controlling mycotoxin production. As shown previously,
TeA is biosynthesized in P. oryzae by TAS1, and its production is induced by osmo-sensory MAPK
gene (OSM1) deletion or 1% DMSO treatment. However, the detailed regulatory mechanisms
of TeA production have been unknown. We found two positive regulators of TeA production
(Figure 6) [83]. In most cases, fungal secondary metabolites are produced using biosynthetic gene
clusters. Many gene clusters have a gene for a cluster-specific DNA binding binuclear Zn(II)2Cys6-type
transcription factor, which is known to be unique to fungi and activates the transcription of
the clustered genes to produce a secondary metabolite [112]. These transcription factor genes
include Aspergillus nidulans aflR for aflatoxin biosynthesis [113], A. fumigatus gliZ for gliotoxin
biosynthesis [114], Monascus purpureus ctnA for citrinin biosynthesis [115], and Fusarium sporotrichioides
tri6 for trichothecene biosynthesis [116]. We identified a Zn(II)2Cys6-type transcription factor,
TAS2 (MGG_07800), which regulates TeA production. TAS2 is located in the upstream region of TAS1
(Figure 6). In fungi, secondary metabolite production is also regulated by upper-level regulators rather
than by cluster-specific transcription factors. These upper-level regulators, called global regulators,
are trans-acting positive or negative transcriptional factors of secondary metabolite gene clusters.
LaeA (loss of aflR expression) is a well-known global regulator of secondary metabolism identified
and characterized in Aspergillus spp. [117–120]. Orthologs of LaeA have been identified in other fungi,
including Monascus pilosus, Cochliobolus heterostrophus, and Fusarium spp. [121]. We identified a LaeA
ortholog, PoLAE1 (MGG_01233), from P. oryzae. Analysis of PoLAE1 deletion and overexpression strains
showed that PoLAE1 positively regulated TeA production. We also revealed that two TeA-inducing
signals, OSM1 deletion and 1% DMSO treatment, were transmitted via PoLAE1. These results indicated
that TeA production was regulated by two specific regulators, TAS2 and PoLAE1, in P. oryzae (Figure 6).
Recently, it has been shown that TeA production is also induced by mycovirus infection via upregulation
of TAS2 [122].
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6. Other Secondary Metabolites

ACE1 (MGG_12447) is an avirulence gene, and isolates of P. oryzae carrying the ACE1 gene
are specifically recognized by rice cultivars carrying the resistance gene Pi33 [87]. This recognition
activates defense responses in resistant plants. ACE1 is a secondary metabolism gene and encodes
a PKS-NRPS hybrid enzyme. The secondary metabolite whose synthesis is dependent on ACE1 is
predicted to be recognized by resistant rice plants. ACE1 is located in an infection-specific gene
cluster consisting of 15 genes [7]. Fourteen of the 15 genes are predicted to be involved in secondary
metabolism as they code for proteins such as a second PKS-NRPS (SYN2), two enoyl reductases
(RAP1 and RAP2), and a putative Zn(II)2Cys6-type transcription factor (BC2). The ACE1 gene cluster
shows a rice-infection-specific expression pattern. Heterologous co-expression of ACE1 and RAP1 in
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Aspergillus oryzae causes production of an amide compound similar to the PKS-NRPS-derived backbone
of cytochalasans [123]. Bioactivity analysis shows that the produced compound is not responsible for
the observed ACE1-mediated avirulence. These data suggest that the active final product may be a
cytochalasin-like compound.

Penicillin production in rice blast fungus has been recently shown [124]. Overexpression of a
laeA homolog (MoLAEA/MGG_07964) increases the production of penicillin G compared to the wild
type strain. In contrast, the silenced strain does not produce penicillin G. The putative NRPS gene
(MGG_14767) for penicillin G biosynthesis is 3-fold upregulated in the overexpression strain, whereas it
is 3.8-fold downregulated in the knockdown strain. Transcriptomic data show that MoLAEA regulates
genes involved in secondary metabolism. This laeA homolog (MoLAEA/MGG_07964) is different from
the laeA homolog (PoLAE1/MGG_01233) involved in TeA production. Multiple laeA homologs may be
involved in the control of secondary metabolite production.

