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3 Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology,
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Abstract: Two novel coordination polymers, [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n (1) and {(Et3NH)2

[Bi(2,3pydc)(2,3pydcH)Cl2]}n (2) were prepared using as a prolinker pyridine-2,3-dicarboxylic acid
(2,3pydcH2). The obtained complexes were fully characterized by elemental analysis, TG/DTG, FT-IR,
solid-state photoluminescence, DFT calculations and single-crystal X-ray diffraction. The obtained
complexes crystallized in the triclinic P-1 space group (1) and comprise dimeric units with two
crystallographically different Bi(III) centers (polyhedra: distorted pentagonal bipyramid and
bicapped trigonal prism) and monoclinic P21/c space group (2) with a distorted monocapped
pentagonal bipyramid of Bi(III) center. The various coordination modes of bridging carboxylate
ligands are responsible for the formation of 1D chains with 4,5C10 (1) and 2C1 (2) topology.
The photoluminescence quantum yield for polymer 2 is 8.36%, which makes it a good candidate for
more specific studies towards Bi-based fluorescent materials. Moreover, it was detected that polymer
1 is more than twice as active against H. pylori as polymer 2. It can be concluded that there is an
existing relationship between the structure and the antibacterial activity because the presence of
chloride and triethylammonium ions in the structure of complex 2 reduces the antibacterial activity.

Keywords: Bi(III) coordination polymers; pyridine-2,3-dicarboxylic acid; holodirected and hemidirected
geometry; photoluminescence; Helicobacter pylori

1. Introduction

Contemporary coordination chemistry establishes a scientific basis for obtaining compounds used
as sources for synthesizing functional materials not only for technology [1–7] but also for medicine or
pharmacy [8,9]. It is a great challenge to obtain proper functional materials because the properties of
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coordination compounds depend on the type of both metal ions and connecting ligands. Our interest
in this field concerns the chemistry of lead(II) [10–14] and bismuth(III) coordination polymers with
heteroaromatic carboxylate ligands. When selecting a central ion, we focused on the multiple
applications of Bi(III) compounds as, for example, photoluminescent materials [15–17], catalysts [18],
medical drugs for gastrointestinal disorders caused by Helicobacter pylori or anticancer agents [19–22].
Furthermore, the Bi(III) ion exhibits a [Xe]4f 145d106s2 ground state electronic configuration and
belongs to a group of metal ions (Tl(I), Pb(II), Sn(II), Sb(III)) possessing a lone electron pair (ns2).
The presence of a lone electron pair, its stereochemical role and a relatively large bismuth covalent
radius (1.48 Å [23]) can lead to the formation of interesting molecular structures of Bi-based complexes,
including high coordination numbers and a hemi- or holodirected distribution of ligands around
the metal center. When the lone electron pair is stereochemically inactive, it does not affect the
geometry of the metal coordination environment. The bonds between metal and ligands are distributed
symmetrically and the geometry around the central ion is defined as holodirected. While when the
electron pair is stereochemically active, it occurs in a separate place in the central ion environment.
The coordination bonds are distributed asymmetrically and only in a certain part of the coordination
sphere. Such a type of geometry is called hemidirected [24]. These features make Bi(III) a coordinatively
flexible ion, which is why we chose it for the synthesis of novel bismuth(III) coordination polymers.
Additionally, the varied coordination structures of bismuth(III) complexes are also affected by the
kind of donating ligand and the different coordination modes. This is especially important in the
synthesis of functional coordination polymers (CPs), where ligands play an additional role as organic
linkers. Among these linkers, carboxylate ligands are special, mainly due to the large variation in
their coordination behavior. They can act as (i) monodentate κO, (ii) chelating κ2O,O′, (iii) bridging
µ-κO:κO′, µ-κO:κO, µ3-κO:κO′:κO′, µ4-κO:κO:κO′:κO′ and (iv) chelating-bridging µ-κ2O,O′:κO′,
µ3-κO:κ2O,O′:κO′, µ4-κO:κ2O,O′:κO′:κO′, µ5-κO:κO:κ2O,O′:κO′:κO′ ligands [25]. When researching
examples of functional bismuth(III) coordination polymers in the literature, we focused on complexes
with isomeric pyridine-dicarboxylic acids as linkers: pyridine-2,3-dicarboxylic acid (2,3pydcH2) [26],
pyridine-2,5-dicarboxylic acid (2,5pydcH2) [27–31], pyridine-2,6-dicarboxylic acid (2,6pydcH2) [32–37],
pyridine-3,4-dicarboxylic acid (3,4pydcH2) [37] and pyridine-3,5-dicarboxylic acid (3,5pydcH2) [38].
A literature search of coordination polymer functionality revealed six examples of Bi(III) complexes
with luminescence properties [27,28,31,32,38]; three compounds exhibited gas-sorption behavior
(CO2, N2, H2) [32], and one was used as a precursor for the preparation of Bi2O3 nanoparticles via
thermal decomposition [26]. However, the biological activity of the mentioned complexes have not
been examined, although all of the bismuth compounds clinically used against Helicobacter pylori
belong to a group of Bi(III) carboxylates (bismuth subsalicylate (BSS, Pepto-Bismol), colloidal bismuth
subcitrate (CBS, De-Nol) or ranitidine bismuth citrate (RBC, Pylorid)) [39,40]. Currently, the problems
associated with this microaerophilic and neutralophilic Gram negative bacterium have been intensively
investigated because it has been linked not only to many gastrointestinal disorders but also to gastric
cancer. It should be noted that bismuth medications have been used not only against H. pylori as a
component of quadruple therapies [41] as the first-line treatment (two antibiotics, proton-pump inhibitor
and Bi-based drug), but Bi(III) complexes have also demonstrated anticancer activity. Additionally,
bismuth was employed in radiation therapy in the form of Bi-nanoparticles and nanodots or in
targeted radioimmunotherapy in the form of bismuth radionuclides [42]. Considering all of the above
aspects of interesting bismuth chemistry, herein, we present the synthesis and characterization of new
Bi(III) metal-organic coordination polymers. Taking into consideration our previous experience in the
construction of CPs based on Pb(II) ions [10–14], we paid special attention to the choice of a proper
organic linker. We selected pyridine-2,3-dicarboxylic acid as the prolinker for this purpose. It belongs
to the group of multidonating N,O-donor ligands, which can exist in a mono- or a fully deprotonated
form, indicating the possibility of different coordination modes with metal ions [43–55] (Scheme 1).
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Scheme 1. Selected coordination modes of mono-deprotonated-2,3pydcH (top) and deprotonated-
2,3pydc (bottom) forms of pyridine-2,3-dicarboxylic acid (2,3pydcH2) in coordination with different 
metal ions reported in the literature [43–55]. 
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prolinker; (ii) presented the molecular structure and topology of [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n (1) 
and {(Et3NH)2[Bi(2,3pydc)(2,3pydcH)Cl2]}n (2); (iii) confirmed and visualized the intermolecular close 
contacts in the crystal structures; (iv) carried out DFT (density functional theory) calculations to 
provide an explanation for the lone pair activity; (v) studied the luminescence properties of the 
obtained coordination polymers in the solid-state; and (vi) determined the bacteriostatic activity 
against H. pylori, which was compared with other Bi(III) carboxylate complexes. 

