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Abstract: The bone marrow (BM) microenvironment plays a crucial role in the development and
progression of leukemia (AML). Intracellular reactive oxygen species (ROS) are involved in the
regulation of the biology of leukemia-initiating cells, where the antioxidant enzyme GPx-3 could
be involved as a determinant of cellular self-renewal. Little is known however about the role of
the microenvironment in the control of the oxidative metabolism of AML cells. In the present
study, a coculture model of BM mesenchymal stromal cells (MSCs) and AML cells (KG1a cell-line
and primary BM blasts) was used to explore this metabolic pathway. MSC-contact, rather than
culture with MSC-conditioned medium, decreases ROS levels and inhibits the Nrf-2 pathway through
overexpression of GPx3 in AML cells. The decrease of ROS levels also inactivates p38MAPK and reduces
the proliferation of AML cells. Conversely, contact with AML cells modifies MSCs in that they display
an increased oxidative stress and Nrf-2 activation, together with a concomitant lowered expression
of GPx-3. Altogether, these experiments suggest that a reciprocal control of oxidative metabolism is
initiated by direct cell–cell contact between MSCs and AML cells. GPx-3 expression appears to play a
crucial role in this cross-talk and could be involved in the regulation of leukemogenesis.
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1. Introduction

Acute myeloblastic leukemia (AML) is the first tumoral syndrome for which cancer stem
cells/leukemia initiating cells (LICs) have been described [1,2]. Leukemic cells establish interactions
with their surrounding bone marrow (BM) microenvironment and LICs are potentially located in
hematopoietic niches that protect them from conventional chemotherapy and trigger the frequently
observed relapses [3]. Thus, a better knowledge of the role of niche cells in the biology of leukemic
cells has clinical relevance.

Redox metabolism plays a critical role in normal and leukemic hematopoiesis. The microenvironment
of healthy hematopoietic stem cells (HSC) is a complex network with numerous interacting stromal cell
types, differentiated hematopoietic cells [4–8], soluble regulators [9,10], and nerve fiber connections [11,12]
that regulate cell fate. Several studies have highlighted the significant role of oxidative metabolism in
the self-renewal and differentiation of HSCs. Thus, the most primitive HSCs are reactive oxygen species
(ROS)low, associated with a lesser activation of the p38 mitogen-activated protein kinase (MAPK)
compared to their ROShigh more differentiated counterpart [13,14]. The nuclear factor-erythroid 2
p45-related factor 2 (Nrf2), a sensor of intracellular ROS levels, plays a pivotal role in the maintenance
of a normal cellular redox status [15,16]. The low ROS level observed in HSCs is essential for the
maintenance of their self-renewal and is controlled, among others, through members of the forkhead
box O (FoxO) family and the tumor-suppressor protein ataxia telangiectasia mutated (ATM) [17–19].
Activation of p38MAPK by ROS induces in HSCs a loss of self-renewal [13,20]. The higher ROS levels
observed in more differentiated hematopoietic cells are then involved in differentiation and maturation
processes in a homeostasis context [21,22]. The importance of oxidative metabolism has also been
demonstrated in leukemic hematopoiesis, where low levels of ROS characterize the compartment of
LICs [23,24]. Of note, ROS overproduction by NADPH oxidases (NOX) in AML cells promotes blast
proliferation [25]. Studying mouse primary leukemias induced by Hoxa9-Meis1, Sauvageau et al. have
reported a GPx-3/ROS/p38 MAPK axis which controls the aggressiveness of leukemia. In this model,
GPX3 overexpressing LICs display low ROS levels associated with an inactivation of p38 MAPK [23].
Moreover, the importance of GPX3 in AML biology is highlighted by the fact that the same authors
demonstrated that the highest levels of GPX3 in primary human AML cells are from patients with
adverse prognosis, classically associated with a high frequency of LICs [26].

More broadly, when considering energy metabolism in hematopoietic cells, HSCs exhibit lower
mitochondrial respiration and respiratory capacities than progenitors cells [27], which is essential
for their maintenance and long-term function [28–31]. In addition, Ito et al. showed that mitophagy
participates in their self-renewal by degrading defective mitochondria [32]. During cell differentiation,
the energy demand increases, making it necessary to accelerate the mitochondrial metabolism which
promotes entry into the cell cycle as well as differentiation [33], in particular via an increase in ROS
levels [34]. Conversely to normal hematopoiesis, leukemic cells present a differential sensitivity to
modulators of glycolysis, which is involved in the initiation and maintenance of leukemia [35], as well
as in drug resistance [36,37]. Moreover, AML cells (bulk) have a higher mitochondrial mass and an
increased oxygen consumption rate in comparison to normal hematopoietic progenitors. Interestingly,
mitochondrial and oxidative phosphorylation system (OXPHOS) activities have been reported as major
regulators of chemoresistance in leukemic cells [38]. Finally, a recent publication by the group of Tonks
established for the first time the relationship between ROS production and glycolysis to promote the
proliferation of leukemic cells via PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
enzyme) overexpression [39].

