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Abstract: Maintenance of long-term synaptic plasticity requires gene expression mediated by 
cAMP-responsive element binding protein (CREB). Gene expression driven by CREB can 
commence only if the inhibition by a transcriptional repressor activating transcription factor 4 
(ATF4; also known as CREB2) is relieved. Previous research showed that the removal of ATF4 
occurs through ubiquitin-proteasome-mediated proteolysis. Using chemically induced 
hippocampal long-term potentiation (cLTP) as a model system, we investigate the mechanisms that 
control ATF4 degradation. We observed that ATF4 phosphorylated at serine-219 increases upon 
induction of cLTP and decreases about 30 min thereafter. Proteasome inhibitor β-lactone prevents 
the decrease in ATF4. We found that the phosphorylation of ATF4 is mediated by 
cAMP-dependent protein kinase. Our initial experiments towards the identification of the ligase 
that mediates ubiquitination of ATF4 revealed a possible role for β-transducin repeat containing 
protein (β-TrCP). Regulation of ATF4 degradation is likely to be a mechanism for determining the 
threshold for gene expression underlying maintenance of long-term synaptic plasticity and by 
extension, long-term memory. 

Keywords: long-term potentiation; ubiquitin; proteasome; gene expression 
 

1. Introduction 

The ability of the nervous system to change the synaptic strength is called synaptic plasticity 
which allows it to store information for varying durations of time. Short-term synaptic plasticity, 
which underlies short-term memory, depends on the posttranslational modification of existing 
proteins in neurons [1]. Long-term synaptic plasticity, which forms the basis of long-term memory, 
relies upon the translation of pre-existing mRNAs at synaptic sites, such as dendrites, the 
transcription of new genes in the nucleus and the translation of newly transcribed mRNAs in the 
cytoplasm of neurons [2,3]. Although several transcription factors play a role in the gene expression 
necessary for maintaining long-term synaptic plasticity [4], a transcription factor called 
cAMP-responsive element binding protein (CREB) has a key function in the hippocampus, a brain 
region critical for encoding new long-term memories [5,6]. Gene expression by CREB is activated 
through phosphorylation by cAMP-dependent protein kinase (PKA) and is negatively regulated by 
repressor proteins [7]. A protein with a vital function in inhibiting CREB-mediated gene expression 
is activating transcription factor 4 (ATF4; also known as CREB2) which despite its name is a 
repressor [8]. CREB can induce the transcription of genes critical for long-term synaptic plasticity, 
only if the repression by ATF4 is relieved [8,9]. 

How is ATF4-mediated repression of CREB removed? Previous research showed that ATF4 is 
degraded by the ubiquitin-proteasome pathway (UPP) during mammalian hippocampal late phase 
long-term potentiation [10], a widely used model system for studying long-term synaptic plasticity. 
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In the UPP, the substrate proteins are marked for degradation by covalent linkage to a small protein 
called ubiquitin to a lysine residue. To an internal lysine in the first ubiquitin another ubiquitin is 
attached and by successive additions of several ubiquitin molecules a polyubiquitin chain is formed. 
The polyubiquitinated substrate is then targeted to a proteolytic complex called the proteasome for 
degradation [11,12]. Beyond regulating the quantities of transcription repressors such as ATF4, the 
UPP has wide-ranging roles in long-term synaptic plasticity and memory [13]. 

In the present study, we investigated the mechanisms that regulate degradation of ATF4 using 
chemically induced long-term potentiation (cLTP) [14] in the hippocampus as a model system 
because it facilitates molecular studies by modifying the bulk of the synapses in hippocampal slices 
and it has been shown through rigorous electrophysiological studies that the cLTP protocol induces 
LTP that is comparable to electrically induced LTP [10]. Specifically, based on the hypothesis that 
phosphorylation of ATF4 at a specific serine residue (Ser-219; pSer219-ATF4) is critical for its 
degradation, we followed the fate of phospho-ATF4 using immunohistochemistry and confocal 
microscopy on slices fixed after cLTP under various conditions. We obtained evidence for 
proteolysis of pSer219-ATF4 by the proteasome and that PKA is responsible for its phosphorylation. 
In addition, we report our initial results toward identification of the ligase that attaches ubiquitin to 
ATF4 to target it for proteasome-mediated degradation. 

