Supplementary information

Sequence-Dependent Nanofiber Structures of Phenylalanine and Isoleucine Tripeptides

Qinsi Xiong,¹ Ziye Liu,¹ Wei Han^{1,*}

¹State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China

*Corresponding author: Email: hanw@pkusz.edu.cn

Definitions of Conformational states of tripeptides

Conformational space of a tripeptide can be divided into discrete conformational states based on conformations of individual amino acid units in the tripeptide (Figure S1), which was defined by the Ramachandran (ϕ , ψ) plot. Four local minima are located on the Ramachandran (ϕ , ψ) map, namely a right-handed state (α_R), a left-handed α helical state (α_L), a β strand (β) state and a polyproline II state (PPII)[1]. The specified parameters for these regions are listed in **Table S2**. Based on our previous work[2], β and PPII conformation state of the N-terminal amino acid share a very similar ψ range (~90° - ~180°) and are separated by a small barrier. Also, tripeptides in these two conformational states have the same θ_1 angle. Thus, they were merged into one state so as to reduce the total number of states from 64 (4³) to 48 (3×4²). Of note, the merged state at the N-terminal residue was still labeled " β ".

Conformationally constrained simulations

Additional harmonic potentials were applied in conformationally constrained simulations to keep tripeptides constrained in particular conformational states:

$$E_{\text{cons}} = \sum_{N} \sum_{R \in \{1,2,3\}} \frac{1}{2} \Big(K_{\phi_{R,N}} \big(\phi_{R,N} - \phi_{R,N}^{\circ} \big)^2 + K_{\psi_{R,N}} \big(\psi_{R,N} - \psi_{R,N}^{\circ} \big)^2 \Big), [S1]$$

where $K_{\phi_R,N}$ and $K_{\psi_R,N}$ determine the "stiffness" of the potential, and $\phi_{R,N}^{\circ}$ and $\psi_{R,N}^{\circ}$ are the equilibrium values of backbone dihedral $\phi_{R,N}$ and $\psi_{R,N}$ of the R_{th} residue in the N_{th} monomer. For each conformational state, a set of { K_{ϕ_R} , ϕ_R° , K_{ψ_R} , ψ_R° | R=1,2,3} parameters were applied to restrain tripeptide conformations. These parameters were derived by fitting the constrained simulation results with PACE to the corresponding regions in the ϕ and ψ map of FFF assemblies obtained from the unconstrained self-assembly simulations. The fitting results are shown in **Figure S3** and the resulting parameters of the constraining forces are summarized in **Table S5**.

Tripeptide Sequence	Numbers of tripeptides/parti cles	Constrained Conformational state	Simulation Type (temperature)	Simulation time (us) ^a
FFF	30/3207		Simulated	RUN1, 3.0; RUN2, 2.2; RUN3: 2.5
FFI	30/3145		annealing and conventional MD (310K-370K)	RUN1, 3.3; RUN2, 2.4; RUN3: 2.5
FIF	30/3122			RUN1: 2.1; RUN2: 2.9; RUN3:2.5
FII	30/3075		conventional MD (310K)	RUN1: 2.5; RUN2: 2.3; RUN3:2.0
IFF	30/3131	N		RUN1: 2.1; RUN2: 2.4; RUN3:2.2
IFI	30/3068	No		RUN1: 2.3; RUN2: 2.5; RUN3:2.0
IIF	30/3063		Simulated annealing and conventional MD (310K-370K)	RUN1, 2.4; RUN2, 3.0; RUN3: 2.7
III	30/3015		conventional MD (310K)	RUN1: 2.6; RUN2: 3.0; RUN3:2.0
RDE	30/3207	$\alpha_R \alpha_R \beta$		RUN1, 2.3; RUN2, 2.0
TTT		βββ		RUN1, 2.7; RUN2, 2.2
FEI	30/3145	$\alpha_R \alpha_R \beta$		RUN1, 2.3; RUN2, 2.0
I'I'I	50/5145	βββ		RUN1, 2.3; RUN2, 2.0
FIF	30/3122	$\alpha_R \alpha_R \beta$		RUN1, 2.2; RUN2, 2.2
FIF	50/5122	βββ		RUN1, 2.0; RUN2, 1.8
FII	30/3075	$\alpha_R \alpha_R \beta$	Simulated	RUN1, 2.4; RUN2, 2.3
T II	FII 30/3075	βββ	annealing and	RUN1, 1.9; RUN2, 1.8
IEE	30/3131	$\alpha_R \alpha_R \beta$	conventional MD	RUN1, 2.0; RUN2, 2.2
11.1.		βββ	(310K-400K)	RUN1, 2.0; RUN2,1.7
IFI	30/3068	$\alpha_R \alpha_R \beta$		RUN1, 2.4; RUN2, 2.7
	30/3000	βββ		RUN1, 2.1; RUN2, 1.9
IIF	30/3063	$\alpha_R \alpha_R \beta$		RUN1, 2.1; RUN2, 2.0
	50/5005	βββ		RUN1, 3.2; RUN2, 3.2
III	30/3015	$\alpha_R \alpha_R \beta$		RUN1, 2.8; RUN2, 2.5
III	30/3013	βββ		RUN1, 2.1; RUN2, 1.8