The aim of this study was to characterize the GPx3/ROS/p38MAPK axis and associated molecular
pathways in cell partners of the leukemic niche before chemotherapy. The spread of leukemic cells in
different sites of hematopoiesis leads them to interact with an initially nonleukemic hematopoietic
microenvironment, which will promote leukemic development within specific niches. Using a model
of leukemic niche established by coculturing primary BM mesenchymal stromal cells (MSCs) and AML
cells, we established that the BM-MSCs contact promotes in leukemic cells an overexpression of GPX3,
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a decrease in ROS levels, the cytoplasmic relocalization of Nrf2, and an inactivation of p38MAPK.
The concomitant inhibition of their proliferation was associated with a reduction of their energy/redox
metabolism. Interestingly, reverse effects were observed in BM-MSCs for which the contact with leukemic
cells promotes a decrease in GPX3 expression, higher ROS levels, and nuclear relocalization of Nrf2.

2. Results

2.1. Primary Bone Marrow MSCs Reduce the Proliferation of Leukemic Cells

The effects of MSCs on the growth of leukemic cells of the AML KG1a cell-line were studied
after 72h of culture in BM MSC-conditioned medium (MSC-CM) with or without contact with
MSCs (Figure 1A). MSC-CM did not modify the growth of leukemic cells which was conversely
was significantly decreased in the presence of MSCs in the culture system (Figure 1B; p < 0.0001).
This indicates that MSC contact is necessary to control leukemia proliferation [40]. An original flow
cytometry method was developed to precisely discriminate all the cell cycle phases and apoptosis of
leukemic cells [41]. MSC-CM did not induce modifications in the cell cycle distribution of leukemic
cells, while MSC-contact promoted their quiescence (G0 phase: 4.1 ± 0.7% vs. 1.0 ± 0.1%, p < 0.05) and
decreased mitoses (M phase: 1.0 ± 0.1% vs. 1.5 ± 0.1%, p < 0.01), comparatively to controls (Figure 1C).
Altogether, these results support an antiproliferative effect of MSCs on leukemic cells related to cell–cell
interactions, without involvement of secreted factors.
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Figure 1. Mesenchymal stromal cells (MSCs) decreased leukemic cell proliferation. Experiments were
performed with KG1a leukemic cells cultured alone (blue), with MSC-CM (green), or in coculture
with MSCs (red). (A) Experimental design of mono- and coculture of MSCs and leukemic KG1a cells.
Leukemic cells were cultured in medium alone, with MSC-CM or over MSCs; MSCs were cultured
alone or with KG1a leukemic cells. (B) Leukemic cell growth was evaluated after 72 h of mono-,
MSC-CM, or coculture (nonadherent cells represent cells that do not adhere to MSCs after 72 h of
coculture, n = 15). (C) Cell cycle was analyzed by a flow cytometry multilabeling protocol using
anti-Ki67-AF488, anti-phosphoS10-H3-AF488 and 7AAD (n = 5). Variations in MSC-CM and cocultured
vs. monocultured KG1a in cell cycle phases after 72h are shown on the left and a representative
experiment is presented on the right. * p < 0.05.
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It has been reported that MSCs modify the side population (SP) functionality of AML blasts [42].
As expected, leukemic cells cocultured with MSCs displayed a higher proportion of SP compared to
cells cultured alone or with MSC-CM (Figure 2).

Interestingly, when analyzing the energy metabolism by oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) quantification, we observed that contact with MSCs induced an
important decrease in the mitochondrial respiration and glycolysis of leukemic cells (Figure 3), without
any metabolic impact of MSC-CM. This global metabolic inhibition is in line with the antiproliferative
effect described above. In MSCs, leukemic cells induced a trend to a more glycolytic profile without
modification of OCR (Figure 3). Global strategy and representative curves are shown in Figure S1.
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Figure 2. Contact with MSCs increases SP proportion in leukemic cells. SP was assessed by Hoechst
efflux measurement in flow cytometry. Cytograms in (A) illustrate a representative acquisition of
Hoechst staining of KG1a leukemic cells after a 72 h culture alone (left panel), in MSC-CM (middle
panel), or with MSC-contact (right panel). Quantitative results are shown as SP percentages (B) absolute
numbers (C) in the three culture conditions (n = 4). * p < 0.05.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 19 
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Figure 3. MSCs decrease the energy metabolism of leukemic cells. Energy metabolism was assessed
through the evaluation of mitochondrial respiration (OCR) and glycolysis (ECAR) and with Seahorse
XFe96 (n = 7). (A) Analysis of energy metabolism in KG1a cells. (B) Analysis of energy metabolism in
MSCs. * p < 0.05.
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2.2. MSCs and Leukemic Cells Reciprocally Interact to Modify Their Oxidative Metabolism

It has been well established that the proliferation of leukemic cells is associated with modifications
of the redox metabolism [43]. Moreover, ROS regulate MSCs function and their ability to support
hematopoiesis [44,45]. We were consequently interested in investigating redox metabolism by analyzing
ROS levels and Nrf2 status in both mesenchymal and leukemic partners of the leukemic niche.

Contact with MSCs induced a decreased in ROS levels in leukemic cells (46.5 ± 8.9%, p < 0.001).
This effect was not observed in culture with MSC-CM, or in nonadherent KG1a cells in coculture
experiments, excluding a role of MSC-secreted factors in this antioxidant response (Figure 4A left).
Interestingly, higher ROS levels (3-fold increase) were seen in MSCs cocultured with leukemic cells
(Figure 4A right).