2. Results 

2.1. Degradation of Phosphorylated ATF4 and its Stabilization by a Proteasome Inhibitor during cLTP 

It has previously been shown that after chemically-induced LTP, the quantity of total ATF4 is 
diminished 30 min post-stimulation and the previous experimental evidence indicated that ATF4 is 
degraded by the UPP [10]. In addition, the available evidence in the literature suggests that 
ubiquitin-proteasome-mediated degradation of ATF4 is likely to be controlled by its 
phosphorylation on Ser-219 [15]. Therefore, we investigated the regulation of phosphorylated ATF4 
during cLTP around this time period. We collected slices that were subjected to cLTP-inducing 
treatments and time-matched controls every 5 min during the first 30 min time period and carried 
out immunohistochemical experiments using an antibody raised against ATF4 phosphorylated on 
Ser-219 (anti-pSer219-ATF4; Figure 1A). We then quantified phosphorylated ATF4 
immunofluorescence (Figure 1A,B) and found that ATF4 phosphorylation remains low during the 
early part of this period (0–10 min) in both control slices and the slices subjected to cLTP but 
increases 15 min after cLTP induction (cLTP: 173.9% ± 5.9%, control: 99.2% ± 7.6%; n = 6, p < 0.01, 
one-way ANOVA, and Tukey post hoc test), with a peak at 20 min (cLTP: 313.2% ± 10.8%, control: 
98.5% ± 3.9%; n = 6, p < 0.01, one-way ANOVA, and Tukey post hoc test). Phosphorylated ATF4 
levels begin to fall at 25 min and reach levels comparable to controls by 30 min (Figure 1B,C; cLTP: 
105.6% ± 10.0%, control: 99.3% ± 9.0%; n = 6, p = ns, one-way ANOVA, and Tukey post hoc test). 
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Figure 1. Phosphorylated activating transcription factor 4 (ATF4) is degraded during chemically 
induced long-term potentiation and the degradation can be blocked by a specific proteasome 
inhibitor β-lactone. (A) Schematic outline of the experiment: during the beginning of the second hour 
of the recovery period, the slices were treated with β-lactone for 30 min and the recovery was 
continued for an additional 30 min in artificial cerebrospinal fluid (ACSF). The beginning of 
chemically induced long-term potentiation (cLTP) induction is designated as 0 min. (B) 
Representative confocal microscopy images of phosphorylation of ATF4 at a specific serine residue 
(pSer219-ATF4) immunofluorescence and the nuclear counterstain TO-PRO-3. pSer219-ATF4 levels 
remain basal during the early timepoints after cLTP but peak at 20 min, eventually falling to levels 
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comparable to time-matched controls by the end of the 30 min time window. (C) Quantification of 
pSer219-ATF4 immunoreactivity every 5 min during the 30 min time course, showing a peak at the 
20 min time point. * p < 0.01 between cLTP and time-matched controls, n = 6, one-way ANOVA, and 
Tukey post hoc test. (D) Representative confocal microscopy images of pSer219-ATF4 
immunoreactivity at 25 min after cLTP induction with treatments as indicated. pSer219-ATF4 levels 
are slightly higher in cLTP slices relative to time-matched controls (Cnt) and markedly increased by 
the pretreatment with the proteasome inhibitor β-lactone. (E) Quantification of pSer219-ATF4 
immunoreactivity showing the significant increase caused by the inhibition of the proteasome 
during cLTP. * p < 0.01 between cLTP and time-matched controls, # p < 0.01 between treatment 
groups, n = 6, one-way ANOVA, and Tukey post hoc test. 