2. Results and Discussion 

2.1. Molecular Structure and Lone Pair Stereoactivity 

The SC-XRD studies revealed that the coordination polymer [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n 
(1) crystallized in the triclinic space group P-1. The asymmetric unit contained dimeric units of two 
crystallographically distinguishable Bi(III) centers. There were two anions of pyridine-2,3-
dicarboxylic acid for each Bi center, one deprotonated (2,3pydc) and one mono-deprotonated 
(2,3pydcH). Additionally, there was one water molecule coordinated to the Bi1 center (Figure 1a). 
Each metal center existed in a different coordination environment. Around the Bi1 atom, there was a 
structural gap between the N2, O7 and O15 donor atoms, suggesting the influence of the lone electron 
pair on the geometry of the coordination sphere. The coordination bonds with those atoms were 
significantly longer (2.521–2.710 Å) than those with the other atoms (O5, O1 and N1, 2.314–2.386 Å) 
and were located opposite to the location of the lone electron pair (Table 1). Taking into consideration 
only the mentioned strong bonds, the geometry of the nearest coordination environment of the Bi1 
center exhibited a coordination number of 7 and could be described as hemidirected. However, due 
to the significant stereoactivity of the lone electron pair, there were two additional donor atoms (O8 
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Scheme 1. Selected coordination modes of mono-deprotonated-2,3pydcH (top) and deprotonated-
2,3pydc (bottom) forms of pyridine-2,3-dicarboxylic acid (2,3pydcH2) in coordination with different
metal ions reported in the literature [43–55].

During the course of this study, we (i) synthesized and fully physicochemically characterized
two novel bismuth(III) coordination polymers with pyridine-2,3-dicarboxylic acid (2,3pydcH2) as a
prolinker; (ii) presented the molecular structure and topology of [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n

(1) and {(Et3NH)2[Bi(2,3pydc)(2,3pydcH)Cl2]}n (2); (iii) confirmed and visualized the intermolecular
close contacts in the crystal structures; (iv) carried out DFT (density functional theory) calculations
to provide an explanation for the lone pair activity; (v) studied the luminescence properties of the
obtained coordination polymers in the solid-state; and (vi) determined the bacteriostatic activity against
H. pylori, which was compared with other Bi(III) carboxylate complexes.

2. Results and Discussion

2.1. Molecular Structure and Lone Pair Stereoactivity

The SC-XRD studies revealed that the coordination polymer [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n

(1) crystallized in the triclinic space group P-1. The asymmetric unit contained dimeric units of two
crystallographically distinguishable Bi(III) centers. There were two anions of pyridine-2,3-dicarboxylic
acid for each Bi center, one deprotonated (2,3pydc) and one mono-deprotonated (2,3pydcH).
Additionally, there was one water molecule coordinated to the Bi1 center (Figure 1a). Each metal
center existed in a different coordination environment. Around the Bi1 atom, there was a structural
gap between the N2, O7 and O15 donor atoms, suggesting the influence of the lone electron pair on
the geometry of the coordination sphere. The coordination bonds with those atoms were significantly
longer (2.521–2.710 Å) than those with the other atoms (O5, O1 and N1, 2.314–2.386 Å) and were
located opposite to the location of the lone electron pair (Table 1). Taking into consideration only
the mentioned strong bonds, the geometry of the nearest coordination environment of the Bi1 center
exhibited a coordination number of 7 and could be described as hemidirected. However, due to the
significant stereoactivity of the lone electron pair, there were two additional donor atoms (O8 and O17)
which were more distant from the Bi1 center (2.829 and 2.841 Å, respectively). These atoms, connected
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by weaker secondary bonds, completed the Bi1 coordination sphere. Therefore, the coordination
number increased to 9, and the Bi1 coordination environment resembled a holodirected geometry [24].
The difference between the longest and shortest coordination bonds was 0.527 Å, which indicated
a significant distortion of the coordination polyhedron. The Bi2 center was surrounded by eight
donor atoms connected by strong primary bonds (2.311–2.650 Å) and one atom (O16) connected at a
distance of 2.842 Å (secondary bond). In this case, the geometry of the Bi2 center was determined as
hemidirected for CN = 8 or holodirected for CN = 9 [24].

It is important to confirm the conclusions drawn from the crystallographic analysis by DFT
calculations. One of the crucial factors affecting the lone electron pair stereoactivity is the type of
orbital, i.e., a spherical s orbital or space-oriented p or d orbitals, in which the electron density is
mainly localized. Concerning compound 1, the stereoactivity of the lone electron pair was slightly
more pronounced in the Bi1 center than in Bi2 (Figure 1b). The localization of the lone electron pair in
the Bi1 center indicated a significant contribution of the p orbital (35.3%) and a smaller contribution
of the s orbital (9.5%). This caused the electron density to occupy a hemisphere in close proximity
to the metal center. As a result, there was a gap in the structure, and the surrounding Bi1 atom
adopted a hemidirected geometry. The lone pair stereoactivity in the Bi1 center caused the distortion
of the coordination environment but simultaneously allowed for the formation of two additional
coordination bonds with atoms located at a distance >2.8 Å. Therefore, the coordination geometry
was not a typical hemidirected geometry since including secondary bonds filled up the hemisphere,
resulting in a holodirected geometry. In turn, there was a smaller contribution of the p orbital (30.2%)
and a slightly greater contribution of the s orbital (12.0%) in the localization of the electron pair in
the Bi2 center than in the Bi1 center. As a result, the electron density in the Bi2 center affected the
distortion of the coordination environment to a lower extent, and there was only one atom connected
with the metal center by a secondary bond. However, concerning only primary bonds, the geometry of
Bi2 was hemidirected, while including secondary bonds resulted in a holodirected geometry.
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Figure 1. (a) The molecular structure with an atom numbering scheme of complex 1 (Symmetry codes: 
(i) −x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z) (Bi—orange, O—red, N—blue, C—black, H—white); (b) 

Figure 1. (a) The molecular structure with an atom numbering scheme of complex 1 (Symmetry codes:
(i)−x, 1− y, 1− z; (ii) 1− x, 1− y, 1− z) (Bi—orange, O—red, N—blue, C—black, H—white); (b) graphical
representation of selected molecular orbital localized on Bi atom in complex 1 (DFT calculations).
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Table 1. Selected bond lengths (Å) and angles (◦) for complex 1.

Bond Lengths (Å)

Bi1–O5 2.314(10) Bi1–O7 2.697(9) Bi2–O9 2.311(9) Bi2–O14 ii 2.539(9)
Bi1–O1 2.332(9) Bi1–O15 2.710(9) Bi2–O15 2.433(9) Bi2–N4 2.640(11)
Bi1–N1 2.386(12) Bi1–O8 2.829(10) Bi2–O8 2.484(10) Bi2–O14 2.650(10)
Bi1–O13 2.443(9) Bi1–O17 2.841(10) Bi2–O6 i 2.491(9) Bi2–O16 2.842(10)
Bi1–N2 2.521(12) Bi2–N3 2.506(10)

Bond Angles (◦)

O1–Bi1–N2 74.3(4) O5–Bi1–O7 141.6(3) O15–Bi2–N3 117.4(4)
O1–Bi1–N1 68.8(4) O5–Bi1–O17 121.4(3) O15–Bi2–N4 141.6(3)
O1–Bi1–O5 131.9(3) O13–Bi1–O15 72.8(3) O15–Bi2–O9 77.2(3)
O1–Bi1–O13 135.0(3) O13–Bi1–O8 88.2(3) O14–Bi2–O16 117.2(3)
O1–Bi1–O15 143.0(3) O13–Bi1–O7 77.9(3) O14–Bi2–O6 i 70.4(3)
O1–Bi1–O8 88.8(3) O13–Bi1–O17 140.9(3) O14–Bi2–O14 ii 71.6(3)
O1–Bi1–O7 67.3(3) O15–Bi1–O8 65.0(3) O14–Bi2–N3 145.4(3)
O1–Bi1–O17 71.9(3) O15–Bi1–O7 106.3(3) O14–Bi2–N4 111.2(3)
N2–Bi1–N1 84.0(4) O15–Bi1–O17 72.6(3) O14–Bi2–O9 144.6(3)
N2–Bi1–O5 66.1(3) O8–Bi1–O7 47.9(3) O16–Bi2–O6 i 79.4(3)