MAPK pathways are known to be activated by ROS, and more particularly p38MAPK,
the inactivation of which is associated with self-renewal of normal and leukemic HSCs [13,20,23].
Consequently, p38MAPK activation (T180/Y182) was studied in line with the ROS status of cells in the
MSC/leukemic cell coculture system. KG1a cells present a constitutive activation of p38MAPK that
was abolished by contact with MSCs but not MSC-CM (Figure 4B). This is consistent with the reduced
proliferation previously observed. Surprisingly, the oxidative stress promoted by leukemic cells in
MSCs was not associated with an increased phosphorylation of p38MAPK.

The transcription factor Nrf2 is a cytoplasmic redox sensor translocated in the nucleus when
intracellular ROS levels increase, thereby inducing the expression of genes involved in the control of
oxidant homeostasis [46]. The subcellular localization of Nrf2 and the transcriptional expression of its
target genes were analyzed. Nrf2 was preferentially located in the nucleus of leukemic cells (Figure 4C
left), in accordance with their proliferating profile and ROS levels reported above. As expected,
the antioxidant effect of MSCs on leukemic cells was concomitant with an inhibition of Nrf2-nuclear
translocation (Figure 4C left). This cytoplasmic location was associated with a global underexpression
of Nrf2 target genes (Figure 4D). Conversely to leukemic cells, MSCs spontaneously presented a
Nrf2 cytoplasmic localization (Figure 4C right). Contact with leukemic cells favored the nuclear
translocation of Nrf2 and the overexpression of numerous Nrf2-target genes (Figure 4D right), also in
accordance with the increased ROS levels previously described.

Moreover, the quantification of ROS levels in nine stromal cell-lines showed that the lowest ROS
levels were observed in MS5, AFT024 and 2018 (Figure S2), which are the three stromal cell-lines
supporting normal hematopoiesis [47]. Altogether, primary MSCs promoted the quiescence of leukemic
cells in which a decrease of ROS levels inactivates Nrf2 and p38MAPK pathways. Conversely, leukemic
cells modified MSCs oxidative metabolism through an increase in ROS levels, which activates the Nrf2
pathway, highlighting a potential mechanism of bone marrow niche remodeling by leukemic cells.
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Figure 4. Interaction between leukemic cells and MSCs induces opposite oxidative metabolism and
Nrf2 pathway modifications in both cell types. (A) Intracellular ROS level was analyzed by flow
cytometry after CM-H2DCFDA staining in leukemic cells cultured alone (blue), with MSC-CM (green),
or with MSCs (red) as well as in MSCs cultured alone (violet) or cocultured with KG1a cells (dark
violet) for 72h (n = 5–9). (B) The expression and activation of p38MAPK were analyzed by Western
blot in KG1a cultured alone, with MSC-CM or cocultured as well as in MSCs alone or cocultured with
leukemic cells (n = 3); alpha-tubulin was used as loading control. (C) Nrf2 subcellular localization was
analyzed by Western blot in the cytoplasmic and nuclear fractions of leukemic cells (left) or MSCs
(right). RAF and TOPO-1 were used as loading controls and purity indicators of the cytoplasmic and
nuclear fractions, respectively. (D) Nrf2 target genes expression was evaluated by transcriptomic
analysis and is presented as relative expression vs. KG1a cells or MSCs alone (n = 3). * p < 0.05.
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2.3. GPx3 Expression is Inversely Regulated in Leukemic Niche Partners

Oxidative metabolism results from a balance between ROS production and their degradation by
enzymatic processes. To dissect more thoroughly the molecular mechanisms implied in the regulation
of ROS among niche partners, the expression of major antioxidant genes (SOD1, SOD2, SOD3, CAT,
TXN, TXN2, GLRX, GLRX2, GLRX3, GLRX5, PRDX, PRDX2, PDRX3, PRDX4, PRDX5, PRDX6,
GPX1, GPX2, GPX3, GPX4, GPX5, GPX6, GPX7, and GSR) was evaluated in MSCs and leukemic
cells. Transcriptional expression was quantified by real-time PCR in the different cellular fractions
of the coculture system. Variations in gene expression were considered as biologically significant
whenever at least a 2-fold change was observed. In accordance with the lack of variation in ROS
levels, the expression of antioxidant genes in leukemic cells was not impacted by culture in MSC-CM
(Figure 5A left). Conversely, contact with MSCs induced a trend to underexpression of all analyzed
antioxidant genes, except GPX3, the expression of which was 3.4-fold increased (Figure 5A left).
This overexpression was confirmed at the protein level by Western blot analysis (Figure 5A right).
Conversely, Gpx-3 expression was significantly decreased in MSCs at both transcriptional and protein
levels, upon stimulation by contact with leukemic cells (Figure 5B). In these cells, we observed a
concomitant SOD2 overexpression, which can be explained by the Nrf2 activation previously observed
(Figure 4D), the sequence of SOD2 containing the NFE2L2 response element.

GPX3 is known as a determinant of leukemic hematopoiesis [23] and its niche-induced
overexpression in leukemic cells fits well with modifications in redox metabolism. Interestingly,
among the nine stromal cell-lines studied, the highest level of GPX3 was found in MS-5 (Figure S1),
the mesenchymal cell-line able to efficiently support hematopoiesis, pointing out GPx3 as an important
regulator of oxidative metabolism in MSCs.