The attenuation of phosphorylated ATF4 during cLTP could be explained by its degradation by 
the UPP. To test this hypothesis, we incubated slices in β-lactone, a highly selective proteasome 
inhibitor [16]. We chose to examine the effect of proteasome inhibition at the 25 min mark as this is 
the timepoint between the peak and decline to normal levels of phosphorylated ATF4. As expected, 
phospho-ATF4 immunoreactivity was increased in the cLTP slices relative to the control slices. 
Furthermore, β-lactone treatment significantly increased phospho-ATF4 levels in cLTP slices (Figure 
1D and 1E; β-lactone+cLTP: 550.3% ± 20.0%, cLTP: 220.0% ± 15.5%, control: 98.9% ± 10.9%; n=6, p < 
0.01, one-way ANOVA, and Tukey post hoc test). These data indicate that the decline of 
phosphorylated ATF4 levels associated with LTP stimulation is likely to be because of 
proteasome-mediated degradation. 

2.2. ATF4 Phosphorylation is Mediated by PKA during cLTP 

Our data described above demonstrate that the proteasome-mediated degradation of ATF4 is 
at least partly dependent on the phosphorylation of Ser-219 (pSer219-ATF4). To further elucidate 
the mechanism of ATF4 degradation and the signaling cascade that regulates its phosphorylation, 
we performed a series of experiments by incubating the slices with different protein kinase 
inhibitors prior to cLTP induction (Figure 2A). We specifically investigated the role of three kinases 
that are known to play a role in long-term synaptic plasticity: cAMP-dependent protein kinase 
(PKA) [17], cGMP-dependent protein kinase (PKG) [18], and extracellular signal-regulated kinase 
(ERK) [19]. Prior incubation in KT5720 (PKA inhibitor) was found to significantly reduce ATF4 
phosphorylation 20 min after cLTP induction (KT5720+cLTP: 109.3% ± 18.3%, cLTP: 234.9% ± 16.7%, 
control: 100.3% ± 7.9%; n = 6 for all groups, p < 0.01 for KT5720+cLTP vs. cLTP and control vs. cLTP, 
p = ns for KT5720+cLTP vs. control, one-way ANOVA, and Tukey post hoc test). However, prior 
incubation in the ERK inhibitor U0126 (U0126+cLTP: 240.2% ± 12.4%, cLTP: 234.9% ± 16.7%, control: 
100.3% ± 7.9%; n = 6 for all groups, p < 0.01 for U0126+cLTP vs. control and control vs. cLTP, p = ns 
for U0126+cLTP vs. cLTP, one-way ANOVA, and Tukey post hoc test) or the PKG inhibitor KT5823 
(KT5823+cLTP: 251.2% ± 4.3%, cLTP: 234.9% ± 16.7%, control: 100.3% ± 7.9%; n = 6 for all groups, p < 
0.01 for KT5823+cLTP vs. control and control vs. cLTP, p = ns for KT5823+cLTP vs. cLTP, one-way 
ANOVA, and Tukey post hoc test) did not have a significant impact on phosphorylated ATF4 levels 
(Figure 2B,C). These data demonstrate that PKA is the likely kinase responsible for the 
phosphorylation of ATF4 during LTP.  
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Figure 2. ATF4 is phosphorylated by protein kinase A during chemically induced long-term 
potentiation. (A) Schematic outline of the experiment: during the second hour of the recovery period, 
the slices were incubated with a kinase inhibitor. The beginning of cLTP induction is designated as 0 
min. (B) Representative confocal microscopy images of pSer219-ATF4 and the nuclear counterstain 
TO-PRO-3 20 min after cLTP induction, time-matched controls, and slices pretreated with specific 
kinase inhibitors for either PKA (KT5720), or ERK (U0126), or PKG (KT5823) before cLTP induction. 
pS219-ATF4 levels are increased in cLTP slices relative to time-matched controls and this increase is 
significantly attenuated in slices pretreated with the PKA inhibitor KT5720 but not with the ERK 
inhibitor U0126 or the PKG inhibitor KT5823. (C) Quantification of pSer219-ATF4 immunoreactivity 
showing PKA inhibition prevents the phosphorylation of Ser219-ATF4 caused by cLTP at 20 min 
post-induction. * p < 0.01 between cLTP and time-matched controls, # p < 0.01 between treatment 
groups, n = 6, one-way ANOVA, and Tukey post hoc test. 