N2–Bi1–O13 130.9(3) O8–Bi1–O17 60.9(3) O16–Bi2–O14 ii 138.5(3)
N2–Bi1–O15 107.2(3) O7–Bi1–O17 95.0(3) O16–Bi2–N3 69.3(4)
N2–Bi1–O8 137.8(3) O8–Bi2–O15 74.5(3) O16–Bi2–N4 131.2(3)
N2–Bi1–O7 141.2(3) O8–Bi2–O14 72.2(3) O16–Bi2–O9 65.1(3)

N2–Bi1–O17 77.1(4) O8–Bi2–O16 115.1(3) O6 i–Bi2–O14 ii 65.4(3)
N1–Bi1–O5 80.6(4) O8–Bi2–O6 i 142.4(3) O6 i–Bi2–N4 78.3(4)

N1–Bi1–O13 77.0(4) O8–Bi2–O14 ii 106.2(3) O6 i–Bi2–N4 122.8(3)
N1–Bi1–O15 147.6(3) O8–Bi2–N3 138.0(6) O6 i–Bi2–O9 138.6(3)
N1–Bi1–O8 126.0(4) O8–Bi2–N4 75.4(3) O14 ii–Bi2–N3 82.5(5)
N1–Bi1–O7 78.1(4) O8–Bi2–O9 75.5(3) O14 ii–Bi2–N4 61.7(3)

N1–Bi1–O17 139.7(4) O15–Bi2–O14 80.7(3) O14 ii–Bi2–O9 132.0(3)
O5–Bi1–O13 66.4(3) O15–Bi2–O16 48.6(3) N3–Bi2–N4 73.3(6)
O5–Bi1–O15 76.8(3) O15–Bi2–O6 i 95.5(3) N3–Bi2–O9 69.2(6)
O5–Bi1–O8 139.1(3) O15–Bi2–O14 ii 150.7(3) N4–Bi2–O9 73.3(3)

Symmetry codes: i
−x, 1 − y, 1 − z; ii 1 − x, 1 − y, 1 − z.

Coordination polymer {(Et3NH)2[Bi(2,3pydc)(2,3pydcH)Cl2]}n (2) crystallized in the monoclinic
space group P21/c. Its asymmetric unit comprised one Bi(III) ion, one molecule of pyridine-2,3-
dicarboxylato ligand (2,3pydc), one molecule of 3-carboxypyridine-2-carboxylato ligand (2,3pydcH)
and two coordinated chloride ions. Compound 2 is an anionic polymer, and the negative charge
is neutralized by two triethylammonium cations for each Bi(III) center (Figure 2a). In contrast to
complex 1, the donor atoms in complex 2 were connected with the metal center only by primary bonds
(CN = 8), which range from 2.374 to 2.725 Å (Table 2). The chromophore was formed as {BiO4N2Cl2}.
The difference in the coordination bond lengths (0.351 Å) and angles slightly distorted the structure of
the coordination environment from an ideal monocapped pentagonal bipyramid. However, a lack of
obvious gaps and secondary bonds in the proximity of the Bi(III) center suggested that the lone electron
pair was stereochemically inactive or weakly active and did not significantly affect the structure.
Consequently, the nearest coordination environment of the Bi(III) center in compound 2 exhibited a
holodirected geometry [24].

Additionally, the DFT calculations indicated the conclusion from structural studies. There was a
smaller contribution of the p orbital (29.2%) and a slightly larger contribution of the s orbital (14.6%)
to the localization of the lone electron pair in the Bi(III) center of compound 2 (Figure 2b) compared
with the Bi(III) centers of compound 1. As a result, the electron density was more centered and
insignificantly influenced the structure distortion.
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Figure 2. (a) The molecular structure with an atom numbering scheme of complex 2 (Symmetry code:
(i) x, 0.5 − y, −0.5 + z) (Bi—orange, O—red, N—blue, Cl— green, C—black, H—white); (b) graphical
representation of selected molecular orbital localized on Bi atom in complex 2 (DFT calculations).

Table 2. Selected bond lengths (Å) and angles (◦) for complex 2.

Bond Lengths (Å)

Bi1–O5 2.374(7) Bi1–N1 2.546(7) Bi1–O7 i 2.651(6) Bi1–O8 i 2.721(7)
Bi1–O1 2.429(7) Bi1–N11 2.585(7) Bi1–Cl2 2.672(2) Bi1–Cl1 2.725(3)

Bond Angles (◦)

O1–Bi1–N1 65.5(2) N1–Bi1–N11 140.9(2) O5–Bi1–O7 i 136.5(2)
O1–Bi1–Cl1 97.3(3) N1–Bi1–O7 i 138.2(2) O5–Bi1–Cl2 83.6(8)
O1–Bi1–O5 140.5(2) N1–Bi1–Cl2 82.8(5) O8 i–Bi1–N11 81.3(2)

O1–Bi1–O8 i 77.5(2) Cl1–Bi1–O5 83.5(3) O8 i–Bi1–O7 i 48.4(2)
O1–Bi1–N11 153.5(2) Cl1–Bi1–O8 i 74.3(2) O8 i–Bi1–Cl2 125.8(5)
O1–Bi1–O7 i 75.2(2) Cl1–Bi1–N11 92.0(2) N11–Bi1–O7 i 78.8(2)
O1–Bi1–Cl2 82.3(10) Cl1–Bi1–O7 i 122.7(2) N11–Bi1–Cl2 97.6(9)
N1–Bi1–Cl1 77.8(2) Cl1–Bi1–Cl2 158.8(3) O7 i–Bi1–Cl2 77.9(4)
N1–Bi1–O5 76.3(2) O5–Bi1–O8 i 138.8(2)

N1–Bi1–O8 i 129.7(2) O5–Bi1–N11 65.1(2)

Symmetry code: i x, 0.5 − y, −0.5 + z.

2.2. Topology and Supramolecular Structure

In the structure of coordination polymer 1, the monoanionic ligand molecules (2,3pydcH) were
connected to the metal center via a chelating (κ2N,O) coordination. In turn, dianionic ligand molecules
(2,3pydc) exhibit two kinds of chelating-bridging coordination modes. One of them connects four
metal centers according to µ4-κ2N,O:κO′:κO′′:κ2O′′,O′′′, while the second one bridges five Bi(III)
centers according to µ5-κ2N,O:κO:κO′:κO′′:κ2O′′,O′′′ (Figure 3a). The water molecule acted as a
monocoordinated ligand. Bridging ligand molecules were responsible for the formation of 1D chains
along the a axis with a 4,5C10 topology described by the (45

·6)(49
·6) point symbol. This type of the

underlying net is constructed by 4-connected [Bi1(2,3pydcH)(H2O)] and 5-connected [Bi2(2,3pydcH)]
nodes linked together by 4- and 5-connected [2,3pydc] linkers (Figure 3b). The Bi···Bi distances ranged
from 4.196 to 8.879 Å. The relatively short Bi···Bi separations (about 4.2 Å) are close to the sum of the
van der Waals radii (4.14 Å [56]). However, in the structure of 1 the shortest Bi···Bi separations are those
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associated with Bi2O2 dimeric units. They might be considered simply a consequence of the bridging
by O-donor carboxylate groups from 2,3pydc linkers and they are not indicative of a Bi···Bi bond [57].
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The supramolecular structure of coordination polymer 1 was stabilized through conventional
hydrogen bonding (O–H···O) between water molecules and the carboxylate ligands or between the
carboxylic groups of the 2,3pydcH molecules and the carboxylate groups of the 2,3pydc ligands with
d(H···O) distances ranging from 1.801 to 2.574 Å (Figure 4a). Nonconventional (C–H···O) hydrogen
bonds, both intramolecular (Figure 4b) and intermolecular (Figure 4d), also played an important role.
Moreover, π-stacking interactions between pyridine rings were observed in the structure at a distance
of 4.043 Å (Figure 4c). The details of the interactions in complex 1 are listed in Table 3.