2.4. MSCs Modify ROS Levels, p38MAPK Activation, and GPX3 Expression in Primary AML Cells

The effects of MSCs on the GPX3/ROS/p38 MAPK axis in primary BM AML blasts were analyzed
to confirm the results obtained with KG1a cells.

ROS levels analysis demonstrated a significant ROS reduction in blast cells in contact with
MSCs compared to controls, in 17/20 AML patients tested, with a mean inhibition of 27.2 ± 5.4%
(p < 0.005) Culture in MSC-CM had no significant effect on the ROS levels of primary leukemic cells
(Figure 6A) nor of nonadherent primary blasts in coculture experiments. Flow cytometry analysis of
p38 MAPK activation (T180/Y182 phosphorylation) showed that MSCs contact induced a decreased
phosphorylation (mean fluorescence intensity (MFI): 4.2 ± 1.5 AU vs. 7.85 ± 1.87 AU in controls,
p < 0.0005) while no effect was observed with MSC-CM (7.96 ± 1.57 AU) (Figure 6B) or in nonadherent
primary blasts in coculture experiments. Transcriptional expression of GPX3 was quantified in blast
cells. While MSC-CM did not affect GPX3 level, contact with MSCs induced a significant 3.25 ± 0.94
mean fold increase (p < 0.05) of GPX3 level in primary leukemic cells (Figure 6C).
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Figure 5. Leukemic cells and MSCs reciprocally modify their gene expression profile of antioxidant
enzymes. (A) Gene expression of the major antioxidant enzymes was analyzed by real-time PCR in KG1a
cells and is presented, from the highest to the lowest expressed genes in KG1a cells, as the percentage of
increased or decreased relative expression (RQ = 2−∆∆Ct) in KG1a cells cultured in MSC-CM (green dots)
or cocultured with MSCs (red dots) vs. KG1a cells alone (blue line) (left). Increased GPX3 expression
was studied at the protein level by Western blot analysis (right), alpha-tubulin being used as loading
control. (B) Gene expression of major antioxidant enzymes was analyzed by real-time PCR in MSCs
and is presented, from the highest to the lowest expressed gene in MSCs alone, as the percentage of
increased or decreased relative expression (RQ = 2−∆∆Ct) in cocultured MSCs (violet dots) vs. MSCs
alone (violet line) (left). Decreased GPX3 expression was confirmed at the protein level by Western blot
analysis (right), alpha-tubulin being used as loading control. * p < 0.05.
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Figure 6. MSCs interact with primary AML cells to modify their ROS levels, p38MAPK activation,
and GPX3 expression. Analysis was performed in primary AML cells cultured alone (blue), with
MSC-CM (green) or with MSCs (red). (A) ROS levels were analyzed in primary AML cells by flow
cytometry after CM-H2DCFDA labelling (n = 13 with MSC-CM; n = 26 with MSC-contact). Primary
BM-blasts from 20 AML patients were studied by coculture experiments on normal BM-MSCs from
five donors (26 coculture experiments were performed due to various combinations). Seventeen AML
patients (among these 20 patients) presented a decrease in ROS levels upon contact with MSCs. Blasts
were used no more than three times. As expected, when AML patient blasts were studied on different
MSCs, the results were not different, ruling out any MSC batch effect. Whenever possible (sufficient
number of blasts), the effect of CM-MSCs was evaluated (n = 13), and in all cases, CM-MSCs did not
induce a decrease in ROS levels in AML blasts. All statistics were performed comparing different
groups using the Kruskal–Wallis test comparing coculture condition (n = 26), CM-MSCs condition
(n = 13) and control condition (blasts alone). (B) p38MAPK expression and activation were studied
by flow cytometry after labelling with anti-p38 or anti-phospho (T180/Y182)-p38, respectively (n = 7);
(C) GPX3 expression was studied by real-time PCR. Results are presented as percentage of increased or
decreased relative GPX3 quantity (RQ = 2−∆∆Ct) in MSC-CM or MSCs cocultured AML cells vs. AML
cells cultured alone (n = 6). * p < 0.05.

3. Discussion

BM mesenchymal stromal cells (MSCs) have been reported to regulate the level of ROS in normal
HSCs [40], but their impact on redox metabolism in leukemia is poorly understood.

Oxidative metabolism is a key element in both normal and leukemic hematopoiesis. In the last
decade, several studies have highlighted the essential role of oxidative metabolism not only in the
tight regulation of normal HSCs [13,17,20] but also in LSC biology [23,24,48]. Thus, low ROS contents
have been associated with stemness and quiescence [13,17,20,23] while intermediate ROS levels were
found in more differentiated populations and associated to proliferation and differentiation [49].
The importance of the microenvironment has also been emphasized, not only in the maintenance of
normal hematopoiesis homeostasis [10,50,51] but also in leukemic development [52]. In this study,
we used a coculture system composed of primary MSCs from healthy donors and AML cells (cell-lines
or primary blasts) to model the leukemic niche and dissect molecular pathways reciprocally induced
in the field of redox metabolism.

