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Abstract: Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop because of its
health benefits and adaptation to drought stress; however, reports of transcriptomic analysis of genes
responding to re-watering after drought stress in foxtail millet are rare. The present study evaluated
physiological parameters, such as proline content, p5cs enzyme activity, anti-oxidation enzyme
activities, and investigated gene expression patterns using RNA sequencing of the drought-tolerant
foxtail millet variety (Jigu 16) treated with drought stress and rehydration. The results indicated
that drought stress-responsive genes were related to many multiple metabolic processes, such as
photosynthesis, signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism,
and osmotic adjustment. Furthermore, the ∆1-pyrroline-5-carboxylate synthetase genes, SiP5CS1 and
SiP5CS2, were remarkably upregulated in foxtail millet under drought stress conditions. Foxtail
millet can also recover well on rehydration after drought stress through gene regulation. Our data
demonstrate that recovery on rehydration primarily involves proline metabolism, sugar metabolism,
hormone signal transduction, water transport, and detoxification, plus reversal of the expression
direction of most drought-responsive genes. Our results provided a detailed description of the
comparative transcriptome response of foxtail millet variety Jigu 16 under drought and rehydration
environments. Furthermore, we identify SiP5CS2 as an important gene likely involved in the drought
tolerance of foxtail millet.
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1. Introduction

Plants often encounter adversity stresses including drought, extreme temperatures, salinity,
soil nutrient deficiency, increased light intensity, and ionic toxicity [1]. Among these abiotic stresses,
drought is the most serious for plants, resulting in stunted growth and yield reduction. Plants adapt to
drought stress through a series of changes in molecular, cellular, and physiological processes that can
aid survival. Many plants raise their cellular penetration potential by accumulating proline, in order to
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maintain a stable intracellular environment under stress [2]. Foxtail millet (Setaria italica (L.) P. Beauv)
is an important food and fodder grain crop in arid and semi-arid regions of Asia with distinct drought
tolerance and higher water use efficiency (WUE) than that of most gramineous crops, such as maize,
wheat, and sorghum [3]. The genome of foxtail millet cultivars “Yugu 1” and “Zhanggu” have been
sequenced by the US Department of Energy Joint Genomic Institute and Beijing Genomics Institute
(BGI) of China, respectively [4,5]. Superior drought tolerance, a small genome (515 Mb), less repetitive
DNA, self-pollination, and a short life cycle make foxtail millet an ideal model system for research into
stress tolerance [4–7].

The antioxidant defense system of plants under drought stress is composed of ROS (reactive
oxygen species) scavenging enzymes. Among them, catalase (CAT), superoxide dismutase
(SOD), and peroxidase (POD) play an important role in removing ROS and synergistically
counteract oxidative damage caused by drought stress [8]. Proline, as a critical osmoprotectant,
stabilizes proteins and subcellular structures, and also acts as an antioxidant that scavenges ROS [9].
∆1-pyrroline-5-carboxylate synthetase (P5CS) is an enzyme that catalyzes the rate-limiting step of
glutamate conversion into ∆1-pyrroline-5-carboxylate (P5C), an intermediate that can be reduced
to proline. Researchers have isolated two genes by encoding P5CS from various plants [10–13].
In Arabidopsis thaliana, AtP5CS1 is mainly expressed in response to various environmental effects,
including salinity, drought, and abscisic acid (ABA) [11,14]; however, AtP5CS2 is a housekeeping gene
that is essential for vegetative and reproductive development during embryogenesis and growth [15–17].
The transcriptional expression pattern of P5CS family genes varies among species. For example,
in the model legume plant Medicago truncatula, MtP5CS2 is inducible by stress and MtP5CS1 is
constitutively expressed [11]. Interestingly, a third gene in the family, MtP5CS3, was recently reported
in M. truncatula, and also plays an important role in regulating proline accumulation under salinity
stress [18]. Nevertheless, few studies have been conducted on Setaria italica, and there are no reports
on the roles of foxtail millet P5CS genes under drought conditions.

The molecular basis of plant adaptation to water scarcity conditions is complex. Transcriptomic
analyses of plants under water-deficit stress have identified numerous candidate genes [19–22].
According to their putative functions, these drought-related genes can be divided into two groups
encoding functional proteins and regulatory proteins [23]. Functional proteins protect plant
cells from stresses, such as osmoprotectants, dehydrins, senescence-related genes, heat shock
proteins, membrane protectants, transporters, and antioxidants, among others. Regulatory proteins,
including transcription factors (TFs), protein kinases and phosphatases, are important for transcriptional
regulation and signal transduction cascades. TFs are important regulators of the expression of
many target genes in plants growing under drought circumstances. Members of some TF families,
including APETALA2/Ethylene responsive factor (AP2/ERF) [24], homeodomain-leucine zipper
(HD-zip) [25], v-myb avian myeloblastosis viral oncogene homolog (MYB) [26], WRKY [27], dehydration
responsive element binding protein (DREB) [28], and NAM/ATAF1/2/CUC1/2 (NAC) [29], contribute
to stress-induced signaling cascades in foxtail millet.

RNA-Seq technology has been widely applied in the research of differential gene expression
during plant responses to various biotic and abiotic stresses [3,30]; Many drought-inducible genes,
with various functions, have been identified by transcriptomic analysis in foxtail millet [19,31–34].
These reports provide critical information on the mechanisms of response to drought and related
regulatory networks in foxtail millet; however, few genome-wide analyses of genes responsible for
progressive drought stress and re-watering in foxtail millet have been conducted. In a multi-year
resource identification and evaluation study, we characterized a strongly drought-tolerant variety
of foxtail millet, Jigu16 [35,36]. In the present study, we determined status changes in physiological
parameters and conducted RNA-Seq to further understand the complexity underlying foxtail millet
responses to water deficiency. We compared the drought response profiles between plants receiving
normal water supply and those subjected to water deficiency and re-watering treatments, as well as
analyzing the functional categorization of differentially expressed genes (DEGs). We also evaluated
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the transcription levels of genes related to proline metabolism; RNA-seq and real-time PCR analysis
revealed that SiP5CS genes were expressed at the highest levels after drought treatment and those
genes were chosen for further analysis.