Table S1. Summary of simulations using PACE force field conducted in this study.

(a) Due to the stochastic nature of self-assembly processes, the time needed for observing the assembly of ordered structures varied significantly in different simulations. To save computation resource, we stopped the simulations if ordered assembled structures formed and were maintained for a period of time (~300ns). As such, there is a variation of simulation time for different runs of the same type of simulations. Also, in the conventional MD simulations of FFF, FFI, IIF and those with conformational constraints, the final assembly structures obtained from independent simulations were difficult to converge, indicating the kinetic traps present in these cases. Therefore, we conducted annealing simulations to prevent systems from being trapped. The temperature range of the annealed simulations was set to be 310-370K for non-constrained simulations and 310-400K for constrained simulations.

Conformation	ϕ	Ψ
_	(-180°, 0°)	(-120°, 30°)
$\alpha_{ m R}$	(-180°, -100°)	(30°, 60°)
	(-180°, -100°)	(90°, 180°)
β	(150°, 180°)	(90°, 180°)
	(-180°, -100°)	(-180°, -170°)
PPII	(-100°, 0°)	(90°, 180°)
$\alpha_{\rm L}$	(0°, 180°)	(-30°, 80°)

Table S2. The (ϕ, ψ) regions in Ramachandran map used to define two typical conformational states of an amino acid

Table S3. Summary of probability of conformational states in solution^a

FFF		FFI		FIF		FII	
$\beta \alpha_R \alpha_R$	0.24829468	$\beta \alpha_R \alpha_R$	0.17449849	$\beta \alpha_R \alpha_R$	0.13711648	$\beta \alpha_R \alpha_R$	0.19616838
βββ	0.14624829	βββ	0.12613355	$\beta \alpha_R \beta$	0.1099647	$\alpha_R \alpha_R \alpha_R$	0.17781975
$\beta \alpha_R PPII$	0.14270123	$\beta \alpha_R PPII$	0.1082715	$\beta \alpha_R PPII$	0.10887863	$\beta \alpha_R PPII$	0.0849973
ββΡΡΙΙ	0.14160982	$\beta \alpha_R \beta$	0.09563067	βΡΡΙΙβ	0.10181917	βΡΡΙΙβ	0.08094981
βΡΡΙΙΡΡΙΙ	0.09795362	ββΡΡΙΙ	0.09178346	ββΡΡΙΙ	0.09856096	$\beta \alpha_R \beta$	0.07717215
		βΡΡΙΙβ	0.08134103	βββ	0.09666033	βββ	0.06583918
				βΡΡΙΙΡΡΙΙ	0.06163454	ββΡΡΙΙ	0.06502968
IFF		IFI		IIF		Ш	
βββ	0.25569128	$\beta \alpha_R \alpha_R$	0.23655622	$\alpha_R \alpha_R \alpha_R$	0.2177814	$\beta \alpha_R \alpha_R$	0.22032086
$\beta \alpha_R \beta$	0.09661299	$\beta \alpha_R \beta$	0.19038566	$\beta \alpha_R \alpha_R$	0.19521479	$\beta \alpha_R \beta$	0.18262032
$\alpha_R \alpha_R \alpha_R$	0.08856191	βΡΡΙΙβ	0.09424226	$\beta \alpha_R PPII$	0.15796629	$\beta \alpha_R PPII$	0.13235294
$\alpha_R \alpha_R \beta$	0.07745697	$\beta \alpha_R PPII$	0.08881043	$\alpha_R \alpha_R PPII$	0.08156607	βΡΡΙΙβ	0.11122995
$\beta \alpha_R PPII$	0.07717934	$\alpha_R \alpha_R \alpha_R$	0.07224335	$\alpha_R \beta PPII$	0.05981512	βββ	0.07459893
$\beta \alpha_R \alpha_R$	0.0755136	βββ	0.06165128	$\beta \alpha_R \beta$	0.0581838		
βΡΡΙΙβ	0.06274292						
$\beta\beta\alpha_R$	0.05219323						

(a) The conformation states with an average probability > 5% are listed here.