In the structure of complex 2, ligand 2,3pydcH exhibited a chelating coordination mode (κ2N,O),
while ligand 2,3pydc exhibited a chelating-bridging coordination mode (µ-κ2N,O:κ2O′′,O′′′) (Figure 5a).
Compound 2 was a 1-dimensional coordination polymer forming a zig-zag pattern along the c axis.
From the topological point of view, this type of connection is described as 2C1 in the valence-bonded
MOFs standard representation. 2-Connected [Bi(2,3pydcH)Cl2] nodes were combined by 2-connected
[2,3pydc] linkers at a distance of 8.909 Å. In the H-bonded MOFs standard representation, the topology
of complex 2 was changed. Taking into account the strong O4–H4A···O6ii hydrogen bonds formed
between the –COOH group of the 2,3pydcH ligand and the –COO– group of the 2,3pydc ligand,
the dimensionality increased to 2D (bc plane). Nodes and linkers became 3-connected, which resulted
in the formation of a honeycomb-like hcb net described by the 63 point symbol (Figure 5b).
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Table 3. The geometry of noncovalent interactions in complex 1.

Hydrogen Bonds

Donor–H···Acceptor D–H (Å) H···A (Å) D···A (Å) D–H···A (◦)

O3–H3A···O7 iii 0.84(1) 1.801(28) 2.625(37) 166.46(4)
O12–H12A···O1 iv 0.84(1) 2.550(41) 3.171(40) 131.65(5)

O17–H17B···O9 0.87(1) 2.574(14) 3.208(30) 130.56(4)
C5–H5···O16 i 0.95(1) 2.220(38) 3.140(51) 162.68(4)

C10–H10···O16 i 0.95(1) 2.489(38) 3.310(47) 144.71(5)
C12–H12···O1 0.95(1) 2.542(41) 3.012(42) 110.73(4)

C12–H12···O17 0.95(1) 2.926(38) 3.409(51) 112.79(3)
C12–H12···O12 A iv 0.95(1) 2.211(36) 2.957(53) 134.64(4)

C17–H17···O11 vi 0.95(2) 2.519(5) 3.313(13) 141.00(3)
C17–H17···O11 A vi 0.95(2) 2.699(41) 3.278(36) 119.81(3)

C18–H18···O2 vii 0.95(2) 2.901(10) 3.496(23) 121.81(3)
C19–H19···O7 ii 0.95(1) 2.483(20) 3.346(22) 150.44(6)

C25–H25···O17 viii 0.95(1) 2.639(36) 3.336(38) 130.62(5)
C26–H26···O9 ii 0.95(1) 2.467(36) 2.948(25) 111.30(4)

π···π interactions

Cg···Cg (Å)

Cg1···Cg2 4.043(24)

Symmetry codes: i
−x, 1 − y, 1 − z; ii 1 − x, 1 − y, 1 − z; iii 1 − x, 1 − y, −z; iv 1 − x, −y, 1 − z; v

−x, −y, 1 − z; vi 1 − x,
−y, 2 − z; vii x, y, 1 + z; viii x, 1 + y, z. Cg denotes the centre of gravity of the 6-membered pyridine ring.



Int. J. Mol. Sci. 2020, 21, 8696 9 of 26

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 26 

 

In the structure of complex 2, ligand 2,3pydcH exhibited a chelating coordination mode (κ2N,O), 
while ligand 2,3pydc exhibited a chelating-bridging coordination mode (µ-κ2N,O:κ2O″,O‴) (Figure 
5a). Compound 2 was a 1-dimensional coordination polymer forming a zig-zag pattern along the c 
axis. From the topological point of view, this type of connection is described as 2C1 in the valence-
bonded MOFs standard representation. 2-Connected [Bi(2,3pydcH)Cl2] nodes were combined by 2-
connected [2,3pydc] linkers at a distance of 8.909 Å. In the H-bonded MOFs standard representation, 
the topology of complex 2 was changed. Taking into account the strong O4–H4A∙∙∙O6ii hydrogen 
bonds formed between the –COOH group of the 2,3pydcH ligand and the –COO– group of the 
2,3pydc ligand, the dimensionality increased to 2D (bc plane). Nodes and linkers became 3-connected, 
which resulted in the formation of a honeycomb-like hcb net described by the 63 point symbol (Figure 
5b). 

 

Figure 5. (a) Coordination modes of carboxylate ligands in complex 2; (b) a fragment of the 1D crystal 
structure merged with 2C1 underlying net in valence-bonded MOFs standard representation and a 
fragment of the 2D crystal structure merged with hcb underlying the net in H-bonded MOFs standard 
representation for coordination polymer 2 (Bi—orange, O—red, N—blue, Cl—green, C—black, H—
white). 

The analysis of the complex 2 crystal structure revealed many noncovalent interactions (Figure 
6, Table 4). Between the 1D chains, strong O–H(COOH)∙∙∙O(COO) hydrogen bonds (H4A∙∙∙O6ii = 1.727 
Å) were formed (Figure 6a). Compound 2 was also stabilized by intra- and interchain C–H∙∙∙∙O 
hydrogen bonds with d(H∙∙∙O) distances ranging from 2.408 to 2.846 Å. The presence of 
triethylammonium cations in the structure was the source of many donor C–H and N–H groups, 
which were the basis of a strong hydrogen-bonded net. The stronger bonds were the N–
H(Et3NH)∙∙∙O(COO) bonds formed at d(H∙∙∙N) distances of 1.742 and 1.752 Å (Figure 6b). In turn, 
coordinated chloride ions served as acceptors in the formation of four-furcated C–H∙∙∙Cl hydrogen 
bonds with Et3NH cations (Figure 6c). Donor C–H groups of Et3NH molecules also formed 
interactions with carboxylate oxygen atoms at d(H∙∙∙O) distances of 2.554–2.999 Å (Figure 6d). Weak 
nonconventional C–H∙∙∙π hydrogen bond type III according to Malone [58] was also found (Figure 
6d). 

Figure 5. (a) Coordination modes of carboxylate ligands in complex 2; (b) a fragment of the 1D
crystal structure merged with 2C1 underlying net in valence-bonded MOFs standard representation
and a fragment of the 2D crystal structure merged with hcb underlying the net in H-bonded MOFs
standard representation for coordination polymer 2 (Bi—orange, O—red, N—blue, Cl—green, C—black,
H—white).

The analysis of the complex 2 crystal structure revealed many noncovalent interactions (Figure 6,
Table 4). Between the 1D chains, strong O–H(COOH)···O(COO) hydrogen bonds (H4A···O6ii = 1.727 Å)
were formed (Figure 6a). Compound 2 was also stabilized by intra- and interchain C–H····O hydrogen
bonds with d(H···O) distances ranging from 2.408 to 2.846 Å. The presence of triethylammonium
cations in the structure was the source of many donor C–H and N–H groups, which were the basis of
a strong hydrogen-bonded net. The stronger bonds were the N–H(Et3NH)···O(COO) bonds formed
at d(H···N) distances of 1.742 and 1.752 Å (Figure 6b). In turn, coordinated chloride ions served as
acceptors in the formation of four-furcated C–H···Cl hydrogen bonds with Et3NH cations (Figure 6c).
Donor C–H groups of Et3NH molecules also formed interactions with carboxylate oxygen atoms at
d(H···O) distances of 2.554–2.999 Å (Figure 6d). Weak nonconventional C–H···π hydrogen bond type III
according to Malone [58] was also found (Figure 6d).