2. Results

In the present study, we evaluate physiological parameters (proline content, p5cs enzyme activity,
anti-oxidation enzyme activities) and investigate gene expression patterns using RNA sequencing of the
drought-tolerant foxtail millet variety (Jigu 16) treated with drought stress and rehydration. P5CS and
anti-oxidation enzyme activities in leaves are increased, with the proline content moving up sharply
and undergoing 9-d drought stress. Transcriptome analysis shows that drought stress-responsive
genes are related to many multiple metabolic processes. Among those genes, SiP5CS2 is an important
gene likely involved in the drought tolerance of foxtail millet.

2.1. Phenotypic and Physiological Analyses of Foxtail Millet under Drought Stress and Rehydration

Jigu 16 is identified as a strongly drought-tolerant variety of foxtail millet in a multi-year resource
identification and evaluation study [35,36]. For physiological measurements, healthy Jigu 16 seedlings
are exposed to gradually increasing soil water depletion (Figure 1A). After drought treatment for
9 days, Jigu 16 seedlings maintained good growth, which is only stunted compared with watered
controls (Figure 1B). The LWC (leaf water content) of Jigu 16 seedlings was monitored and found to
decrease from 88.66% to 79.54% on the 9th day of withholding water, while LWC was rapidly restored
to initials level after rehydration (Figure 1C).
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Figure 1. Effects of drought stress and re-watering on foxtail millet, variety Jigu 16. (A) Soil volumetric
water content during the 9-day drought and 12-h re-watering treatments. Arrows indicate the time
points when plants were sampled for RNA-seq. Each column represents the mean ± SD (n = 3).
(B) Phenotypic alterations of foxtail millet seedlings under control conditions and after 9 days of
drought stress and 12 h of re-watering. Bar = 5 cm. (C) Changes in leaf water content under 9-day
drought and 12-h re-watering conditions. Each column represents the mean ± SD (n = 3 pools of
x plants). Significance levels were determined by one-way ANOVA; Different letters above bars indicate
significant differences, lowercase letter p < 0.05, uppercase letter p < 0.01.
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To further elucidate the physiological mechanism of drought tolerance in foxtail millet,
physiological parameters, including ∆1-pirroline-5-carboxylate synthetase (P5CS) and antioxidant
enzyme activities and proline and MDA content are measured. The ninth day after drought treatment,
P5CS activity and MDA level in leaves were increased by 15.3%, 18.2%, respectively, compared to the
control (p < 0.05) (Figure 2A,E). Likewise, the enzymatic activities of POD and SOD in leaves increased
1.63- and 3.42-fold, respectively, after drought stress relative to controls (p < 0.01). Activities of these
enzymes decreased following re-watering, compared with drought stress (Figure 2B,C). There was
only a slight (non-significant) increase in CAT activity in response to drought (Figure 2D). Meanwhile,
proline content in foxtail millet seedlings is approximately 7-fold higher after drought than that in
controls (p < 0.01), and decreased on rehydration (Figure 2F).
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Figure 2. Physiologic parameters in Jigu 16 foxtail millet leaves under drought stress and re-watering
conditions. Total activity of P5CS (A) and the antioxidant enzymes, peroxidase (POD) (B), superoxide
dismutase (SOD) (C), and catalase (CAT) (D) in Jigu 16 after 9 days drought stress and 12 h re-watering
conditions. Malondialdehyde (MDA) (E) and proline (F) content in foxtail millet after 9 days drought
stress and 12 h re-watering conditions. Each column represents the mean ± SD (n = 3 pools of
x plants). Significance levels were determined by one-way ANOVA; Different letters above bars indicate
significant differences, lowercase letter p < 0.05, uppercase letter p < 0.01.

2.2. Overview of Transcriptome Sequencing and Differential Expression Genes Responding to Drought Stress

There are six treatment groups: leaf drought stress (LD), leaf re-watered (LR), and leaf watered
control (LCK); and root drought stress (RD), root re-watered (RR), and root watered control
(RCK). Each group included three replicates, hence, a total of 18 samples are sequenced using
the Solexa/Illumina platform. After filtering out adapter and low-quality sequences, approximately
144 GB of clean bases are obtained from the 18 sample transcriptome libraries, with 43–66 million reads
per sample. Furthermore, >92% of reads in all experimental groups (LD, LR, LCK, RD, RR, and RCK)
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are mapped to unique or multiple genome locations (Table 1), indicating that the transcriptome is
reliable and of high quality.

To validate the transcriptome sequencing results, 12 DEGs regulated in response to drought
and re-watering in leaves were randomly selected for RT-qPCR validation. The expression trends
between RNA-seq and RT-qPCR for each selected gene are similar, indicating that the transcriptome
data are highly reliable (R2 = 0.9087, p < 0.01) (Figure 3). Overall, 4202 and 3266 DEGs responding
to drought and re-watering treatments, respectively, are identified in leaves. Under drought stress,
1652 and 2550 DEGs were up- down-regulated, respectively (Supplementary Tables S2 and S3),
while among DEGs responding to re-watering treatment, 2164 are up- and 1102 down-regulated
(Table 2; Supplementary Table S4). About half of the DEGs between drought groups and the leaf
rehydration (LD vs. LR) are differentially expressed in response to drought (LCK vs. LD). Among them,
47.96% of genes upregulated in response to drought stress recovered their expression after rehydration,
while 40.52% of DEGs upregulated on re-watering are due to recovery of DEGs downregulated in LD
compared with LCK groups (Figure 4B,C).

Table 1. Number of assembled reads sequenced and mapped to the Setaria italica genome.