2.3. Blockade of ATF4 Degradation during cLTP by Inhibition of Neddylation Required for Activation of 
Skp1/Cul-1/F-box (SCF) Ubiquitin Ligases 

Collectively, the data described thus far indicate that the proteasome-mediated degradation of 
ATF4 is correlated with formation of long-term synaptic plasticity and is likely to be regulated by 
its PKA-mediated phosphorylation. Polyubiquitination of ATF4 is necessary for targeting it for 
degradation by the proteasome. The enzyme known to be responsible for polyubiquitination of 
ATF4 in non-neuronal cells is an E3 ligase called SCFβTrCP [15].The activation of SCF-type ligases is 
dependent on the neddylation of the cullin subunit. Thus, it is possible to determine whether 
SCFβTrCP is responsible for the polyubiquitination of ATF4 by inhibiting neddylation, thereby 
preventing the activation of the ligase itself. To test this hypothesis, we used a small molecule 
inhibitor, MLN4924, which was found to specially inhibit NEDD8-activating enzyme [20] and was 
shown to be an effective neddylation inhibitor in neurons [21,22]. We observed that incubation in 
MLN4924 prior to cLTP induction resulted in a significant increase in the amount of phospho-ATF4 
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(Figure 3A–C; MLN4924+cLTP: 350.7% ± 8.1%, cLTP: 225.3% ± 4.5%, control: 100.6% ± 6.2%; n = 6 for 
all groups, p < 0.01 for MLN4924+cLTP vs. cLTP and control vs. cLTP, p = ns for KT5720+cLTP vs. 
control, one-way ANOVA, and Tukey post hoc test). These results suggest that the degradation of 
ATF4 is likely dependent on its ubiquitination by activated SCFβTrCP E3 ligase. 

 
Figure 3. Inhibition of neddylation prevents degradation of phosphorylated ATF4 during chemically 
induced long-term potentiation. (A) Schematic outline of the experiment: during the second hour of 
recovery period, the slices were incubated with the neddylation inhibitor, MLN4924. The beginning 
of cLTP induction is designated as 0 min. (B) Confocal microscopy images of pSer219-ATF4 and the 
nuclear counterstain TO-PRO-3 25 min after cLTP induction, time-matched controls, and slices 
pretreated with the small molecule neddylation inhibitor MLN4924 before cLTP induction. 
pSer219-ATF4 levels are markedly increased relative to time-matched controls and the inhibition of 
neddylation significantly increases pS219-ATF4 levels after cLTP. (C) Quantification of 
pSer219-ATF4 immunoreactivity shows that the neddylation inhibitor MLN4924 causes 
accumulation of phosphorylated ATF4 after cLTP induction. * p < 0.01 between cLTP and 
time-matched controls, # p < 0.01 between treatment groups, n = 6, one-way ANOVA, and Tukey post 
hoc test. 

3. Discussion 

Our previous studies using immunoblots to measure the total ATF4 quantity showed that ATF4 
amounts begin to decrease around 15 min after the induction of cLTP and reach their lowest levels 
around 30 min. The timepoint at which maximum reduction in ATF4 amounts occurred also 
coincided with the increase in the mRNA of brain-derived neurotrophic factor (Bdnf), an 
immediate-early gene whose transcription is known to be driven by CREB [10]. Therefore, for the 
present investigation we carried out a systematic time course experiment and measured 
pSer219-ATF4 every 5 min from the beginning of cLTP induction. Our results revealed that 
phosphorylated ATF4 levels peak at 25 min post-cLTP induction and begin to return to levels 
comparable to controls at the 30 min timepoint. 