2.3. FT-IR Analysis

The FT-IR analysis results of pyridine-2,3-dicarboxylic acid and bismuth(III) complexes 1 and 2
are summarized in Table S1. An interesting phenomenon of this acid worth mentioning is that it exists
in its zwitterionic form in the solid-state. Therefore, in the free ligand spectrum, we observed a band
derived from protonated pyridine nitrogen (ν(N–H)pyH) and a broad band of O–H stretching vibrations
attributed to intramolecular hydrogen bonds between the carboxylate groups [48,59,60]. The infrared
spectra of bismuth coordination polymers 1 and 2 (Figure 7) contained the bands derived from the
vibrations ν(C=O)COOH at 1727 and 1708 cm−1, respectively, as well as the vibrations νas(COO) and
νs(COO) (Table S1). This spectral pattern indicated that one of the carboxylic groups of the ligand was
deprotonated while the second one remained deprotonated (mono-deprotonated-2,3pydcH anion),
or both carboxylic groups were deprotonated (doubly deprotonated-2,3pydc anion). The ∆ν values of
the carboxylate stretching frequencies [∆ν = νas(COO) − νs(COO)] [61] were 246, 202 and 165 cm−1

in the spectrum of complex 1 and 249 and 182 cm−1 in the spectrum of complex 2, indicating the
different coordination modes of the carboxylates in these compounds. According to Deacon and
Phillips [61], the value ∆ν> 200 cm−1 indicated a bridging mode of ligand binding, while ∆ν< 200 cm−1
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indicated a bidentate chelating mode. In addition, the FT-IR spectra provided further evidence for the
formation of a coordination bond between the Bi(III) ion and the pyridine nitrogen atom by means
of a relative shift in the absorbance of the ν(C=N) band (see Table S1) and a strong absorption band
at 634–624 cm−1 [35,62]. Additionally, in the spectrum of compound 1, a wide band in the range
3600–3200 cm−1 from ν(O–H) vibrations corresponding to the water molecules engaged in hydrogen
bonds was observed. On the other hand, in the spectrum of compound 2, additional bands appeared
at 2712 and 2511 cm−1 and at 1272 cm−1, which were attributed to the ν(N–H) and ν(C–N) vibrations.
These bands suggested the presence of protonated triethylammonium (Et3NH) ions in the complex
structure. Thus, spectroscopic analysis showed a good correlation with the structural X-ray analysis
results of the analyzed complexes (vide supra).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 26 
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C26–H26B∙∙∙Cl1 0.97 2.801(4) 3.523(5) 131.09 
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C29 i–H29B i∙∙∙Cl1 0.98 3.004(5) 3.696(5) 128.49 

C30 vi–H30B vi∙∙∙Cl1 0.98 3.058(2) 3.745(2) 128.29 
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Figure 6. The geometry of noncovalent interactions in complex 2: (a) O/C–H···O formed between
adjacent polymeric chains, (b) N–H···O, (c) C–H···Cl and (d) C–H···O/π formed between Et3NH cations
and polymeric chains (translucent molecules belong to adjacent chains) (Bi—orange, O—red, N—blue,
Cl—green, C—black, H—white).
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Table 4. The geometry of noncovalent interactions in complex 2.

Hydrogen Bonds

Donor–H···Acceptor D–H (Å) H···A (Å) D···A (Å) D–H···A (◦)

Interchain

O4–H4A···O6 ii 0.84 1.727(1) 2.533(1) 160.08
C5–H5···O2 iii 0.95 2.846(6) 3.281(6) 109.03
C6–H6···O3 iii 0.95 2.654(3) 3.460(3) 143.04
C6–H6···O5 0.95 2.408(1) 3.025(1) 122.36

C14–H14···O1 iv 0.95 2.585(2) 3.399(2) 143.88
C15–H15···O4 v 0.95 2.545(2) 3.323(1) 139.22
C16–H16···O6 i 0.95 2.689(1) 3.598(1) 160.22
C16–H16···O7 i 0.95 2.661(2) 3.280(2) 123.17

Between Et3NH and
polymeric chain

N2 ii–H2 ii
···O2 1.00 1.742(1) 2.740(2) 174.95

N3–H3···O8 1.00 1.752(2) 2.701(3) 156.94
C26–H26B···Cl1 0.97 2.801(4) 3.523(5) 131.09

C27 i–H27B i
···Cl1 0.99 2.778(3) 3.507(3) 130.83

C29 i–H29B i
···Cl1 0.98 3.004(5) 3.696(5) 128.49

C30 vi–H30B vi
···Cl1 0.98 3.058(2) 3.745(2) 128.29

C20 ii–H20A ii
···Cl2 0.98 1.992(1) 2.458(3) 106.68

C21–H21A···Cl2 0.99 2.925(1) 3.615(2) 127.11
C22–H22A···Cl2 0.99 2.986(2) 3.609(4) 121.93
C23–H23A···Cl2 0.99 3.052(1) 4.012(2) 163.96

C19 vii–H19A vii
···O7 0.99 2.554(4) 3.410(5) 144.9

C20 ii–H20C ii
···O2 0.98 2.986(5) 3.640(5) 125.41

C22 vii–H22B vii
···O6 0.98 2.766(3) 3.549(6) 137.45

C23 vii–H23A vii
···O7 0.99 2.624(4) 3.475(3) 144.18

C24 ii–H24C ii
···O2 0.98 2.840(3) 3.544(6) 129.43

C25–H25B···O6 0.99 2.922(1) 3.396(2) 110.41
C26 vi–H26C vi

···O3 0.98 2.642(4) 3.610(6) 170.72
C27 vi–H27A vi

···O3 0.99 2.606(3) 3.594(4) 175.75
C28–H28B···O8 0.98 2.999(3) 3.600(3) 120.91
C30–H30C···O8 0.99 2.919(6) 3.640(8) 130.61

C24–H24C···Cg ii 0.98 2.967(5) 3.627(5) 125.63

Symmetry codes: i x, 0.5 − y, −0.5 + z; ii x, 1.5 − y, −0.5 + z; iii x, 1.5 − y, 0.5 + z; iv x, 0.5 − y, 0.5 + z; v x, −1 + y,
z; vi

−x, 0.5 + y, 1.5 − z; vii 1 − x, 1 − y, 2 − z. Cg denotes the centre of gravity of the 6-membered pyridine ring.
Et3NH—triethylammonium cation.
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2.4. Thermal Analysis

To determine the thermal stability of the Bi(III) complexes, thermogravimetric analysis was carried
out. Coordination polymer 1 was stable at temperatures up to 35 ◦C, and the first decomposition step
was attributed to the loss of water molecules (1.59%, calcd: 1.64%) (Figure 8a). Next, at temperatures
up to 450 ◦C, we observed the gradual decomposition of the coordinating mono-deprotonated and
deprotonated pyridine-2,3-dicarboxylate anions (55.68%, calcd: 55.92%). At the end of this process,
Bi2O3 remained as a final residue (42.73%, calcd: 42.44%). Polymer 2 was stable up to approximately
140 ◦C and then decomposed in two main stages (Figure 8b). The first stage involved the thermal
dissociation of the two lattice triethylammonium cations (25.49%, calcd: 25.06%), which were bound
to the coordination polymer chain by hydrogen bonds. In the next stage, which took place in the
temperature range of 210–450 ◦C, the whole polymer was decomposed (observed: 46.29%, calcd:
46.37%). The product of the thermal decomposition of 2 was Bi2O3 (28.22%, calcd: 28.57%).
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Figure 8. The TG/DTG curves for (a) compound 1 and (b) compound 2.