Leaves Roots

Sample Name LCK LD LR RCK RD RR

Total reads 60224561 57522977 66828528 43141689 44366653 48433784

Total mapped 58424526
(97.00%)

55680409
(96.81%)

64842416
(97.02%)

40677294
(94.28%)

42250499
(95.22%)

45618663
(94.26%)

Uniquely mapped 57107274
(94.82%)

53658224
(93.28%)

63175538
(94.54%)

39536790
(91.64%)

42587443
(93.09%)

44445300
(91.84%)

Multiple mapped 1317252
(2.19%)

2022185
(3.53%)

1666878
(2.49%)

1140504
(2.64%)

944568
(2.14%)

1173363
(2.42%)

Reads mapped to ‘+’ 28529557
(47.37%)

26802873
(46.59%)

31558786
(47.23%)

19754833
(45.79%)

20635877
(46.51%)

22204397
(45.88%)

Reads mapped to ‘−’ 28577717
(47.45%)

26855350
(46.68%)

31616752
(47.31%)

19781957
(45.85%)

20670055
(46.58%)

22240903
(45.96%)

Non-spliced reads 34533551
(57.33%)

32164993
(55.92%)

38000455
(56.85%)

26139840
(60.56%)

27001368
(60.84%)

29114060
(60.25%)

Spliced reads 22573723
(37.49%)

21493230
(37.36%)

25175083
(37.69%)

13396950
(31.08%)

14304564
(32.24%)

15331240
(31.58%)

LD, leaf drought stress; LR, leaf re-watered; LCK, leaf watered control; RD, root drought stress; RR, root re-watered;
RCK, root watered control.

Table 2. Differentially expressed genes (DEGs) under drought and re-watering treatments.

Comparison DEGs Upregulated Downregulated

LCK-LD 4202 1652 2550
LCK-LR 3266 2164 1102
LD-LR 5049 3287 1762

RCK-RD 6374 2751 3623
RCK-RR 4152 2050 2102
RD-RR 4020 2391 1629

LD, leaf drought stress; LR, leaf re-watered; LCK, leaf watered control; RD, root drought stress; RR, root re-watered;
RCK, root watered control.

Compared with root controls (RCK), there are 6374 and 4152 DEGs in the RD and RR groups,
respectively (Supplementary Tables S5 and S7). Furthermore, there are 4020 DEGs in the RD group
compared with the RR group in roots (Supplementary Table S6), which is markedly less than the
number in leaves. Furthermore, 2751 and 3623 DEGs are up- and down-regulated in root under drought
stress (RCK vs. RD), with 2391 up- and 1629 down-regulated DEGs between drought and re-watering
treatments (RD vs. RR) (Table 2). In roots, 38.24% of genes upregulated in response to drought stress
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recovered their expression after rehydration, while 52.70% of DEGs upregulated on re-watering are
due to recovery of DEGs downregulated in RD compared with RCK groups (Figure 4E,F).

These data imply that the expression of most genes that changed expression levels in response
to drought stress could be recovered; that is, after drought stress, most up- or down-regulated genes
show the opposite regulation status after rehydration.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 21 
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Figure 3. Comparison of the expression profiles of selected DEGs determined by RT-qPCR and RNA-Seq
analyses. (A,B) Expression levels of 12 DEGs in drought stress and re-watering conditions. Values are
presented as log2(fold-change). The X-axis represents gene ID, according to the NCBI database.
(C) Scatter plots of the expression levels of 12 DEGs in drought stress and re-watering conditions. X and
Y axes represent log2 (fold-change) determined by RT-qPCR and RNA-seq experiments, respectively;
** p < 0.01.
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Figure 4. Venn diagrams showing the numbers of differentially expressed genes (DEGs) co-modulated
in leaves and roots following drought stress and re-watering treatment. (A) Venn diagrams showing
DEGs between watered control (LCK), drought (LD) and re-watering (LR) treatments in leaves. (B) Venn
diagrams showing DEGs between LCK-LD-up and LD-LR-down. (C) Venn diagrams showing DEGs
between LCK-LD-down and LD-LR-up. (D) Venn diagrams showing DEGs between watered control
(RCK), drought (RD) and re-watering (RR) treatments in roots. (E) Venn diagrams showing DEGs
between RCK-RD-up and RD-RR-down. (F) Venn diagrams showing DEGs between RCK-RD-down
and RD-RR-up.

2.3. Transcriptomics Analysis Revealed Complex Mechanisms Involved in Drought Response in Foxtail Millet

Gene ontology (GO) enrichment analysis is performed to evaluate the potential function of
DEGs regulated in response to water deficiency and re-watering. Many genes that respond to various
metabolic processes, cell components, and catalytic activity are prominently represented, suggesting that
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these processes may be related to the response to water deficiency in leaves. Interestingly, all GO
terms contain more down- than up-regulated genes after drought stress in leaves, while there are many
more up- than down-regulated genes after re-watering (Figure 5A,B). The results of GO enrichment
analysis in roots differed from those in leaves, with the top four GO levels in roots being “response to
oxidative stress”, “binding activity”, “catalytic activity”, and “extracellular region”, and there are less
GO terms in root DEGs than in leaf. The same as in leaves, more genes were down-regulated after
drought than up-regulated in all GO terms, and more genes were up-regulated after re-watering in
roots (Figure 5C,D).
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Figure 5. Gene ontology (GO) enrichment of DEGs in response to drought and rehydration in Jigu
16 foxtail millet. (A) GO enrichment of DEGs in leaves between watered control (LCK) and drought
(LD). (B) GO enrichment of DEGs in leaves between drought (LD) and re-watering (LR). (C) GO
enrichment of DEGs in roots between watered control (RCK) and drought (RD). (D) GO enrichment
of DEGs in roots between drought (RD) and re-watering (RR). Blue columns indicate the numbers of
upregulated genes, while red columns indicate numbers of downregulated genes. The threshold for
differential expression was set at log2 fold-change > 1 and FDR ≤ 0.05.
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A KEGG enrichment analysis shows that drought stress response DEGs are involved in numerous
pathways (Figure 6). In leaves, 4202 drought-induced DEGs were annotated to 116 pathways,
while 5049 DEGs are annotated to 115 pathways following re-watering. In roots, 6374 DEGs between
RCK and RD are assigned to 117 KEGG pathways, and 4020 DEGs between RR and RD to 115 pathways.
The top 20 pathways are shown in Figure 6. The highest enriched factors between LCK and
LD are photosynthesis-related pathways, such as photosynthesis-antenna proteins, photosynthesis,
and porphyrin and chlorophyll metabolism (Figure 6A). The greatest numbers of the DEGs are
in ribosome pathways (166 members) among the comparison pair of LD-LR (Figure 6B). Further,
most upregulated DEGs between LCK and LD are enriched in pathways involved in “plant MAPK
signaling pathway”, and “plant hormone signal transduction”. The responses of “starch and sucrose
metabolism” and “phenylpropanoid biosynthesis pathways” are significant during re-watering,
indicating that DEGs play important roles in rehydration. Unlike leaves, the most enriched process
among the comparison pairs of RCK-RD and RD-RCK in roots is phenylpropanoid biosynthesis. Most of
these genes are downregulated under drought. Furthermore, numerous DEGs are also enriched in
pathways involved in “cysteine and methionine metabolism”, “starch and sucrose metabolism” under
drought stress (Figure 6C). “Glutathione metabolism”, “Nitrogen metabolism” and “cysteine and
methionine metabolism” are also significantly enriched in the re-watering group (Figure 6D).
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Figure 6. KEGG analysis of DEGs identified under drought and re-watering conditions. The “GeneRatio”
shows the ratio of the number of DEGs to the total gene number in a specific pathway. Pathways are listed
along the y-axis, while the x-axis indicates the enrichment factor. Red indicates a high q value while blue
represents a low q value. The area of bubbles indicated the number of enriched DEGs. (A) KEGG analysis of
DEGs identified between watered control (LCK) and drought (LD). (B) KEGG analysis of DEGs identified
between drought (LD) and re-watering (LR). (C) KEGG analysis of DEGs identified between watered control
(RCK) and drought (RD). (D) KEGG analysis of DEGs identified between drought (RD) and re-watering (RR).