In this coculture model, a decrease in leukemic cell growth was demonstrated to be associated to
a reduced cell cycle when blasts were in contact with MSCs but not with MSC-CM, supporting an
antiproliferative effect of MSCs on leukemic cells related to cell–cell interactions, without involvement
of secreted factors. This inhibition has already been observed in different leukemias [53,54]. In addition,
an increased proportion of leukemic cells expressing an SP phenotype was observed when in contact
with MSCs. These results are in agreement with those by Boutin et al. who reported SP phenotype
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induction and ABC transporter activation in AML blasts in contact with MSCs, thereby conferring
chemoresistance [42]. We also observed an inhibition of mitochondrial respiration and glycolysis in
leukemic cells in contact with MSCs, indicating a global energy metabolism reduction, consistent with
the reduced proliferation observed. Thus, the microenvironment induces a protective effect that favors
quiescence, low energy metabolism, and overall less active leukemic cells.

Analysis of the redox status showed that contact with MSCs induces a drop of ROS levels in
the KG1a cell-line and in primary AML cells, associated with a decreased activation of p38MAPK,
in line with previous data describing ROS as inducers of the MAPK pathways [20]. As expected in
this lower ROS context, leukemic cells in contact with MSCs mostly localize Nrf-2 in the cytoplasm,
thereby in its nonactive form. Consequently, Nrf-2 target genes were found underexpressed compared
to controls. The expression profile of the principal antioxidant genes was globally decreased, except
for an overexpression of GPX3 that we already described as important in murine LIC biology [23].
The transcriptional increase of GPX3 in KG1a cells and primary AML blasts was confirmed at the protein
level in KG1a cells. The group of Mendez-Ferrer et al. recently published a relationship between the
chemoresistance of leukemic cells to AraC and MSC-induced modifications of energy/redox metabolism.
Interestingly, GPX3 was overexpressed in treated leukemic cells cocultured with MSCs [55]. Altogether
these data reinforce the identification of a key role of the BM microenvironment in the control of the
GPx3-ROS-p38MAPK axis in leukemia and of the oxidative metabolism of leukemic blasts. Upstream
determinants/inducers involved in this axis need to be elucidated.

We simultaneously analyzed the effect of the contact of leukemic cells on MSCs. In MSCs, leukemic
cells induced a trend to a more glycolytic profile without modification of OCR, in accordance with the
glycolytic switch described in the tumor microenvironment [56]. Interestingly, leukemic cells induced
a rise of ROS in MSCs. This modification in the redox status of MSCs may impact their functionality,
since a defective support of normal hematopoiesis by MSCs stimulated by leukemic cells has been
reported [57]. Our group recently highlighted a specific profile of connexins, which are components
of gap junctions, in leukemic MSCs [58]. The reversed ROS kinetics, namely drop in leukemic cells
and rise in MSCs, may be partly explained by a previously described mechanism of ROS transfer
between hematopoietic cells and MSCs by Connexin-43 [59]. The specific role of connexins, particularly
connexin-43, should be further explored. Surprisingly, the oxidative stress promoted by leukemic
cells in MSCs was not associated with an increased phosphorylation of p38MAPK. Independent
regulation of p38MAPK activation has nonetheless already been described in the context of oxidative
stress, potentially explained by early ROS-induced phosphatase activation [60]. Nrf-2, in MSCs,
is predominantly located in the cytoplasm and contact with leukemic cells modifies its subcellular
localization, inducing a strong nuclear translocation. Surprisingly, analysis of the expression of
Nrf-2 target genes revealed a balanced profile, with overexpression of half of the target genes tested
and underexpression of NQO1, TXNRD1, and CAT. The molecular profile of antioxidant enzymes
showed that leukemic cells increased the expression of SOD2 while inhibiting the expression of GPX3.
Altogether, these data underline the impact of leukemic cells on MSC oxidative metabolism, suggest a
pivotal role for Gpx-3 in this process and reinforce previous work reporting remodeling of the bone
marrow microenvironment by leukemic cells [61] (Figure 7).

In conclusion, the BM microenvironment plays a pivotal role in leukemia occurrence and
chemoresistance. The development of new therapeutic strategies requires a better understanding of the
reciprocal interplay evidenced here and of the pathways activated downstream. This study identifies
that BM MSC-contact modulates the oxidative metabolism in leukemic cells, involving the regulation
of Nrf-2 pathway, overexpression of GPx3, and inhibition of p38MAPK. Reciprocally, leukemic cells
modify their microenvironment by inducing oxidative stress and consecutive activation of the Nrf-2
pathway in MSCs. The GPx-3-induced ROS decrease in leukemic cells, already reported in LICs [23],
concomitantly associated with the antiproliferative effect of MSC contact, reinforces the therapeutic
interest of targeting leukemic niche interactions to limit the niche-induced chemoresistance in AML.
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4. Materials and Methods

4.1. Cells

The human acute myeloid leukemia cell-line KG1a (FAB M0/M1, CD34+) was purchased from
the European Collection of Authenticated Cell Cultures (ECACC, Wiltshire, UK) and cultured in
Minimum Essential Medium Alpha (αMEM, Gibco BRL, ThermoFisher Scientific, Waltham, MA, USA)
supplemented with 10% heat-inactivated fetal bovine serum (FBS, HyClone), 2 mM L-glutamine
(Gibco BRL), 100 IU/mL penicillin, and 100 µg/mL streptomycin (Gibco BRL). Cells were maintained at
37 ◦C and 5% CO2 in a humidified atmosphere.