2.5. Photoluminescence Properties

To establish the photoluminescence properties of the newly obtained Bi(III) coordination polymers
1 and 2, 3D and 2D room temperature solid-state excitation/emission spectra were recorded (Figure 9).
Pyridine-2,3-dicarboxylic acid exhibited blue light emission with a maximum at 459 nm after excitation
at 419 nm (Figure 9a). The emission of the ligand was attributed to the intraligand (IL) n→π*
transitions [63]. The excitation spectrum of 2,3pydcH2 contained an additional band without a distinct
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maximum below 400 nm, which was attributed to the higher energy π→π* transitions. Comparing
the 3D spectrum of compound 1 (Figure 9b) with the 2,3pydcH2 spectrum, the emission centers
were located at similar wavelengths. The emission maximum at 452 nm (λex = 413 nm) was only
slightly blue-shifted (7 nm) in the spectrum of complex 1 compared to the ligand. The emission band
was characterized by a similar ligand Stokes shift (39 nm), which pointed to the intraligand type of
electronic transitions in complex 1. The shoulder at ca. 470 nm indicated the presence of two types
of ligand in the structure (mono-deprotonated and fully deprotonated), which coordinated to Bi(III)
ions in different fashions. Thus, constructed in this way, the polymeric structure is characterized by
a different rigidity, which influences the energy of emission. Similarly, compound 2 exhibited blue
luminescence with a maximum at 463 and 471 nm after excitation at 362 nm (Figure 9c). Moreover,
a significant Stokes shifts (101 and 109 nm) of coordination polymer 2, accompanying by similar
excitation wavelength compared to the ligand, suggested that the emission of 2 can be attributed to a
ligand-to-metal charge transfer transition (LMCT), as well as to a change in the intraligand transitions
(IL) [27,32,64]. The photoluminescence quantum yield of complex 2 was 8.36%, which makes it a good
candidate for more specific studies of Bi-based fluorescent materials [62,65].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 14 of 26 
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Figure 9. The solid-state 3D (top) and 2D (bottom) photoluminescence spectra of: (a) 2,3pydcH2, (b)
compound 1 and (c) compound 2.

2.6. Solubility and Stability

Solubility and stability studies are important in the process of developing biologically active
compounds. The ligand 2,3pydcH2 is soluble in H2O, 1 M HCl, MeOH, EtOH, DMF and DMSO,
partly soluble in iPrOH and MeCN, and insoluble in Me2CO, THF and CH2Cl2. However, coordination
polymers 1 and 2 were soluble only in DMSO and 1 M HCl but insoluble in the other tested solvents.
An important advantage of the tested bismuth compounds was their solubility in DMSO without
subsequent precipitation after diluting it with water. It is an essential feature of compounds in further
biological studies conducted against Helicobacter pylori.

It is also important to examine the stability of analyzed compounds in the media used in the
anti-H. pylori experiments. All tested compounds (2,3pydcH2, complexes 1 and 2) were stable for 48 h
when dissolved in DMSO and then diluted with H2O (1:50 v/v). According to the time-dependent
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UV-Vis spectra (Figure 10 (top)), there were no obvious changes in the positions of the absorption
bands (±1 nm) and no significant decrease in absorbance. The absorption maxima were located at
236 and 274 nm for complex 1 and at 237 and 275 nm for complex 2 (Figure 10b,c (top)); the maxima
were located almost at the same positions as the maxima in the ligand spectrum (234 and 275 nm)
(Figure 10a (top)). Comparing the free ligand spectrum with the electronic spectra of complexes 1 and
2 showed the main bands corresponding to the ligand centered in the π→π* and n→π* transitions.
Therefore, it can be assumed that there were no structural changes of the compounds upon their
reaction with solvent (DMSO and H2O) molecules.
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 16 of 27 
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Additionally, it is important to examine the behavior of complexes 1 and 2 in acidic medium,
taking into consideration that the compounds would be exposed to stomach acid in vivo if used as
drugs [66]. After dissolving the compounds in 1 M HCl solution, the UV-vis spectra showed an
additional absorption band near 321 nm, which confirmed that the complexes released organic acids
and Bi3+ ions, which remained soluble in HCl solution as BiOCl [67]. A similar UV-Vis spectrum was
recorded for the model reaction of BiCl3 with H2O in a 1 M HCl solution (Figure S1).

2.7. Antibacterial Activity towards Helicobacter Pylori

Infection with H. pylori bacteria contributes to the development of three serious digestive diseases,
namely, gastric and duodenal ulcers, gastric cancer and MALT-type gastric lymphoma. The discovery
of this relationship has led to extensive research regarding the application of bismuth compounds
in the treatment of microbial infections [21,40]. The most important research studies include Bi(III)
complexes with non-steroidal anti-inflammatory drugs [68], indolocarboxylates [67], salicylates [69–71],
sulfonates [72–74], (thio)saccharinates [75], acetosulfame and cyclamic acid [76] and (benzo)hydroxamic
acids [77,78]. Most of the compounds from these groups are heteroleptic organometallic complexes,
including oxoclasters. A great advantage of the use of bismuth-based drugs is the lack of H. pylori
resistance towards these drugs [22,41,79–81]. These studies inspired us to examine the antimicrobial
properties of new polymeric Bi(III) complexes with low-molecular weight N-heteroaromatic carboxylic
acids against Helicobacter pylori.



Int. J. Mol. Sci. 2020, 21, 8696 15 of 26

An analysis of the obtained results (Figure 11) revealed that the ligand 2,3pydcH2 was inactive
against both H. pylori strains (26695 and N6), even at high concentrations (MIC > 100 µM). Both Bi(III)
complexes exhibited bacteriostatic effects towards H. pylori. The MIC values of 1 and 2 towards
reference strain 26695 reached values of 13.7 and 36.8 µM, respectively. The results indicated that the
compound 1 was about twice as potent against H. pylori than the commercially used Bi-based drug BSS
(MIC = 34.5 µM). Moreover, strain N6 was slightly more sensitive to compound 1 (MIC = 11.4 µM)
and compound 2 (MIC = 24.5 µM) than strain 26695. Generally, compound 1 was more than twice
as active against H. pylori as compound 2. It can be concluded that the presence of chloride and
triethylammonium ions in the structure of complex 2 pointed out the anionic form of Bi(III) complex,
which influenced its antibacterial activity. The anionic form of complex 2 is more difficult to penetrate
the negatively charged cell membrane of the H. pylori bacteria.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 16 of 26 
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(2,3pydcH)Cl2]}n (2), pyridine-2,3-dicarboxylic acid (2,3pydcH2) and bismuth subsalicylate (BSS)
against H. pylori strains 26695 and N6.

Comparing the antimicrobial activity of 1 and 2 with literature data for Bi(III)-carboxylate
complexes, it was concluded that the obtained compounds exhibited a slightly smaller bacteriostatic
effect towards H. pylori (Table 5). The reason for the lower activity could be explained by taking
into consideration the polymeric form of the complexes and the different coordination environments,
including not only oxygen but also nitrogen/chloride donor atoms and much more complicated forms
of coordination polyhedra.
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Table 5. Antibacterial activity of Bi(III) carboxylate complexes against Helicobacter pylori strain 26695.

Compound Representation of Bi(III)
Coordination Chromophore MIC µg mL−1

(µM) Ref.

Pyridinedicarboxylic acid

[Bi2(2,3pydc)2
(2,3pydcH)2(H2O)]n (1)
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3. Experimental

3.1. Materials and Physicochemical Measurements

Chemical reagents were purchased commercially and used as received without further
purification; Bi(NO3)3·5H2O (POCH S.A., Gliwice, Poland), BiCl3 (Sigma-Aldrich, Steinheim,
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Germany), pyridine-2,3-dicarboxylic acid (Sigma-Aldrich, Steinheim, Germany), triethylamine
(POCH S.A., Gliwice, Poland) and all organic solvents (Chempur, Piekary Śląskie, Poland).
Elemental analysis (CHNS) was performed on an Elementar Vario Micro Cube analyzer (Elementar,
Langenselbold, Germany). FT-IR spectra were recorded on a Nicolet 380 FT-IR type spectrophotometer
(Thermo Scientific, Waltham, MA, USA), in the spectral range 4000–500 cm−1, using the ATR-diffusive
reflection method. The thermal analysis (TG/DTG) was carried out using a TG/SDTA 851e Mettler-Toledo
thermobalance (Columbus, OH, USA). The experiments were performed in air atmosphere, at a heating
rate of 5 ◦C min−1, in the temperature range of 25–700 ◦C, using α-Al2O3 crucible.