Int. J. Mol. Sci. 2020, 21, 8520 9 of 21

2.4. Drought-Responsive Genes Are Mainly Related to Photosynthesis, Signal Transduction and TFs

Compared with controls, the number of DEGs in the RD group is greater than that in the
LD group (Table 2). Many DEGs related to photosynthesis, signal transduction, phenylpropanoid
biosynthesis, starch and sucrose metabolism, and other functions are involved in drought response
(Figure 7). Among them, DEGs related to photosynthesis are clearly inhibited by drought in leaves,
with 41 downregulated, including chlorophyll a–b binding protein gene (LHCB/CAB), photosystem
I (PSI), photosystem II (PSII), and protochlorophyllide reductase, among others (Supplementary
Table S2). TFs, protein phosphatase 2C (PP2C), hormone signal transduction-related, resistance-related,
osmotic adjustment, and transporter genes are most strongly induced by drought. More transporter
genes are regulated in response to drought in leaves than in roots.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 21 

 

enriched DEGs. (A) KEGG analysis of DEGs identified between watered control (LCK) and drought 
(LD). (B) KEGG analysis of DEGs identified between drought (LD) and re-watering (LR). (C) KEGG 
analysis of DEGs identified between watered control (RCK) and drought (RD). (D) KEGG analysis of 
DEGs identified between drought (RD) and re-watering (RR) 

2.4. Drought-Responsive Genes are Mainly Related to Photosynthesis, Signal Transduction and TFs 

Compared with controls, the number of DEGs in the RD group is greater than that in the LD 
group (Table 2). Many DEGs related to photosynthesis, signal transduction, phenylpropanoid 
biosynthesis, starch and sucrose metabolism, and other functions are involved in drought response 
(Figure 7). Among them, DEGs related to photosynthesis are clearly inhibited by drought in leaves, 
with 41 downregulated, including chlorophyll a–b binding protein gene (LHCB/CAB), photosystem 
I (PSI), photosystem II (PSII), and protochlorophyllide reductase, among others (Supplementary 
Table S2). TFs, protein phosphatase 2C (PP2C), hormone signal transduction-related, resistance-
related, osmotic adjustment, and transporter genes are most strongly induced by drought. More 
transporter genes are regulated in response to drought in leaves than in roots.  

 

Figure 7. Heatmap of primary drought-related genes. (A) Photosynthesis-related genes. (B) Signal 
transduction-related genes. (C) Phenylpropanoid biosynthesis-related genes. (D) Starch metabolism-
related genes. (E) Amino acid synthesis-related genes. The X-axis represents gene ID, according to the 
NCBI database. The Y-axis represents different comparisons. Relative levels of genes expression are 

Figure 7. Heatmapofprimarydrought-relatedgenes. (A)Photosynthesis-relatedgenes. (B)Signal transduction-
related genes. (C) Phenylpropanoid biosynthesis-related genes. (D) Starch metabolism-related genes.
(E) Amino acid synthesis-related genes. The X-axis represents gene ID, according to the NCBI database.
The Y-axis represents different comparisons. Relative levels of genes expression are showed by a
heatmap with color from blue to red representing the expression levels from low to high. The bar on
the right side of the heatmap represents relative expression level of DEGs.
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Upregulated hormone signal transduction-related genes include ABA, ethylene, and gibberellins;
signal transduction genes, such as protein phosphatase 2C (PP2C), serine/threonine-protein kinase
SAPK3, ERF, 1-aminocyclopropane-1-carboxylate oxidase (ACO), and gibberellin 20 oxidase (GA20OX),
while genes related to auxin and zeatin, such as auxin-responsive protein and zeatin O-glucosyltransferase
(ZOG), are downregulated. Abundant genes encoding proteins involved in osmotic adjustment are
upregulated in leaves under drought stress, including delta-1-pyrroline-5-carboxylate synthase (P5CS),
pyrroline-5-carboxylate reductase (P5CR), and late embryogenesis abundant protein (LEA). Most nonspecific
lipid transfer proteins (nsLTP) are upregulated in LD and RD compared with watered samples.
DEGs involved in ROS system responses to drought stress are also induced in leaves, including two
Fe-SODs, one Mn-SOD, and five POD genes (Figure 8).
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Figure 8. Schematic representation of the main processes involved in drought response in foxtail
millet. The color scale represents increased (red) or decreased (blue) fold-change expression of DEGs in
samples exposed to drought stress and re-watering.