Primary human leukemic cells from AML patients at diagnosis were collected after informed
consent for cell banking and following a procedure approved by the ethical committee of Tours
University Hospital (CPP Tours identifier ID-RCB: 2011-A00262-39/approval date: 7 July 2011).
Mononuclear cells were isolated following Ficoll density gradient centrifugation (20 min, 400× g),
frozen in Iscove medium supplemented with 10% FBS and 10% DMSO, and stored in liquid nitrogen
until use.

Human bone marrow (BM) MSCs were isolated from healthy volunteers after informed consent
and following a procedure approved by the ethical committee of Tours University Hospital (CPP Tours
identifier ID-RCB: 2016-A00571-50/approval date: 7 June 2016). Cells were amplified as described
previously [62]. Briefly, total bone marrow cells were seeded at 5 × 104 cells/cm2 in αMEM (Gibco BRL)
supplemented with 10% FBS (Hyclone, GE Healthcare, Chicago, IL, USA), 2 mM glutamine (Gibco BRL),
100 IU/mL penicillin, 100 µg/mL streptomycin, and 1 ng/mL FGF-2. Adherent cells were cultured until
90% confluence and frozen (P0) in SVF-10% DMSO. The adipogenic, chondrogenic, and osteogenic
differentiation capacities of BM-MSCs were verified (Figure S3) as described previously [62].

4.2. KG1a and Primary Blast Cell Cocultures

Primary P0 BM-MSCs isolated from healthy patients were thawed and cultured at P1 in αMEM (-)
supplemented with 10% FBS, 2 mM glutamine, 100 IU/mL penicillin, 100 µg/mL streptomycin, and
1 ng/mL FGF-2. Cells were trypsinized at 90% confluence, seeded at P2 at 5–8 × 104 cells/cm2, and
cultured for 4–6 days until near confluence.

For KG1a experiments, MSC culture medium (MSC-CM) without FGF-2 was renewed on the day
before the experiment. At T0 1.5 × 104 KG1a cells/cm2 were seeded in medium alone, in MSC-CM
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(24 h-supernatant of BM-MSCs) or on primary BM-MSCs. After 72 h, nonadherent cells were
harvested with phosphate buffered saline (PBS). Adherent cells were trypsinized with PBS/EDTA
1mM for protein expression study and with trypsine/EDTA for other studies. Cocultured cells were
sorted by fluorescence-activated cell sorting (FACS) for RNA analysis or by magnetic procedure for
protein analysis.

For experiments on primary blasts, the MSC culture medium was changed with X-Vivo10 (Lonza,
Basel, Switzerland) supplemented with 10% FBS on the day before the experiment. At T0, primary
blast cells were thawed gradually in HBSS-2mM EDTA-100U/mL DNase (Roche Diagnostic, Basel,
Switzerland), washed in HBSS-2 mM EDTA, and seeded in X-Vivo10 supplemented with 10% FBS,
10 ng/mL hIL-3 (ImmunoTools GmbH, Friesoythe, Germany), 10 ng/mL hFlt-3L (Immunotools),
10 ng/mL hTPO (Peprotech, Neuilly-Sur-Seine, France), and 20 ng/mL rhSCF (Immunotools) at
1.5 × 104 cells/cm2, alone, with MSC-CM or over MSCs. After 72 h of culture, cells were analyzed
directly by flow cytometry for phospho (T180/Y182)-p38, p38, and ROS expression or sorted by magnetic
procedure for GPX3 transcriptional analysis, as described thereafter. Flow cytometry strategies for
analyses of leukemic and BM-MSCs are presented in Figure S4.

4.3. Fluorescence Activated Cell Sorting

Cells were incubated for 20 min at room temperature (RT) with allophycocyanin (APC) conjugated
anti-CD45 IgG1 (J33) (Beckman Coulter, Brea, CA, USA), and fluorescein isothiocyanate (FITC)
conjugated anti-CD90 IgG1 (5E10) (BD Biosciences, Franklin Lakes, NJ, USA) or appropriate isotype
controls. Cells were washed with PBS and sorted by FACS MoFlo (Beckman Coulter) in culture medium
supplemented with 10% heat inactivated FBS. After one wash with PBS, cells were resuspended in
1 mL Trizol® (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA) and stored at −80 ◦C.

For the most accurate sorting we chose the “purified mode” and a droplet envelope of one drop.
The sorting speed was around 5000 cells/s.

4.4. Immuno-Magnetic Selection

Cells were labelled using the EasySepTM PE positive selection kit (Stem Cell Technologies,
Vancouver, Canada) according to the manufacturer’s instructions. Cells were incubated for 15 min at
RT with anti-human CD32 blocker and anti-CD45-PE (eBiosciences, ThermoFisher Scientific, Waltham,
MA, USA) or anti-CD90-RPE (Dakocytomation, Agilent Technologies, Santa Clara, CA, USA), then
15 min at RT with the EasySep PE selection cocktail, and finally for 10 min at RT with EasySep magnetic
nanoparticles. For KG1a cells, coculture fractions were separated with an EasySep magnet. An adapted
protocol was necessary for primary human leukemic cells. Labelled primary human leukemic cells
were washed with PBS-2% SVF-2mM EDTA and separated on LS and then MS columns (Miltenyi
Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s instructions. Cell purity of both
fractions was over 99.5%.