3.2. Synthesis of [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n (1)

An aqueous solution (30 mL) of pyridine-2,3-dicarboxylic acid (0.75 mmol, 0.1253 g) was heated
to about 100 ◦C. Next solid bismuth(III) nitrate (0.25 mmol, 0.1213 g) was added to the boiling solution.
The resulting mixture was stirred and heated under a reflux for 8 h, after which it was filtered off.
The clear filtrate was left to crystallize slowly at room temperature. After a week, colourless crystals
were formed, collected by filtration and dried under vacuum (m = 0.0321 g (0.0292 mmol), yield: 23%,
based on Bi(III) salt) (Scheme 2). Elemental analysis calculated for C28H16N4O17Bi2 (Mr = 1098.41) (%):
C 30.62, H 1.47, N 5.10; found: C 30.43, H 1.40, N 5.17; FT-IR (cm−1): 3600–3200 (vb), 2887 (w), 1727
(m), 1657 (m), 1618 (m), 1604 (m), 1574 (s), 1537 (m), 1449 (w), 1372 (s), 1280 (m), 1254 (w), 1230 (m),
1149 (w), 1099 (s), 1071 (w), 1003 (w), 875 (w), 834 (m), 819 (m), 798 (w), 778 (w), 697 (s), 667 (m), 604
(m), 560 (m), 522 (m), 507 (w).
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Scheme 2. General reaction conditions employed in the synthesis of Bi(III) coordination polymers
(1 and 2).

3.3. Synthesis of {(Et3NH)2[Bi(2,3pydc)(2,3pydcH)Cl2]}n (2)

An acetonitrile solution (10 mL) of triethylamine (0.75 mmol, 0.0759 g) was added to 40 mL of
acetonitrile solution of pyridine-2,3-dicarboxylic acid (0.75 mmol, 0.1253 g). To the boiling solution
was added solid bismuth(III) chloride (0.25 mmol, 0.0788 g). The obtained mixture was heated
for next 6 h under a reflux. The resulting mixture was filtered off and left at room temperature
to evaporate slowly. After a week, colourless crystals were collected by filtration and dried under
vacuum (m = 0.04479 g (0.0549 mmol), yield: 22%, based on Bi(III) salt) (Scheme 2). Elemental analysis
calculated for C26H39N4O8Cl2Bi (Mr = 815.49) (%): C 38.29, H 4.82, N 6.87; found: C 38.14, H 4.65,
N 6.78; FT-IR (cm−1): 2984 (w), 2712 (w), 2511 (b), 17708 (m), 1651 (w), 1618 (s), 1573 (s), 1563 (s),
1479 (w), 1445 (w), 1441 (m), 1395 (m), 1381 (m), 1370 (s), 1350 (w), 1272 (s), 1221 (w), 1140 (m), 1094 (m),
1063 (w), 1015 (w), 873 (m), 834 (m), 800 (m), 782 (w), 749 (m), 694 (w), 660 (m), 611 (w), 557 (w), 540 (w),
517 (w).

3.4. Crystal Data Collection and Refinement

Diffraction data were collected on an IPDS 2T dual-beam diffractometer (STOE & Cie GmbH,
Darmstadt, Germany) at 120.0(2) K with Mo Kα radiation of the microfocus X-ray source (GeniX 3D
Mo High Flux, Xenocs, 50 kV, 1.0 mA, λ= 0.71069 Å). The crystal was thermostated in a nitrogen stream
at 120 K using the CryoStream-800 device (Oxford CryoSystem, Long Hanborough, UK) during the
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entire experiment. Data collection and data reduction were controlled by the X-Area 1.75 program
(STOE) [82]. Owing to the high absorption coefficients (11.345 and 5.742 mm−1), numerical absorption
corrections were applied based on measured crystal faces. The structures of 1 and 2 were solved with
the ShelXT [83] structure solution programs run under Olex2 [84] using Intrinsic Phasing and refined
with the ShelXL [85] refinement package. The WinGX [86] program was used to prepare the final
version of CIF files. Diamond [87] was used to prepare the figures. All C–H type hydrogen atoms were
attached at their geometrically expected positions and refined as riding on heavier atoms with the
usual constraints. Positions of the N–H and O–H hydrogen atoms were calculated geometrically and
taken into account with isotropic temperature factors and refined as constrained, using the AFIX 13
(for N–H), AFIX 6 and AFIX 147 (for O–H) instructions. Aromatic ring (N3, C15–C19) together with the
carboxylate group C(21)O(11)O(12)H(12a) in 1 was found disordered in two positions with probabilities
of 0.60(2) and 0.40(2). One atom Cl2 and five ethyl groups in 2 have been modelled as disordered:
Cl2 (s.o.f. 0.69(13)/0.31(13)); C19–C20 (s.o.f. 0.71(4)/0.29(4)); C21–C22 (s.o.f. 0.52(8)/0.48(8)); C23–C24
(s.o.f. 0.86(3)/0.14(3)); C25–C26 (s.o.f. 0.51(4)/0.49(4)); C29–C30 (s.o.f. 0.63(5)/0.37(5)). In compounds
1 and 2, residual electron density is somewhat high and localizes near the heavier Bi atom. In our
opinion it is an artefact (e.g., due to cut of Fourier series), since no atom can be present at that location.
A summary of crystallographic data is shown in Table 6. Crystallographic data for structure of 1 and
2 reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publications No. CCDC 1911680 and 1911679. Copies of the data can be obtained free
of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: (+44)-1223-336-033;
E-mail: deposit@ccdc.cam.ac.uk).

Table 6. Crystal data and structure refinement for 1 and 2.

Empirical Formula C28H16Bi2N4O17 C26H39BiCl2N4O8

CCDC number 1911680 1911679

Formula weight (g mol−1) 1098.41 815.49
Temperature (K) 120(2) 120(2)
Wavelength (Å) 0.71073 0.71073

Crystal system, space group Triclinic, P-1 Monoclinic, P21/c

Unit cell dimensions
a = 8.879(2) Å α = 71.29(3)◦

b = 12.643(3) Å β = 80.79(3)◦

c = 15.062(3) Å γ = 78.58(3)◦

a = 17.1322(10) Å α = 90◦

b = 12.7920(5) Å β = 94.461(4)◦

c = 14.6083(7) Å γ = 90◦

Volume (Å3) 1561.2(7) 3191.8(3)
Z 2 4

Calculated density (Mg m−3) 2.337 1.697
Absorption coefficient (mm−1) 11.345 5.742

F(000) 1028 1616
Crystal size (mm) 0.15 × 0.14 × 0.13 0.17 × 0.13 × 0.11

Theta range for data collection (◦) 2.55 to 29.278 3.219 to 29.509

Limiting indices
−12 ≤ h ≤ 12
−17 ≤ k ≤ 17
−20 ≤ l ≤ 20

−20 ≤ h ≤ 23
−16 ≤ k ≤ 17
−20 ≤ l ≤ 20

Reflections collected/unique 24,229/8402 [Rint = 0.0747] 19,630/8551 [Rint = 0.0520]
Completeness to theta (%) 99.9 98.8

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 8402/0/481 8551/2/377
Goodness-of-fit on F2 1.066 1.05

Final R indices [I > 2σ(I)] R1 = 0.0718, wR2 = 0.1867 R1 = 0.0631, wR2 = 0.1629
R indices (all data) R1 = 0.1077, wR2 = 0.2158 R1 = 0.0880, wR2 = 0.1827

Largest diff. peak and hole (e Å−3) 3.404 and −4.129 2.368 and −2.488



Int. J. Mol. Sci. 2020, 21, 8696 19 of 26

3.5. Topological Analysis

Topological analysis of the metal-organic network of coordination polymers obtained was
performed with the ToposPro program package [88] and the TTD collection of periodic network
topologies following the concept of the simplified underlying net. Such a net was generated by
contracting organic ligands to their centroids, maintaining their connectivity via coordination bonds
and including secondary bonds. The underlying networks obtained have been topologically analyzed
and classified [89,90].