TFs are differentially expressed in response to drought stress treatment in foxtail millet, with a total
of 170 and 298 in leaves and roots, respectively (Supplementary Tables S8 and S9). Among them, 170 TFs
in leaves are regulated under drought treatment and these are mainly grouped into 15 families, including:
MYB (14%), ethylene-responsive transcription factor (ERF; 11%), NAC (11%), basic helix-loop-helix
(bHLH; 9%), HD-zip (9%), WRKY (8%), and basic region leucine zipper (bZIP; 5%) TFs, among others
(Figure 9A). Most of the TFs in leaves are reduced responses to drought stress (Supplementary Table S8).
Moreover, a larger number of TFs from the MYB (16%), bHLH (14%), WRKY (13%), ERF (11%),
NAC (7%), HD-zip (6%), bZIP (5%), and IAA (4%) families are significantly induced in roots (Figure 9B).
The upregulated genes mainly included most MYB, ERF, NAC and HSF families. The downregulated
TFs are mainly concentrated in WRKY and HD-zip families (Supplementary Table S9).
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2.5. Some of DEGs after Re-Watering Different in Roots and Leaves

After re-watering, 279 genes are up- and 95 down-regulated compared to LCK and LD
(Supplementary Table S10). The 279 upregulated genes are involved in ribosomal protein, amino acid
biosynthesis, signaling pathways, starch and sucrose metabolism, phenylpropanoid biosynthesis,
and included expansin genes, such as bifunctional aspartokinase/homoserine dehydrogenase
(AKHADH1), auxin-responsive protein (SAUR), patatin-like protein 1 (PLP1), protein detoxification
21 (DTX21), and abscisic acid receptor (PYL). Down-regulated genes include E3 ubiquitin-protein
ligase (ATL31), delta-1-pyrroline-5-carboxylate synthase 2 (P5CS2), NAC domain-containing protein,
protein phosphatase 2C (PP2C), sucrose synthase 4 (SUS4), serine/threonine-protein kinase (SAPK3),
aquaporin PIP2-5 (PIP2-5), and aquaporin NIP2-2 (NIP2-2), among others, which are involved in proline
metabolism, sugar metabolism, hormone signal transduction, and water transport. Furthermore,
225 and 188 genes are up- and down-regulated in roots, respectively. DEGs are mainly related to osmotic
adjustment, phenylpropanoid biosynthesis, sugar metabolism, fatty acid metabolism, and ascorbate
and aldarate metabolism, among other processes (Supplementary Table S11). Following rehydration,
expression of these genes is higher or lower than that in the control and drought stress groups,
which may play a critical role in the process of recovery after drought.

2.6. Changes of SiP5CS Expression Increase Proline Content and Drought Tolerance

Proline content increases dramatically (7-fold) in foxtail millet seedlings following 9 d drought
treatment, compared with well-watered controls (Figure 2F). Furthermore, 9 d after treatment,
P5CS activity is strongly increased by 15.3% in drought-treated plants relative to controls (Figure 2A).
Furthermore, in this study, proline biosynthetic genes involved in arginine and proline metabolism are
dramatically up- or down-regulated under drought stress; for example, delta-1-pyrroline-5-carboxylate
synthase 1 (SiP5CS1, 101765114), delta-1-pyrroline-5-carboxylate synthase 2 (SiP5CS2, 101775420),
ornithine aminotransferase (SiOAT, 101786037), proline dehydrogenase (SiProdh, 101775799),
and pyrroline-5-carboxylate reductase (SiP5CR, 101764215) (Figure 7).

The expression patterns of two SiP5CS genes are measured to determine their transcriptional
responses to drought and re-watering in foxtail millet, and both SiP5CS1 and SiP5CS2 are significantly
up-regulated in leaves in response to drought treatment. The upregulation of SiP5CS2 (gene ID:
101775420, the coding sequence of SiP5CS2 see Methods 1 in Supplementary Material) in leaves is far
stronger than that of SiP5CS1, with SiP5CS2 relative expression progressively up-regulated from days
2 to 9, culminating in a very strong response at 9 d (151-fold higher than the control group) (Figure 10).
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Figure 10. Analysis of differential expression of SiP5CS genes under drought and rehydration conditions
in leaves. (A) SiP5CS1. (B) SiP5CS2. Each column represents the mean ± SD (n = 3). Significance levels
were determined by one-way ANOVA; Different letters above bars indicate significant differences,
lowercase letter p < 0.05, uppercase letter p < 0.01.

To investigate the cellular localization of the SiP5CS2 protein, the SiP5CS2 gene was cloned into a
pAN580 35S-m-GFP expression vector and the fluorescence of the fusion protein, transiently expressed
under the control of the CaMV35S promoter, observed in Arabidopsis protoplasts. Fluorescence signals
of the fusion protein were observed predominantly in nuclei (Figure 11), indicating that SiP5CS2 is a
nuclear-localized protein.
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Figure 11. Subcellular localization of SiP5CS2. SiP5CS2 is localized to the nucleus. The SiP5CS-GFP
construct and the empty vector (GFP, green fluorescent protein) were co-transformed into Arabidopsis
protoplasts with the pAN580-ECFP-Ghd7 vector (a nuclear marker). The fluorescent signal of
SiP5CS-GFP (green, pseudo-color) was specifically detected in the nucleus and exclusively co-localized
with pAN580-ECFP-Ghd7 (yellow). The free GFP signal was observed in both the nucleus and cytoplasm.