4.5. Flow Cytometric Analysis of Cell Cycle

Detailed cell cycle analysis of KG1a cells in each condition was performed by quantifying G0, G1,
S, G2, and M phases as previously reported [28]. For quantification, 106 cells were permeabilized with
1mL of ice cold ethanol (1 h, 4 ◦C), washed twice with PBS, 1% FBS, 0.25% Triton X-100 (PFT), and stained
in 200 µL of PBS-FBS-TritonX100 (PFT) for 30 min at RT in the dark with 1 µg of 7-aminoactinomycin D
(7-AAD, Sigma-Aldrich, St. Louis, MO, USA), 5 µL of Alexa Fluor®488-conjugated anti-human Ki67
mAb (B56) (BD Biosciences), and 2 µL of Alexa Fluor®488-conjugated anti-phospho(ser10)-histone H3
polyclonal antibody (Cell Signaling Technology, Danvers, MA, USA), respectively. After two washes
with PFT, cells were stained with 10 µL of APC-Cy7-conjugated anti-CD45 (BD Biosciences) for 15 min
at 4 ◦C. Cells were then washed twice with PBS and acquired on a FACS Canto II. Data analysis was
performed with FlowJo software (v10.5.3, FlowJo, Ashland, OR, USA).
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4.6. SP Detection

Hoechst staining was performed as previously described [29]. After a 72 h culture, cells were
counted and resuspended at 106 cells/mL in prewarmed (37 ◦C) Dulbecco’s modified Eagle’s medium
containing 2% FCS/10 mM HEPES/Hoechst 33,342 (final concentration: 5 mg/106 cells/mL) and
incubated at 37 ◦C for 90 min under delicate shaking. After incubation, cells were placed on ice and
stained with anti-CD45 antibody and a viability dye during 20 min on ice and at dark. Cells were then
washed and analyzed on a BD Fortessa apparatus with Diva software (BD Biosciences).

4.7. Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) Analysis

Leukemic cells were selected through a magnetic procedure. Cellular oxygen consumption
rate (OCR) and extracellular acidification rate (ECAR) data were obtained using a Seahorse XF96
Flux analyzer (Agilent Technologies) as previously reported [44]. Experiments were performed
according to the manufacturer’s instructions. The XF96 sensor cartridges were hydrated with 200 µL
of Calibrant (Seahorse Bioscience, Agilent Technologies, Santa Clara, CA, USA) at pH 7.4 and stored
overnight at 37 ◦C without CO2. Leukemic cells were seeded in poly-D-Lysine coated XF96 cell
culture plates at 100,000 cells per well in XF Base medium supplemented with glutamine (2 mM)
(pH 7.4). Cells were then incubated at 37 ◦C in a non-CO2 incubator for 1h and measurements were
performed in the Seahorse XF96 Flux analyzer. Sequential injection of glucose (10 mM), oligomycin
(1 µM), carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP; 3 µM), and rotenone/Antimycine
A (0.5 µM) was performed according to the supplier’s technical specifications and permitted the
determination of the principal metabolic parameters.

4.8. Analysis of Intracellular H2O2

ROS levels were quantified by staining cells with 2′,7′-dichlorodihydrofluorescein diacetate,
acetyl ester (H2DCFDA, Invitrogen). Cells were washed twice with X-Vivo10 and incubated with
APC-conjugated anti-human CD45 IgG1 (J33) (Beckman Coulter) or APCeFluor780 conjugated
anti-human CD45 (eBiosciences) and 9.6 µM H2DCF-DA at 37 ◦C for 10 min. Cells were washed in
cold PBS and immediately analyzed with a FACS Canto II instrument (BD Biosciences). Data analysis
was performed with FlowJo software (v10.5.3).

4.9. Expression of Antioxidant Genes

Analyses were performed by real-time PCR on the LightCycler® 480 microwell plate-based cycler
platform (Roche Applied Science, Basel, Switzerland) using Universal ProbeLibrary assays designed
with the ProbeFinder software (Roche Applied Science), as previously described [63]. RNA from each
sample were reverse transcribed using the SuperScript®VILOTM cDNA Synthesis kit (Invitrogen)
according to the manufacturer’s instructions. Primers were purchased from Invitrogen and Universal
ProbeLibrary probes from Roche Applied Science (nucleotide sequences of the primers and probes on
request). Real-time PCR reactions were carried out in a total volume of 10 µL using LightCycler® 480
Probes Master (Roche Applied Science) with a program of 10 min at 95 ◦C followed by 45 cycles of
10 s at 95 ◦C, 30 s at 60 ◦C, and a final cooling step of 10 s at 40 ◦C. All reactions were run in triplicate,
and average values were used for quantification. Antioxidant gene expression was determined
comparatively to the reference gene GAPDH. The relative antioxidant gene expression was analyzed
using the 2−∆∆Ct method [64].