How does the decrease in pSer219-ATF4 come about? Based on our previous results and the 
report that ATF4 phosphorylated on serine-19 is a substrate for UPP-mediated degradation, we 
tested the effect of a highly specific proteasome inhibitor β-lactone [16]. Our results showed an 
increase in pSer219-ATF4 rendering support to the idea that phosphorylated ATF4 is degraded by 
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the proteasome. Although a theoretically possibility exists that a reduction pSer219-ATF4 comes 
about because of an increase in phosphatase activity relative to kinase activity, given the restoration 
of pSer219-ATF4 to maximum levels observed in our time-course studies, this possibility is not 
likely. 

What signaling mechanisms control the degradation of ATF4 during cLTP? To answer this 
question, we chose to test inhibitors of three protein kinases with known roles in long-term synaptic 
plasticity, namely, PKA, PKG, and ERK [17–19]. These experiments showed a role for PKA but not 
for PKG or ERK in ATF4 phosphorylation. Thus, it appears that PKA regulates both the CREB 
activation as well as removal by its repression by ATF4. 

To further elucidate the mechanism regulating the degradation of ATF4, we carried out the 
initial studies towards identifying the ligase responsible for ubiquitination of ATF4. Previous studies 
in non-neuronal cells showed that an SCF-type ubiquitin ligase containing a substrate-recognition 
subunit (F-Box) called β-transducin repeat containing protein (β-TrCP) is critical for ubiquitination 
of ATF4. These studies provided evidence that β-TrCP interacts with ATF4 phosphorylated on 
Ser-219 and that this particular serine reside occurs in a sequence motif DSGXXXS [15] and is 
important for the binding of β-TrCP to ATF4 [23]. The second serine residue (Ser-224) in the 
DSGXXXS motif also plays a role (albeit a minor one) in binding β-TrCP to ATF4 [23]. In the present 
studies, our focus has been on ATF4 phosphorylated on Ser-219. A key feature of SCF ligases is that 
they are enzymatically activated upon attachment of a small protein called NEDD-8 onto the cullin 
subunit. Neddylation of the cullin subunit is driven by the NEDD8-activating enzyme (NAE). 
Blockade of neddylation can be achieved by selectively inhibiting NAE with a small molecule 
inhibitor MLN4924 (also known as pevonedistat) [24]. We observed that the incubation of 
hippocampal slices with MLN4924 prior to the induction of cLTP significantly inhibited ATF4 
degradation during LTP. Thus, these data provide initial evidence that the SCF ubiquitin ligase that 
attaches polyubiquitin to ATF4 is likely to be SCFβTRCP. 

What is the significance of ATF4 degradation during long-term synaptic plasticity? Given that 
CREB-mediated gene expression is critical for long-term synaptic plasticity underlying long-term 
memory and that it can only go forward upon removal of ATF4-medidated inhibition, proteolytic 
removal of ATF4 must play a critical role. We think that ubiquitin-proteasome-mediated 
degradation of ATF4 is a mechanism that determines the threshold for gene expression essential for 
long-term synaptic plasticity that forms the basis of long-term memory. 

In conclusion, our data showed that ATF4 phosphorylated on Ser-219 is a substrate for 
ubiquitin-proteasome mediated proteolysis during long-term synaptic plasticity and that an 
SCF-type ligase containing a substrate-recognition element (F-box protein) called β-TrCP is likely 
responsible for ubiquitination of ATF4. Our investigation lays the groundwork for understanding 
the molecular mechanisms that determine the threshold for long-term synaptic plasticity and 
memory. Considering that the perturbations of the UPP are linked to memory impairment in 
neurodegenerative diseases such as Alzheimer’s [25–28], ATF4 degradation by the UPP might have 
implications for understanding abnormalities of synaptic plasticity as well. 