3. Discussion

Drought is one of the most important abiotic stresses that limit crop growth and agricultural
productivity [37]. Foxtail millet, with its extreme drought tolerance, has been proposed as a model
species for transcriptomic studies and drought tolerance investigation [3,38]. Plants employ several
morphological, physiological, and molecular mechanisms to avoid or tolerate drought conditions [39,40].
Previous transcriptomic studies showed that a complex regulatory network positively regulates
the response to drought in foxtail millet; this network included various biological processes and
pathways, such as photosynthesis, transcription regulation, signal transduction, osmotic adjustment,
and redox regulation [41]. Nevertheless, studies including transcriptomic analysis to identify genes
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responsible for progressive drought and re-watering responses in foxtail millet are sparse. In our study,
drought-responsive genes mainly involved photosynthesis, signal transduction, starch and sucrose
metabolism, phenylpropanoid biosynthesis, and osmotic adjustment. The recovery of rehydration was
mainly related to proline metabolism, hormone signal transduction, sugar metabolism, water transport,
and detoxification, in addition to reversal of the expression effects on the majority of drought-responsive
genes. These data indicate that multiple complex mechanisms function together to reconstruct cellular
homeostasis following rehydration.

Key signaling metabolites and hormones, and proteins regulating their activity, such as
kinases/phosphatases and TFs, have important roles in the regulation of plant drought tolerance [42].
The key enzymes in ABA biosynthesis and catabolism are 9-cis-epoxycarotenoid dioxygenase (NCED)
and ABA 8′-hydroxylase [43]. In our study, relative expression of NCED1 (101783411) was suppressed
in drought-stressed leaves, while levels of NCED5 (101770668) were reduced in roots in response to
drought. Moreover, in leaves, three ABA 8′-hydroxylases (101760218, 101771842, 101777633) were
induced by drought (Figure 8). Genes involved in ABA biosynthesis were up-regulated under drought
stress, indicating that levels of endogenous ABA in foxtail millet roots increase as an adaption to
drought conditions. ABA plays a vital role in enhancing plant adaptation to drought stress by
upregulating ABA-responsive signaling components that control water status and stomatal closure [44].
ABA receptors (PYR/PYL/RCAR), sucrose non-fermenting 1-related protein kinase 2 proteins (SnRK2s),
and type 2C protein phosphatases (PP2Cs) constitute core ABA signaling elements [45]. A transcriptomic
investigation revealed that genes encoding SnRK2 protein and all PP2Cs associated with ABA signal
transduction are up-regulated in leaves following drought treatment.

Ethylene synthesis can be induced by drought, and ethylene regulates the response to drought by
activating TFs regulating the ethylene response [46]. In foxtail millet, ethylene signaling-related TFs
were induced in roots in response to drought. Strangely, auxin and zeatin signaling related genes were
constrained under drought stress, but induced by rehydration (Figure 7), indicating that these genes
may be more important for the recovery of drought-stressed foxtail millet.

TFs are important regulators that control the expression of many target genes in plants grown under
drought conditions. Many TF families, such as MYB [26], HD-zip [25], bHLH [47], WRKY [27], NAC [29],
AP2/ERF [24], and DREB [28] are involved in stress-induced signaling cascades in foxtail millet. Over
half of the TFs differentially expressed after drought belonged to the 7 TF families. Among those genes,
MYB is the largest TF family in plants and has key roles in abiotic stress tolerance [27,42], and all 209
S. italica MYB (SiMYB) genes were physically mapped onto nine chromosomes of foxtail millet [48].
In Jigu 16 foxtail millet leaves after drought stress, 170 DEGs encoded TFs, accounting for 4.05% of
drought-response genes (4202), and mainly involved 15 gene families, including MYB, ERF, NAC,
bHLH, HD-zip, WRKY, and bZIP (Figure 9A, Supplementary Tables S8 and S9). The largest number of
DEGs (24 in leaves, 48 in roots) was the MYB TF family, accounting for 11.5% and 23.0% of SiMYB genes,
indicating that foxtail millet MYB family genes may have important roles in drought stress. DREB TFs
belong to the ERF family, and their levels can be induced in response to drought, salt, light stress, cold,
and heat treatment [28]. Similarly, we found that five of eight DREB TFs were significantly upregulated
in roots following drought stress (Figure 8), highlighting their positive regulation in foxtail millet in
response to drought.

Photosynthesis is the basic metabolic process that regulates crop growth and final yield.
Green plants use the chlorophyll binding protein, LHC, bound to PSI and PSII on the thylakoid
membrane, to receive solar energy and eventually absorb CO2. The chlorophyll a–b binding
protein (LHCB/CAB) belongs to PSII, and its expression is mainly regulated by developmental
and environmental factors, including light [49], circadian rhythm [50], and ABA [51]. We identified
41 photosynthesis-related DEGs which were clearly inhibited in drought-treated leaves, including CAB,
photosystem I (PSI), photosystem II (PSII), and protochlorophyllide reductase (Figure 7). The decrease
in levels of photosynthesis-related genes in Jigu 16 under drought stress indicates that the lack of water
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inhibits photosynthesis; however, the expression level of photosynthetic-related genes was significantly
upregulated following re-watering.

The antioxidant defense system in plants under drought stress comprises ROS scavenging enzymes,
among which SOD, POD, and CAT are essential to remove ROS and act cooperatively against oxidative
damage caused by drought stress [8]. We detected the upregulation of eight ROS system-related genes
(Figure 8), as well as increased activities of SOD, POD, and CAT (Figure 2), all of which could enhance
drought resistance in foxtail millet. In plants, SODs are the core of antioxidant enzymes and among the
first to participate in ROS scavenging. Many previous studies have demonstrated the important roles
of SOD genes in plant adaptation to abiotic stress [52–54]. Based on their metal cofactors, SOD family
proteins are divided into three types: manganese SOD (MnSOD), copper-zinc SOD (Cu/Zn-SOD),
and iron SOD (FeSOD) [55]. We found that the expression of three SOD genes, including one MnSOD
and two FeSODs, was elevated during drought stress and decreased after re-watering. This result is
consistent with a report of the response of Brassica juncea to drought stress [56].