4.10. Protein Assays

Cells were lysed with CytobusterTM Protein Extraction Reagent (EMD Biosciences, Gibbstown,
NJ, USA) supplemented with 0.7% protease inhibitor cocktail, 0.3% phosphatase inhibitor cocktail 1,
0.3% phosphatase inhibitor cocktail 2 (Sigma-Aldrich). To block GPx-3 protein secretion, 10 µg/mL
Brefeldin A (Sigma-Aldrich) was added for the last 5 h of coculture.
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For subcellular protein fractionation, cells were washed in PBS, resuspended in lysis buffer A
containing KCl 10 mM, EDTA 1 mM, Hepes 20 mM, Glycerol 10%, NP40 0.2%, PMSF 10 µM, DTT
1 mM, protease inhibitor cocktail (Sigma-Aldrich), 0.3% phosphatase inhibitor cocktail (Sigma Aldrich),
and incubated 5 min on ice. The lysed suspension was centrifuged 2 min at 12,000 g and cytoplasmic
proteins included in supernatants were collected and kept at−80 ◦C until use. Pellets were resuspended
in lysis buffer B containing NaCl 0.4 M, Glycerol 20%, Hepes 20 mM, KCl 10 mM, EDTA 1 mM, %,
PMSF 10 µM, DTT 1 mM, protease inhibitor cocktail, 0.3% phosphatase inhibitor cocktail, incubated
30 min at +4 ◦C, and centrifuged 5 min at 20,000× g. Supernatants containing nuclear proteins were
saved and kept at −80 ◦C until use.

Protein quantification was performed by a BCA protein assay (Sigma-Aldrich).
Aliquots of protein extracts (20 µg) were loaded onto 10% Next Gel (Amresco®, Interchim,

Montluçon, France) and transferred to PVDF membranes. GPx-3 polyclonal antibody (1/200; Novus
Biologicals, Centennial, CO, USA), p38 MAPK, and phospho-p38 MAPK (T180/Y182) monoclonal
antibodies (1/1000; Cell Signaling), Nrf2 antibody (R&D systems, Minneapolis, MN, USA) or
alpha-tubulin monoclonal antibody (1/1000; Cell Signaling) were blotted overnight at +4 ◦C. Secondary
antibodies conjugated with HRP were incubated for 45 min at RT. The blots were revealed with
Immun-StarTM HRP Chemiluminescent Kit (BioRad, Hercules, CA, USA).

4.11. p38/Phospho (T180/Y182)-p38 Analysis by Flow Cytometry

Cells were fixed for 30 min at RT in 3.7% formaldehyde (Sigma Aldrich)-0.03% saponin (Sigma
Aldrich), washed twice in PBS-10% FBS-0.03% saponin, and incubated for 1 h with anti-p38 (1/200;
Cell signaling) or anti-phospho (T180/Y182)-p38 (1/200; Cell Signaling), washed in PBS-10% FBS-0.03%
saponin, and then incubated for 30 min with goat anti-rabbit IgG Alexa Fluor 488 (Molecular Probes,
ThermoFisher Scientific, Waltham, MA, USA) at 1/1000. Cells were washed with PBS before flow
cytometry. Sample acquisition was performed with a FACS Canto II instrument. Data analysis was
performed with FlowJo software (v10.5.3).

4.12. Statistics

All data are presented as mean ± standard deviation of 3 to 25 independent experiments.
Nonparametric tests (Mann–Whitney or Kruskall–Wallis tests followed by Dunn post-hoc test) were
used for statistical analyses. Statistical significance of real-time PCR data was analyzed with the
Friedmann test followed by a Nemenyi post hoc test. Statistical analysis was performed on R (v3.3.1,
www.r-project.org).

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/22/
8584/s1; Figure S1. Seahorse assay; Figure S2. ROS levels in stromal cell-lines; ROS levels were analyzed by flow
cytometry after CM-H2DCFDA staining of MS5, AFT024, 2018, SR4987, BMC10, CCL226, BMC9, BFC012, and
TrHBMEC cell-lines; Figure S3. Adipogenic, chondrogenic, and osteogenic differentiation capacities of BM-MSCs;
Figure S4. Flow cytometry strategies for analyses of leukemic and BM-MSCs.
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Abbreviations

7-AAD 7-Aminoactinomycin D
AML Acute myeloid leukemia
ATM Ataxia telangiectasia mutated
BCA Bicinchoninic acid
BM Bone marrow
CAT Catalase
CD Cluster of differentiation
CFSE Carboxyfluorescein succinimidyl ester
CM-H2DCFDA 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester
DMSO Dimethylsulfoxyde
DTT Dithiothreitol
ECAR Extracellular acidification rate
EDTA Ethylenediaminetetraacetic acid
FACS Fluorescence activated cell sorting
FBS Fetal bovine serum
FCCP Carbonilcyanide p-triflouromethoxyphenylhydrazone
FGF-2 Fibroblast growth factor-2
GAPDH Glyceraldehyde 3 phosphate dehydrogenase
GLRX Glutaredoxin
GPX Glutathione peroxidase
GSR Glutathione reductase
HBSS Hank’s balanced salt solution
HSC Hematopoietic stem cell
IL Interleukin
LIC Leukemia initiating cell
MAPK Mitogen activated protein kinase
MEM Minimum essential medium
MFI Mean fluorescence intensity
MSC Mesenchymal stromal cell
MSC-CM Mesenchymal stem cell-conditioned medium
NOX NADPH oxidase
Nrf2 Nf-E2 related factor 2
OCR Oxygen consumption rate
PCR Polymerase chain reaction
PFT PBS-FBS-TritonX100
PMSF Phenylmethylsulfonyl fluoride
PRDX Peroxiredoxin
RAF Rapidly accelerated fibrosarcoma
ROS Reactive oxygen species
RQ Relative quantification
RT Room temperature
SCF Stem cell factor
SOD Superoxide dismutase
SP Side population
TOPO-1 Topoisomerase-1
TPO Thrombopoietin
TXN Thioredoxin
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