4. Materials and Methods 

4.1. Animals 

Experiments with mice (C57BL/6 male, 6–12 weeks old; Charles River, Wilmington, MA, USA) 
were carried out according to a protocol approved by the Institutional Animal Care and Use 
Committee of Georgia College & State University (Approved 11 April 2019). Animals were housed 
(5 animals maximum per cage) and food and water were available ad libitum. Animal husbandry 
was done according to the Guide for the Care and Use of Laboratory Animals (8th edition; National 
Academies Press, Washington, DC, USA). 
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4.2. cLTP and Treatment of Hippocampal Slices with Various Inhibitors  

Transverse hippocampal slices (400 μm) were made using a standard mechanical tissue 
chopper and allowed to recover in oxygenated (95% O2/5% CO2) artificial cerebrospinal fluid (ACSF) 
at 32 °C for 1 h. cLTP was induced using 200 nM N-methyl-D-aspartate (NMDA; Cayman Chemical, 
Ann Arbor, MI, USA) in 0 Mg2+ ACSF for 10 min followed by 0.1 μM rolipram + 50 μM forskolin 
(Cayman Chemical, Ann Arbor, MI, USA) in 0 Mg2+ ACSF for 15 min [29,30]. ACSF lacking Mg2+ was 
used as NMDA receptors are normally blocked by such ions.  

After 1 h of recovery, slices undergoing the cLTP induction protocol were incubated in ACSF 
with 25 μM β-lactone for 30 min or the following specific kinase inhibitors for 1 h; 20 μM U0126 
(Cayman Chemical, Ann Arbor, MI, USA), 5 μM KT5720 (Cayman Chemical, Ann Arbor, MI, USA), 
or 5 μM KT5823 (Cayman Chemical, Ann Arbor, MI, USA); or the neddylation inhibitor MLN4924 (2 
μM) (Cayman Chemical, Ann Arbor, MI, USA) followed by cLTP induction. Slices were then 
collected at different timepoints and processed for immunohistochemistry.  

4.3. Immunohistochemistry and Confocal Microscopy 

After being subjected to chemically induced LTP with or without preincubation with 
proteasome, kinase, or neddylation inhibitors, cLTP and time-matched control slices were collected 
and fixed in 4% paraformaldehyde for 1 h followed by five 30 min washes with PBS at room 
temperature. After washing, slices were blocked in a solution containing 4% normal goat serum 
(Vector Laboratories), 0.4% Triton-X-100, and 0.05% sodium azide in PBS at 4 °C for 6 h. Slices were 
then incubated in blocking solution containing polyclonal antibody against pSer219-ATF4 (1:50; 
MyBioSource, San Diego, CA, USA) at 4 °C overnight. Following primary antibody incubation, slices 
underwent three 20 min washes in PBS containing 0.2% Triton-X-100 and were then incubated in 
Alexa 488-conjugated goat anti-rabbit secondary antibody (1:300; Invitrogen) and TO-PRO-3 (1:500; 
Invitrogen) at 4 °C for 6 h. Following secondary antibody incubation, slices underwent four 30 min 
washes in 0.2% Triton-X-100 in PBS and one 30 min wash in PBS. Slices were mounted with Prolong 
Gold antifade reagent (Invitrogen). Images were taken with an Olympus FV3000 confocal laser 
scanning microscope and analyzed using ImageJ (National Institutes of Health (NIH), Bethesda, 
MD, USA).  

4.4. Statistical Analysis 

Data are expressed as mean ± standard error of the mean. The sample size (n) reflects the 
number of animals used for each experiment, not the number of slices. Immunoreactivity was 
measured in 5 slices from each animal (20 cells/slice). Data were analyzed by one-way ANOVA and 
Tukey post-hoc test.  
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