The accumulation of proline is a well-known metabolic response of plants to drought. Previous
studies have suggested that overexpression of the P5CS gene increases the proline content and drought
tolerance in plant [11,13,14]. In this study, the levels of SiP5CS gene expression were correlated with
proline levels in plants of foxtail millet under drought stress. Furthermore, two genes coding P5CS
(SiP5CS1 and SiP5CS2) were found in foxtail millet. Moreover, SiP5CS1 and SiP5CS2 showed a striking
upregulation in leaves, with SiP5CS2 increasing by 6.41-times (log2 fold-change), which was far greater
than the increase of SiP5CS1 (Figure 10). In contrast, AtP5CS1 is regulated in response to dehydration
stress, while AtP5CS2 is considered to be a housekeeping gene with constitutive expression throughout
the plant [57]. Hence, our data imply that the transcriptional pattern of P5CS family genes varies
among species, and that SiP5CS2 may have an important function in drought response in foxtail millet.
Chen et al. [58] found that the bean P5CS was located in the nucleus and at the plasmalemma. To date,
there have been no previous reports on the subcellular localization of foxtail millet P5CS2 protein.
The transient expression of GFP/SiP5CS2 in Arabidopsis protoplasts showed that SiP5CS2 protein was
distributed only in the nucleus (Figure 11), but not in plasmalemma. This result showed that the first
step of proline synthesis may occur in the nucleus. Whether SiP5CS2 protein is located in the nucleus
in stressed foxtail millet tissues remains to be determined.

Here, we conducted a comprehensive transcriptomic analysis of foxtail millet leaves and roots
under drought stress and rehydration conditions. Among identified DEGs, drought-responsive
genes were mainly involved in photosynthesis, signal transduction, phenylpropanoid biosynthesis,
starch and sucrose metabolism, and osmotic adjustment. Genes involved in the recovery of
rehydration were mainly related to proline metabolism, sugar metabolism, hormone signal transduction,
water transport, and detoxification, in addition to the reversal of the expression changes of the majority
of drought-responsive genes. Finally, this research revealed critical molecular pathways, for example the
proline metabolic pathway, and provided a substantial amount of genetic information as a foundation
for further study of the underlying mechanism. These data contribute to the further understanding of
the molecular mechanisms underlying responses to water deficiency in millet and highlight SiP5CS as
an important gene involved in drought stress in foxtail millet.

4. Materials and Methods

4.1. Plants and Experimental Design

Jigu 16, a drought-tolerant foxtail millet (Setaria italica L.) variety, was used in this study [35].
Experiments were conducted during July 2017 in a rain-proof shed at the Crop Research Institute
(N 36◦40′ E 117◦), Shandong Academy of Agricultural Sciences, China, using a single factor random
block design. There were three treatment groups: well-watered (CK), drought stress treatment
(D), and rehydration treatment (R) with three replicates, where each replicate comprised nine pots.
Nine healthy foxtail millet seeds were sown in a plastic pot of 110 mm diameter × 90 mm height,
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filled with matrix with pH 5.69, 183.92 g (organic matter) kg−1, 1.12 g (total nitrogen) kg−1, 2.61 g (total
phosphorus) kg−1, and 0.59 g (total potassium) kg−1. Seeds were covered with 1 cm of vermiculite
and each pot was carefully watered (under natural light, in a rain-proof shed, which was covered
when raining). After emergence, foxtail millet seedlings were thinned to three uniform plants per
pot at the three-leaf stage; 3 plants per pot were polled together as a repetition. After two weeks,
drought treatment was carried out using 2-week-old seedlings by withholding water for 9 d, and then
re-watering for recovery of dehydrated seedlings. Whole leaves and roots were harvested in triplicate
from both drought-stressed after 9 d of dehydration and re-watered plants after 12 h of rehydration.
The control samples were collected on the same time point as the drought-treated samples (Figure 1C).
Samples were directly used to determine the physiological responses of foxtail millet seedlings
under drought stress. The other part of the samples was immediately frozen in liquid nitrogen
and stored at −80 ◦C until further processing for differential gene expression analysis and RNA-seq
analysis. The whole leaves were sampled to measure the P5CS gene expression level every 2 d when
drought-treated plants had undergone 9 d of drought stress.

4.2. Measurement of Relative Water Content

Foxtail millet seedlings grown in normal (CK), drought stress treatment (D), and rehydration
treatment (R) conditions were weighed before (fresh weight, FW) and after (dry weight, DW) drying at
60 ◦C for 72 h.

Leaf FW and DW were used to determine leaf water content (LWC), using the following
equation [59]:

LWC =
(FW − DW)

DW
100%

4.3. Assessment of Antioxidant Enzymesactivities, P5CS Activity and Proline and Malondialdehyde Content

Antioxidant enzymes assayed in this study included superoxide dismutase (SOD), peroxidase
(POD), and catalase (CAT). To assess the activities of the enzymes, 0.1 g of fresh leaf samples were
collected and homogenized in 100 mM sodium phosphate buffer (pH 7.0). Homogenates were
centrifuged at 9000× g for 5 min at 4 ◦C and supernatants were retained for enzymatic assays.
Subsequently, nitro blue tetrazolium was used to assess SOD activity, according to Giannopolitis and
Ries [60]. POD activity was measured using the method reported by Sigrid et al. [61]. The method
detailed by Aebi [62] was adopted to assess CAT activity. Proline content was estimated using the
method proposed by Bates et al. [63]. Moreover, malondialdehyde (MDA) was analyzed according to
Stewart and Bewley [64], using a colorimetric method.

Supernatants for P5CS assays were extracted following the method described by Špoljarević
et al. [65]. Frozen leaf tissue samples (0.5 g) were ground to a fine powder in liquid nitrogen and
homogenized in extraction buffer (50 mM Tris-HCl (pH 7.5)), with a buffer volume:tissue (g) ratio of
2:1. Extracts were centrifuged at 4 ◦C for 20 min at 20,000× g and the resulting supernatant used as the
enzyme source. Then, P5CS activity was assayed using a Plant ∆1-pyrroline-5-carboxylate synthetase
(P5CS) ELISA Kit (Shanghai Zhen Ke Biological Technology Co., Ltd., Shanghai, China).