3.6. DFT Calculations

Quantum-chemical calculations were performed in the framework of density-functional theory
(DFT). Hybrid three-parameter Becke Lee-Yang-Parr functional B3LYP [91] together with Ahlrichs’
triple-zeta split-valence basis set was augmented by Coulomb fitting (def2-TZVP) [92] using
resolution of the identity approximation [93]. The Stuttgart-Dresden effective core potential (ECP)
for 60 core electrons of Bi was used [94]. The ORCA ab initio, DFT and semiempirical SCF-MO
package [95] was used for all calculations. Truncated parts of [Bi2(2,3pydc)6 (2,3pydcH)2(H2O)]8−

(1) and [Bi(2,3pydc)2(2,3pydcH)Cl2]4− (2) were used as models for the DFT calculations. The model
of 1 appeared too large for calculations, so the ligands were truncated, keeping the positions of
N,O-donor atoms and some of non-coordinative organic fragments unchanged in comparison
to the initial structure. In the final case, the fragment of [Bi2(AcO)4(H2O)(CH2NCH2COO)
(CH3NC(CH3)COO)2(CH3NCHCOO)] for 1 was included in the calculations. The positions of
hydrogen atoms were optimized, while other atoms retained the same coordinates as determined from
single-crystal X-ray analysis (cif files). Molecular orbitals were localized for analysis using Foster-Boys
(spatial localization) algorithm [96]. Electron density distributions were visualized with the UCSF
Chimera package [97].

3.7. Solid-State Photoluminescence Measurements

The solid-state photoluminescence spectra were recorded at room temperature on a
spectrofluorophotometer RF-5301 equipped with a 150 W Xenon lamp and a solid sample holder
(Shimadzu, Kioto, Japan). The 3D emission spectra and 2D excitation and emission spectra were
collected with a 1.5 nm slit width for excitation and a 3 nm slit width for emission monochromators.
Photoluminescence data were processed using Panorama (LabCognition GMBH, Cologne, Germany)
software. Photoluminescence quantum yield was measured on a FLS980 spectrofluorimeter (Edinburgh
Instruments, Livingston, UK), equipped with an integrating sphere, using BaSO4 as a reference.

3.8. Solubility and Stability Studies

Solubility studies were performed using H2O, 1M HCl and commonly used organic solvents:
MeOH, EtOH, iPrOH, MeCN, DMF, DMSO, Me2CO, THF and CH2Cl2. UV-Vis stability measurements
were conducted on a V-630 Jasco UV-Vis spectrophotometer (Jasco Corporation, Tokyo, Japan) using
1 cm cuvettes. Analyzed compounds (ligand 2,3pydcH2, complexes 1 and 2) were dissolved in DMSO
and diluted with H2O or 1M HCl 1:50 (v/v) to give concentration of 10−4 M. All the time-dependent
(0 h, 24 h and 48 h) measurements were recorded at room temperature. The UV-Vis spectrum of
product of the reaction BiCl3 with H2O was measured in 1M HCl with an addition of 2% v/v DMSO at
a concentration of 10−4 M at room temperature.

3.9. Bacterial Strains and Culture Conditions

Two Helicobacter pylori strains, 26695 [98] and N6 [99], were used to determine the Minimum
Inhibitory Concentration (MIC) of the synthesized Bi-compounds by agar dilution. H. pylori 26695 and
N6 strains were cultured on Columbia Blood Agar Base plates (CBA, CM331, Oxoid, Basingstoke, UK)
supplemented with 10% (v/v) defibrinated horse blood. Liquid cultures were grown with shaking at
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140 rpm in BBL Brucella Broth (BBL, 211088, Beckton Dickinson, Franklin Lakes, NJ, USA) with 10%
foetal calf serum (Biowest S1810). Liquid and solid H. pylori cultures were supplemented with 0.2%
(v/v) mixture of antibiotics containing 0.3 mg L−1 polymyxin B, 12.5 mg L−1 vancomycin, 2.5 mg L−1

amphotericin B and 6.25 mg L−1 trimethoprim [100]. H. pylori were cultivated under microaerobic
conditions (5% O2, 10% CO2, 85% N2) at 37 ◦C.

3.10. Determination of The Minimum Inhibitory Concentration (MIC)

The MIC values of bismuth(III) complexes (1 and 2), ligand (pyridine-2,3-dicarboxylic acid) and
bismuth subsalicylate (BSS, Sigma-Aldrich, Steinheim, Germany) as a reference were determined by
the agar dilution technique. All compounds were dissolved in DMSO and mixed with CBA to give the
desired concentrations of the tested compounds. In the initial screening, concentrations ranging from 1
to 100 µg mL−1 at intervals of 20 µg mL−1 were used. In the final analyses, the bismuth compound
concentrations were used at intervals of 2.5 µg mL−1. H. pylori liquid cultures of OD600 ~0.5–1.5
(log-phase, OD600 = 1 corresponds to ~6.5 × 108 CFU mL−1) were diluted in BBL to ~105 CFU mL−1.
Aliquots (100 µL) of bacterial suspensions were then streaked onto previously prepared CBA plates
containing the different concentrations of tested compounds. CBA plates with DMSO at the same
concentration as in CBA plates with compounds, or without DMSO, were used as controls of H. pylori
growth under experimental conditions. The plates were incubated for 5 days, and then H. pylori growth
was assessed. The lowest concentration of a compound at which no H. pylori growth was observed
was considered as MIC.

4. Conclusions

In summary, we synthesized and fully physicochemically characterized two novel bismuth(III)
coordination polymers, with pyridine-2,3-dicarboxylic acid (2,3pydcH2) as the prolinker. The molecular
structures of the obtained coordination polymers [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n (1) and
{(Et3NH)2[Bi(2,3pydc)(2,3pydcH)Cl2]}n (2) indicated that the coordination environments of the metal
centers were different, mainly due to the influence of a free electron pair. The crystallographic studies
and quantum-chemical calculations pointed to a hemidirected geometry of bismuth centers in 1
and a holodirected geometry in 2. The various coordination modes of bridging carboxylate ligands
(µ4-κ2N,O:κO′:κO′′:κ2O′′,O′′′ and µ5-κ2N,O:κO:κO′:κO′′:κ2O′′,O′′′ in 1 and µ-κ2N,O:κ2O′′,O′′′ in 2)
were responsible for the formation of 1D chains with 4,5C10 and 2C1 topologies. Both coordination
polymers exhibited blue-light photoluminescence with emission maxima at 452 nm and 463/471
nm for 1 and 2, respectively. The photoluminescence quantum yield of compound 2 was 8.36%,
which makes it a good candidate for more specific studies of Bi-based fluorescent materials. Additionally,
the in vitro tests evaluating the bacteriostatic activity against Helicobacter pylori showed that Bi(III)
coordination polymers had good antibacterial properties. The MIC values of 1 and 2 towards
reference strain 26695 reached values of 13.7 and 36.8 µM, respectively. It can be concluded
that differences in the structures of coordination polymers ([Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n (1)
and {(Et3NH)2[Bi(2,3pydc)(2,3pydcH)Cl2]}n (2)) influences the antibacterial activity. Additionally,
the H. pylori strain N6 was slightly more sensitive to compound 1 (MIC = 11.4 µM) than strain 26,695.
Therefore, more detailed research in this field should be conducted.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/22/
8696/s1. Table S1. Selected bands of the most important bonds in the FT-IR spectra of pyridine-2,3-dicarboxylic
acid and Bi(III) polymers 1 and 2 (cm−1). Figure S1. The UV-Vis spectrum of the product of the reaction of BiCl3
with H2O in 1M HCl solution.
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