ABM (MGG_04777) is a monooxidase gene located in a putative secondary metabolite biosynthetic
gene cluster containing a polyketide synthase gene (MGG_04775) [125]. While the role of Abm
(antibiotic biosynthesis monooxygenase) in this gene cluster is unknown, Abm can convert endogenous
free jasmonic acid (JA) into 12OH-JA in P. oryzae. Such fungal 12OH-JA is secreted during infection
and helps evade the defense response by inhibiting the induction of JA signaling. In contrast, loss of
Abm in P. oryzae causes accumulation of methyl JA (MeJA), which induces host defense and blocks
fungal infection. Furthermore, Abm itself is secreted after infection and is predicted to convert
plant JA into 12OH-JA to help host colonization. P. oryzae also produces other plant hormones,
abscisic acid (ABA) [126], cytokinins (CKs) [127], and auxins [indole-3-acetic acid (IAA)] [128], and the
biosynthetic genes for ABA and CKs have been identified and characterized [129,130]. Gene knockout of
MoABA4/MGG_07514, homologous to the Botrytis cinerea ABA4 gene responsible for ABA biosynthesis,
reduces ABA levels by two-fold [129]. The virulence of the ∆Moaba4 mutant is strongly compromised,
suggesting that ABA contributes to the virulence of this fungus. CKS1/MGG_04857 encodes a putative
tRNA-Isopentenyl transferase (tRNA-IPT) protein essential for CK biosynthesis [130]. The interaction
between rice and the ∆csk1 strain has been characterized. This analysis has shown that P. oryzae-derived
CKs are required for full virulence by affecting rice defenses, nutrient distribution, and fungal oxidative
stress tolerance.

7. Conclusions

P. oryzae is rich in secondary metabolism genes, and some of the secondary metabolites are
expected to be involved in rice infection. Here, this review focused on the biosynthesis and biological
roles of secondary metabolites in P. oryzae. Five groups of secondary metabolites (melanin, pyriculols,
nectriapyrones, TeA, and penicillin G) have been shown to be produced by P. oryzae. Biosynthetic genes
for three (nectryapyrone, TeA, and penicillin G) of the five groups of secondary metabolites have
been identified by activating secondary metabolism. Nectryapyrones and TeA were induced by
manipulating the factors involved in the TCS. Penicillin G was induced by overexpression of a laeA
homolog. Activation of secondary metabolism is a useful method for the identification of secondary
metabolites. Melanin is a well-characterized secondary metabolite that is essential for rice infection.
Identification and gene manipulation of the biosynthetic genes revealed that three groups of secondary
metabolites (pyriculols, nectriapyrones, and TeA) are not required for rice infection. Nectriapyrones and
penicillin G show antibacterial activity and are predicted to be involved in interactions between bacteria.
Controlling plant pathogenic fungi is important in agriculture. Unveiling the roles of secondary
metabolites of plant pathogens will help in developing agrochemicals.
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Abbreviations

PKS Polyketide synthase
NRPS Nonribosomal peptide synthetase
1,8-DHN Dihydroxynaphthalene
1,3,6,8-THN 1,3,6,8-Tetrahydroxynaphthalene
1,3,8-THN 1,3,8-Trihydroxynaphthalene
MBIs Melanin biosynthesis inhibitors
TCS Two-component system
HPt His-containing phosphotransfer
DOPA 3,4-Dihydroxyphenylalanine
TeA Tenuazonic acid
PSII Photosystem II
PM Plasma membrane
KS Ketosynthase
AT Acyltransferase
ACP Acyl carrier protein
KR β-Ketoacyl reductase
DH Dehydratase
ER Enoyl reductase
MT Methyltransferase
A Adenylation
PCP Peptidyl carrier protein
C Condensation
R Reductase
DKC Dieckmann cyclization
DMSO Dimethylsulfoxide
MAPK Mitogen-activated protein kinase
TE Thioesterase
JA Jasmonic acid
MeJA Methyl jasmonic acid
ABA abscisic acid
CKs cytokinins
IAA indole-3-acetic acid
tRNA-IPT tRNA-Isopentenyl transferase
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