4.4. RNA Extraction, cDNA Library Construction and Sequencing

Fresh samples from plants in the CK, D, and R groups of leaves (LCK, LD, and LR) and roots
(RCK, RD, and RR) were collected, frozen in liquid nitrogen immediately and stored at −80 ◦C
until RNA extraction. Three biological replicates were performed for each of the six sample groups.
For RNA-seq analysis, total RNA was extracted from 18 samples using Trizol® (Invitrogen, Carlsbad,
CA, USA). The integrity and purity of RNA were assessed using the RNA Nano 6000 Assay Kit for
the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA) and a NanoPhotometer
spectrophotometer (IMPLEN, Westlake Village, CA, USA), respectively. A total amount of 1 µg high
quality RNA per sample was used for the RNA sample preparations. Sequencing libraries were
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generated using NEBNext®UltraTM RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA),
following manufacturer’s recommendations. Sequencing of the constructed cDNA libraries was carried
out at Novogene Bioinformatics Technology Co. Ltd. (Beijing, China).

4.5. RNA-seq Data Analysis and Functional Annotation

Raw data of fastq format were firstly processed through in-house perl scripts. Clean reads were
obtained by removing reads containing adapters, reads containing poly-N, and low-quality sequence
reads (>50% bases with Q-values < 20). To identify relevant sequences, clean reads were aligned to the
foxtail millet genome (https://www.ncbi.nlm.nih.gov/genome/?term=Setaria_italica) using HISAT2
v2.0.5, allowing up to two mismatches. In addition, mapped reads from each sample were assembled
using StringTie (v1.3.3b) [66] using a reference-based approach.

Gene expression levels were based on FRKM (fragments per kilobase millon reads) value [67].
Differentially expressed genes (DEGs) between two treatments were identified using DESeq2 R package
(1.20.0). Threshold values of FDR (the false discovery rate) ≤ 0.05 and absolute log2fold-change ≥ 1
were applied to judge the significance of differences in gene expression levels [68]. DEGs were
subjected to gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis
using clusterProfiler R package. p-values were calculated and adjusted using Bonferroni correction,
taking corrected p-value ≤ 0.05 as the threshold for significance.

4.6. RT-qPCR Validation of DEGs

To verify RNA-seq data, real-time quantitative PCR (RT-qPCR) was performed on twelve randomly
selected DEGs regulated in response to water deficiency. Extracted RNA samples were used for RT-qPCR
to ensure the reliability and repeatability of the results. To eliminate genomic DNA contamination,
total RNA was treated with DNase I (RNase Free) (Tiangen, Beijing, China), and then used to synthesize
cDNA by reverse transcription using random primers (TIANscript RT Kit, Tiangen, Beijing, China).
Quantitative PCR was performed using SYBR Premix Ex Taq (Clontech Takara, Shiga, Japan) on a
7500 Real Time PCR System machine (Applied Biosystems, Foster City, CA, USA). Gene expression
was normalized using levels of SiActin (gene ID: 101779009). Gene-specific primers are shown in
Supplementary Table S1. All reactions were performed in biological triplicate, and the results were
expressed relative to the transcription level of SiActin in each sample using the 2−∆∆CT method [69].
Correlation between RT-qPCR and RNA-seq was analyzed using SPSS 20.0 software (IBM, Armonk,
NY, USA).

4.7. Subcellular Localization of SiP5CS2

For detection of the subcellular localization of SiP5CS2, the SiP5CS2 coding region sequence
was amplified using KOD DNA Polymerase (Finnzymes) and the following primers: 5′-AGTCC
GGAGCTAGCTCTAGAGCCACGGCGAGGAGAGAA-3′and5′-CGCCCTTGCTCACCATGGATCCTT
GCAACGGAAGATCCCTGT-3′. The fragment obtained was subcloned into pAN580-EGFP cut
at XbaI and BamHI sites, and constructs verified by sequencing (Method 1 in Supplementary
Data). The generated plasmids were co-transformed with the pAN580-ECFP-Ghd7 plasmid into
Arabidopsis protoplasts using the polyethylene glycol (PEG)-mediated transformation method [70].
After incubation in the dark for 10 h, green fluorescent protein (GFP) in the protoplasts was examined
using confocal microscopy (Olympus FV1200) at an excitation wavelength of 488 nm.

5. Conclusions

Foxtail millet (Setaria italica (L.) P. Beauv) has become a tractable model crop, due to its short growing
cycle, inbred nature, small diploid genome, and preeminent abiotic stress-tolerance characteristics.
Drought is a major limiting factor for plant growth and productivity. Therefore, understanding the
mechanisms involved in drought stress responses and exploring effective strategies to improve drought
tolerance of foxtail millet may provide reliable gene resources for studying drought tolerance in other
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crops. In this study, the drought-tolerant foxtail millet variety, Jigu 16, was treated under drought
stress and rehydration, and the characteristics of gene expression during the treatments analyzed by
RNA-seq. The results indicate that drought-responsive genes are mainly involved photosynthesis,
signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism, and osmotic
adjustment. Furthermore, genes involved in the recovery of rehydration were mainly related to proline
metabolism, sugar metabolism, hormone signal transduction, water transport, and detoxification,
in addition to the reversal of the expression changes of the majority of drought-responsive genes.
Finally, this research revealed critical molecular pathways responsive to drought, including the proline
metabolic pathway, and provided a substantial genetic data resource that will aid further study of
drought resistance mechanisms.
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ABA Abscisic acid
AP2/ERF APETALA2/Ethylene responsive factor
bHLH Basic helix-loop-helix
bZIP Basic region leucine zipper
CAT Catalase
CK Control
D Drought
DEGs Differentially expressed genes
DREB Dehydration responsive element binding protein
ERF Ethylene responsive factor
FDR False discovery rate
GFP Green fluorescent protein
GO Gene ontology
HD-Zip Homeodomain-leucine zipper
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KEGG the Kyoto Encyclopedia of Genes and Genomes
LWC Leaf water content
MYB v-myb avian myeloblastosis viral oncogene homolog
NAC NAM/ATAF1/2/CUC1/2
POD Peroxidase
R Rehydration
RPKM Reads per kb per million reads
SOD Superoxide dismutase
TF Transcription factor
WUE Water use efficiency
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