FFF		FFI		FIF		FII	
βββ	0.62181889	$\alpha_R \alpha_R \beta$	0.51093481	βββ	0.53198782	$\alpha_R \alpha_R \beta$	0.37436312
ββΡΡΙΙ	0.14195445	$\alpha_R \alpha_R \beta$	0.09222792	ββΡΡΙΙ	0.19182707	$\alpha_R \alpha_R \alpha_R$	0.10047373
βΡΡΙΙβ	0.07473799	βββ	0.0828779	βΡΡΙΙβ	0.07076193	βββ	0.07250068
$\beta \alpha_L PPII$	0.06957351	$\alpha_R \alpha_L PPII$	0.05468549	$\beta\beta\alpha_R$	0.05409921	$\beta \alpha_R \alpha_R$	0.0637831
IFF		IFI		IIF		III	
$\alpha_R \alpha_R \beta$	0.63888775	$\alpha_R \alpha_R \beta$	0.73816251	$\alpha_R \alpha_R \beta$	0.16655251	βββ	0.38358591
$\alpha_R \alpha_R \beta$	0.1579894	$\alpha_R \alpha_R \beta$	0.12825635	$\alpha_R \alpha_R \beta$	0.14651803	$\alpha_R \alpha_R \beta$	0.23475643
$\alpha_R \alpha_R PPII$	0.09485864			$\beta \alpha_R \alpha_R$	0.09887021	βΡΡΙΙβ	0.09786132
				βββ	0.05814445	ββΡΡΙΙ	0.0727873

Table S4. Summary of probability of conformational states in assemblies^a

(a) The conformation states with an average probability > 5% are listed here.

Table S5. Parameters for conformational constraints used to fix FFFs to two major conformational states

	Conformational states			
	$\alpha_R \alpha_R \beta$	βββ		
$K_{\phi_1}(\text{kJ/mol/rad}^2)$	40	40		
ϕ_1° (deg)	-80	-100		
$K_{\psi_1}(ext{kJ/mol/rad}^2)$	40	40		
ψ_1° (deg)	-50	130		
$K_{\phi_2}(\text{kJ/mol/rad}^2)$	40	40		
ϕ_2° (deg)	-90	-120		
K_{ψ_2} (kJ/mol/rad ²)	30	40		
ψ_2° (deg)	-35	130		
K_{ϕ_3} (kJ/mol/rad ²)	40	40		
ϕ_3° (deg)	-150	-127		
$K_{\psi_3}(ext{kJ/mol/rad}^2)$	40	40		
$\psi^{^{\circ}}_{3}$ (deg)	140	137		

Figure S1. Illustration of conformations of each amino acid of a tripeptide. β -strand substate and polyproline II substate (PPII) of the first amino acid can be further merged into one conformation, still labeled β . The Ramachandran plots were obtained from a simulation of a FFF tripeptide in water using PACE.

Figure S2. Pairwise root mean square distance (RMSD) between representative conformations in solution states and in assembled states.

Figure S3. Distributions of backbone dihedral angle ϕ_1 (black), ψ_1 (red), ϕ_2 (blue), ψ_2 (green), ϕ_3 (magenta) and ψ_3 (brown) for $\alpha_R \alpha_R \beta$ (A) and $\beta \beta \beta$ (B) conformational states. The solid curves denote the distributions obtained using the assembled structures of FFFs from unconstrained simulations. Dashed curves were obtained from the simulations in which a FFF was constrained to one of the conformational states using the optimized parameters for the constraining forces.

REFERENCES

1. Pizzanelli, S.; Forte, C.; Monti, S.; Zandomeneghi, G.; Hagarman, A.; Measey, T.J.; Schweitzer-Stenner, R. Conformations of phenylalanine in the tripeptides AFA and GFG probed by combining MD simulations with NMR, FTIR, polarized Raman, and VCD spectroscopy. *J. Phys. Chem. B* **2010**, *114*, 3965–3978.

2. Xiong, Q.; Jiang, Y.; Cai, X.; Yang, F.; Li, Z.; Han, W. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations. *ACS Nano* **2019**, *13*, 4455–4468.